]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns_nstdsums.cpp
Fix bug in PolyLogs of rational numbers.
[ginac.git] / ginac / inifcns_nstdsums.cpp
index 92d23c9fc4189ef78463d89cb23b95c5b1dec29e..ee667752124b8e2391ec6e4946f4b6d84c487da3 100644 (file)
@@ -1,33 +1,53 @@
 /** @file inifcns_nstdsums.cpp
  *
  *  Implementation of some special functions that have a representation as nested sums.
- *  The functions are: 
+ *
+ *  The functions are:
  *    classical polylogarithm              Li(n,x)
- *    multiple polylogarithm               Li(lst(n_1,...,n_k),lst(x_1,...,x_k)
- *    nielsen's generalized polylogarithm  S(n,p,x)
- *    harmonic polylogarithm               H(lst(m_1,...,m_k),x)
- *    multiple zeta value                  mZeta(lst(m_1,...,m_k))
+ *    multiple polylogarithm               Li(lst(m_1,...,m_k),lst(x_1,...,x_k))
+ *                                         G(lst(a_1,...,a_k),y) or G(lst(a_1,...,a_k),lst(s_1,...,s_k),y)
+ *    Nielsen's generalized polylogarithm  S(n,p,x)
+ *    harmonic polylogarithm               H(m,x) or H(lst(m_1,...,m_k),x)
+ *    multiple zeta value                  zeta(m) or zeta(lst(m_1,...,m_k))
+ *    alternating Euler sum                zeta(m,s) or zeta(lst(m_1,...,m_k),lst(s_1,...,s_k))
  *
  *  Some remarks:
- *    - All formulae used can be looked up in the following publication:
- *      Nielsen's Generalized Polylogarithms, K.S.Kolbig, SIAM J.Math.Anal. 17 (1986), pp. 1232-1258.
- *      This document will be referenced as [Kol] throughout this source code.
- *    - Classical polylogarithms (Li) and nielsen's generalized polylogarithms (S) can be numerically
- *     evaluated in the whole complex plane. And of course, there is still room for speed optimizations ;-).
- *    - The calculation of classical polylogarithms is speed up by using Euler-MacLaurin summation (EuMac).
- *    - The remaining functions can only be numerically evaluated with arguments lying in the unit sphere
- *      at the moment. Sorry. The evaluation especially for mZeta is very slow ... better not use it
- *      right now.
- *    - The functions have no series expansion. To do it, you have to convert these functions
- *      into the appropriate objects from the nestedsums library, do the expansion and convert the
- *      result back. 
+ *
+ *    - All formulae used can be looked up in the following publications:
+ *      [Kol] Nielsen's Generalized Polylogarithms, K.S.Kolbig, SIAM J.Math.Anal. 17 (1986), pp. 1232-1258.
+ *      [Cra] Fast Evaluation of Multiple Zeta Sums, R.E.Crandall, Math.Comp. 67 (1998), pp. 1163-1172.
+ *      [ReV] Harmonic Polylogarithms, E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754
+ *      [BBB] Special Values of Multiple Polylogarithms, J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek, Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941
+ *      [VSW] Numerical evaluation of multiple polylogarithms, J.Vollinga, S.Weinzierl, hep-ph/0410259
+ *
+ *    - The order of parameters and arguments of Li and zeta is defined according to the nested sums
+ *      representation. The parameters for H are understood as in [ReV]. They can be in expanded --- only
+ *      0, 1 and -1 --- or in compactified --- a string with zeros in front of 1 or -1 is written as a single
+ *      number --- notation.
+ *
+ *    - All functions can be nummerically evaluated with arguments in the whole complex plane. The parameters
+ *      for Li, zeta and S must be positive integers. If you want to have an alternating Euler sum, you have
+ *      to give the signs of the parameters as a second argument s to zeta(m,s) containing 1 and -1.
+ *
+ *    - The calculation of classical polylogarithms is speeded up by using Bernoulli numbers and 
+ *      look-up tables. S uses look-up tables as well. The zeta function applies the algorithms in
+ *      [Cra] and [BBB] for speed up. Multiple polylogarithms use Hoelder convolution [BBB].
+ *
+ *    - The functions have no means to do a series expansion into nested sums. To do this, you have to convert
+ *      these functions into the appropriate objects from the nestedsums library, do the expansion and convert
+ *      the result back.
+ *
  *    - Numerical testing of this implementation has been performed by doing a comparison of results
- *      between this software and the commercial M.......... 4.1.
+ *      between this software and the commercial M.......... 4.1. Multiple zeta values have been checked
+ *      by means of evaluations into simple zeta values. Harmonic polylogarithms have been checked by
+ *      comparison to S(n,p,x) for corresponding parameter combinations and by continuity checks
+ *      around |x|=1 along with comparisons to corresponding zeta functions. Multiple polylogarithms were
+ *      checked against H and zeta and by means of shuffle and quasi-shuffle relations.
  *
  */
 
 /*
- *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <stdexcept>
-#include <vector>
-#include <cln/cln.h>
-
 #include "inifcns.h"
+
+#include "add.h"
+#include "constant.h"
 #include "lst.h"
+#include "mul.h"
 #include "numeric.h"
 #include "operators.h"
-#include "relational.h"
+#include "power.h"
 #include "pseries.h"
+#include "relational.h"
+#include "symbol.h"
+#include "utils.h"
+#include "wildcard.h"
 
+#include <cln/cln.h>
+#include <sstream>
+#include <stdexcept>
+#include <vector>
 
 namespace GiNaC {
 
-       
-// lookup table for Euler-MacLaurin optimization
-// see fill_Xn()
-std::vector<std::vector<cln::cl_N> > Xn;
-int xnsize = 0;
 
+//////////////////////////////////////////////////////////////////////
+//
+// Classical polylogarithm  Li(n,x)
+//
+// helper functions
+//
+//////////////////////////////////////////////////////////////////////
 
-// lookup table for Euler-Zagier-Sums (used for S_n,p(x))
-// see fill_Yn()
-std::vector<std::vector<cln::cl_N> > Yn;
-int ynsize = 0; // number of Yn[]
-int ynlength = 100; // initial length of all Yn[i]
+
+// anonymous namespace for helper functions
+namespace {
 
 
-//////////////////////
-// helper functions //
-//////////////////////
+// lookup table for factors built from Bernoulli numbers
+// see fill_Xn()
+std::vector<std::vector<cln::cl_N> > Xn;
+// initial size of Xn that should suffice for 32bit machines (must be even)
+const int xninitsizestep = 26;
+int xninitsize = xninitsizestep;
+int xnsize = 0;
 
 
-// This function calculates the X_n. The X_n are needed for the Euler-MacLaurin summation (EMS) of
-// classical polylogarithms.
-// With EMS the polylogs can be calculated as follows:
+// This function calculates the X_n. The X_n are needed for speed up of classical polylogarithms.
+// With these numbers the polylogs can be calculated as follows:
 //   Li_p (x)  =  \sum_{n=0}^\infty X_{p-2}(n) u^{n+1}/(n+1)! with  u = -log(1-x)
 //   X_0(n) = B_n (Bernoulli numbers)
 //   X_p(n) = \sum_{k=0}^n binomial(n,k) B_{n-k} / (k+1) * X_{p-1}(k)
@@ -87,20 +118,17 @@ int ynlength = 100; // initial length of all Yn[i]
 // X_0 is special, it holds only the non-zero Bernoulli numbers with index 2 or greater.
 // This results in a slightly more complicated algorithm for the X_n.
 // The first index in Xn corresponds to the index of the polylog minus 2.
-// The second index in Xn corresponds to the index from the EMS.
-static void fill_Xn(int n)
+// The second index in Xn corresponds to the index from the actual sum.
+void fill_Xn(int n)
 {
-       // rule of thumb. needs to be improved. TODO
-       const int initsize = Digits * 3 / 2;
-
        if (n>1) {
                // calculate X_2 and higher (corresponding to Li_4 and higher)
-               std::vector<cln::cl_N> buf(initsize);
+               std::vector<cln::cl_N> buf(xninitsize);
                std::vector<cln::cl_N>::iterator it = buf.begin();
                cln::cl_N result;
                *it = -(cln::expt(cln::cl_I(2),n+1) - 1) / cln::expt(cln::cl_I(2),n+1); // i == 1
                it++;
-               for (int i=2; i<=initsize; i++) {
+               for (int i=2; i<=xninitsize; i++) {
                        if (i&1) {
                                result = 0; // k == 0
                        } else {
@@ -120,14 +148,14 @@ static void fill_Xn(int n)
                Xn.push_back(buf);
        } else if (n==1) {
                // special case to handle the X_0 correct
-               std::vector<cln::cl_N> buf(initsize);
+               std::vector<cln::cl_N> buf(xninitsize);
                std::vector<cln::cl_N>::iterator it = buf.begin();
                cln::cl_N result;
                *it = cln::cl_I(-3)/cln::cl_I(4); // i == 1
                it++;
                *it = cln::cl_I(17)/cln::cl_I(36); // i == 2
                it++;
-               for (int i=3; i<=initsize; i++) {
+               for (int i=3; i<=xninitsize; i++) {
                        if (i & 1) {
                                result = -Xn[0][(i-3)/2]/2;
                                *it = (cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result;
@@ -144,9 +172,9 @@ static void fill_Xn(int n)
                Xn.push_back(buf);
        } else {
                // calculate X_0
-               std::vector<cln::cl_N> buf(initsize/2);
+               std::vector<cln::cl_N> buf(xninitsize/2);
                std::vector<cln::cl_N>::iterator it = buf.begin();
-               for (int i=1; i<=initsize/2; i++) {
+               for (int i=1; i<=xninitsize/2; i++) {
                        *it = bernoulli(i*2).to_cl_N();
                        it++;
                }
@@ -156,89 +184,59 @@ static void fill_Xn(int n)
        xnsize++;
 }
 
-
-// This function calculates the Y_n. The Y_n are needed for the evaluation of S_{n,p}(x).
-// The Y_n are basically Euler-Zagier sums with all m_i=1. They are subsums in the Z-sum
-// representing S_{n,p}(x).
-// The first index in Y_n corresponds to the parameter p minus one, i.e. the depth of the
-// equivalent Z-sum.
-// The second index in Y_n corresponds to the running index of the outermost sum in the full Z-sum
-// representing S_{n,p}(x).
-// The calculation of Y_n uses the values from Y_{n-1}.
-static void fill_Yn(int n, const cln::float_format_t& prec)
-{
-       // TODO -> get rid of the magic number
-       const int initsize = ynlength;
-       //const int initsize = initsize_Yn;
-       cln::cl_N one = cln::cl_float(1, prec);
-
-       if (n) {
-               std::vector<cln::cl_N> buf(initsize);
-               std::vector<cln::cl_N>::iterator it = buf.begin();
-               std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
-               *it = (*itprev) / cln::cl_N(n+1) * one;
-               it++;
-               itprev++;
-               // sums with an index smaller than the depth are zero and need not to be calculated.
-               // calculation starts with depth, which is n+2)
-               for (int i=n+2; i<=initsize+n; i++) {
-                       *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
-                       it++;
-                       itprev++;
-               }
-               Yn.push_back(buf);
-       } else {
-               std::vector<cln::cl_N> buf(initsize);
-               std::vector<cln::cl_N>::iterator it = buf.begin();
-               *it = 1 * one;
-               it++;
-               for (int i=2; i<=initsize; i++) {
-                       *it = *(it-1) + 1 / cln::cl_N(i) * one;
-                       it++;
-               }
-               Yn.push_back(buf);
-       }
-       ynsize++;
-}
-
-
-// make Yn longer ... 
-static void make_Yn_longer(int newsize, const cln::float_format_t& prec)
+// doubles the number of entries in each Xn[]
+void double_Xn()
 {
-
-       cln::cl_N one = cln::cl_float(1, prec);
-
-       Yn[0].resize(newsize);
-       std::vector<cln::cl_N>::iterator it = Yn[0].begin();
-       it += ynlength;
-       for (int i=ynlength+1; i<=newsize; i++) {
-               *it = *(it-1) + 1 / cln::cl_N(i) * one;
-               it++;
+       const int pos0 = xninitsize / 2;
+       // X_0
+       for (int i=1; i<=xninitsizestep/2; ++i) {
+               Xn[0].push_back(bernoulli((i+pos0)*2).to_cl_N());
        }
-
-       for (int n=1; n<ynsize; n++) {
-               Yn[n].resize(newsize);
-               std::vector<cln::cl_N>::iterator it = Yn[n].begin();
-               std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
-               it += ynlength;
-               itprev += ynlength;
-               for (int i=ynlength+n+1; i<=newsize+n; i++) {
-                       *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
-                       it++;
-                       itprev++;
+       if (Xn.size() > 1) {
+               int xend = xninitsize + xninitsizestep;
+               cln::cl_N result;
+               // X_1
+               for (int i=xninitsize+1; i<=xend; ++i) {
+                       if (i & 1) {
+                               result = -Xn[0][(i-3)/2]/2;
+                               Xn[1].push_back((cln::binomial(i,1)/cln::cl_I(2) + cln::binomial(i,i-1)/cln::cl_I(i))*result);
+                       } else {
+                               result = Xn[0][i/2-1] + Xn[0][i/2-1]/(i+1);
+                               for (int k=1; k<i/2; k++) {
+                                       result = result + cln::binomial(i,k*2) * Xn[0][k-1] * Xn[0][i/2-k-1] / (k*2+1);
+                               }
+                               Xn[1].push_back(result);
+                       }
+               }
+               // X_n
+               for (size_t n=2; n<Xn.size(); ++n) {
+                       for (int i=xninitsize+1; i<=xend; ++i) {
+                               if (i & 1) {
+                                       result = 0; // k == 0
+                               } else {
+                                       result = Xn[0][i/2-1]; // k == 0
+                               }
+                               for (int k=1; k<i-1; ++k) {
+                                       if ( !(((i-k) & 1) && ((i-k) > 1)) ) {
+                                               result = result + cln::binomial(i,k) * Xn[0][(i-k)/2-1] * Xn[n-1][k-1] / (k+1);
+                                       }
+                               }
+                               result = result - cln::binomial(i,i-1) * Xn[n-1][i-2] / 2 / i; // k == i-1
+                               result = result + Xn[n-1][i-1] / (i+1); // k == i
+                               Xn[n].push_back(result);
+                       }
                }
        }
-       
-       ynlength = newsize;
+       xninitsize += xninitsizestep;
 }
 
 
-// calculates Li(2,x) without EuMac
-static cln::cl_N Li2_series(const cln::cl_N& x)
+// calculates Li(2,x) without Xn
+cln::cl_N Li2_do_sum(const cln::cl_N& x)
 {
        cln::cl_N res = x;
        cln::cl_N resbuf;
-       cln::cl_N num = x;
+       cln::cl_N num = x * cln::cl_float(1, cln::float_format(Digits));
        cln::cl_I den = 1; // n^2 = 1
        unsigned i = 3;
        do {
@@ -252,30 +250,36 @@ static cln::cl_N Li2_series(const cln::cl_N& x)
 }
 
 
-// calculates Li(2,x) with EuMac
-static cln::cl_N Li2_series_EuMac(const cln::cl_N& x)
+// calculates Li(2,x) with Xn
+cln::cl_N Li2_do_sum_Xn(const cln::cl_N& x)
 {
        std::vector<cln::cl_N>::const_iterator it = Xn[0].begin();
+       std::vector<cln::cl_N>::const_iterator xend = Xn[0].end();
        cln::cl_N u = -cln::log(1-x);
-       cln::cl_N factor = u;
-       cln::cl_N res = u - u*u/4;
+       cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
+       cln::cl_N uu = cln::square(u);
+       cln::cl_N res = u - uu/4;
        cln::cl_N resbuf;
        unsigned i = 1;
        do {
                resbuf = res;
-               factor = factor * u*u / (2*i * (2*i+1));
+               factor = factor * uu / (2*i * (2*i+1));
                res = res + (*it) * factor;
-               it++; // should we check it? or rely on initsize? ...
                i++;
+               if (++it == xend) {
+                       double_Xn();
+                       it = Xn[0].begin() + (i-1);
+                       xend = Xn[0].end();
+               }
        } while (res != resbuf);
        return res;
 }
 
 
-// calculates Li(n,x), n>2 without EuMac
-static cln::cl_N Lin_series(int n, const cln::cl_N& x)
+// calculates Li(n,x), n>2 without Xn
+cln::cl_N Lin_do_sum(int n, const cln::cl_N& x)
 {
-       cln::cl_N factor = x;
+       cln::cl_N factor = x * cln::cl_float(1, cln::float_format(Digits));
        cln::cl_N res = x;
        cln::cl_N resbuf;
        int i=2;
@@ -289,12 +293,13 @@ static cln::cl_N Lin_series(int n, const cln::cl_N& x)
 }
 
 
-// calculates Li(n,x), n>2 with EuMac
-static cln::cl_N Lin_series_EuMac(int n, const cln::cl_N& x)
+// calculates Li(n,x), n>2 with Xn
+cln::cl_N Lin_do_sum_Xn(int n, const cln::cl_N& x)
 {
        std::vector<cln::cl_N>::const_iterator it = Xn[n-2].begin();
+       std::vector<cln::cl_N>::const_iterator xend = Xn[n-2].end();
        cln::cl_N u = -cln::log(1-x);
-       cln::cl_N factor = u;
+       cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
        cln::cl_N res = u;
        cln::cl_N resbuf;
        unsigned i=2;
@@ -302,19 +307,23 @@ static cln::cl_N Lin_series_EuMac(int n, const cln::cl_N& x)
                resbuf = res;
                factor = factor * u / i;
                res = res + (*it) * factor;
-               it++; // should we check it? or rely on initsize? ...
                i++;
+               if (++it == xend) {
+                       double_Xn();
+                       it = Xn[n-2].begin() + (i-2);
+                       xend = Xn[n-2].end();
+               }
        } while (res != resbuf);
        return res;
 }
 
 
 // forward declaration needed by function Li_projection and C below
-static numeric S_num(int n, int p, const numeric& x);
+const cln::cl_N S_num(int n, int p, const cln::cl_N& x);
 
 
 // helper function for classical polylog Li
-static cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_format_t& prec)
+cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_format_t& prec)
 {
        // treat n=2 as special case
        if (n == 2) {
@@ -330,16 +339,20 @@ static cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_forma
                        // it solves also the problem with precision due to the u=-log(1-x) transformation
                        if (cln::abs(cln::realpart(x)) < 0.25) {
                                
-                               return Li2_series(x);
+                               return Li2_do_sum(x);
                        } else {
-                               return Li2_series_EuMac(x);
+                               return Li2_do_sum_Xn(x);
                        }
                } else {
                        // choose the faster algorithm
                        if (cln::abs(cln::realpart(x)) > 0.75) {
-                               return -Li2_series(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
+                               if ( x == 1 ) {
+                                       return cln::zeta(2);
+                               } else {
+                                       return -Li2_do_sum(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
+                               }
                        } else {
-                               return -Li2_series_EuMac(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
+                               return -Li2_do_sum_Xn(1-x) - cln::log(x) * cln::log(1-x) + cln::zeta(2);
                        }
                }
        } else {
@@ -352,32 +365,32 @@ static cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_forma
 
                if (cln::realpart(x) < 0.5) {
                        // choose the faster algorithm
-                       // with n>=12 the "normal" summation always wins against EuMac
+                       // with n>=12 the "normal" summation always wins against the method with Xn
                        if ((cln::abs(cln::realpart(x)) < 0.3) || (n >= 12)) {
-                               return Lin_series(n, x);
+                               return Lin_do_sum(n, x);
                        } else {
-                               return Lin_series_EuMac(n, x);
+                               return Lin_do_sum_Xn(n, x);
                        }
                } else {
-                       cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
+                       cln::cl_N result = 0;
+                       if ( x != 1 ) result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
                        for (int j=0; j<n-1; j++) {
-                               result = result + (S_num(n-j-1, 1, 1).to_cl_N() - S_num(1, n-j-1, 1-x).to_cl_N())
-                                       * cln::expt(cln::log(x), j) / cln::factorial(j);
+                               result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
+                                                 * cln::expt(cln::log(x), j) / cln::factorial(j);
                        }
                        return result;
                }
        }
 }
 
-
 // helper function for classical polylog Li
-static numeric Li_num(int n, const numeric& x)
+const cln::cl_N Lin_numeric(const int n, const cln::cl_N& x)
 {
        if (n == 1) {
                // just a log
-               return -cln::log(1-x.to_cl_N());
+               return -cln::log(1-x);
        }
-       if (x.is_zero()) {
+       if (zerop(x)) {
                return 0;
        }
        if (x == 1) {
@@ -388,15 +401,23 @@ static numeric Li_num(int n, const numeric& x)
                // [Kol] (2.22)
                return -(1-cln::expt(cln::cl_I(2),1-n)) * cln::zeta(n);
        }
-       
+       if (cln::abs(realpart(x)) < 0.4 && cln::abs(cln::abs(x)-1) < 0.01) {
+               cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
+               for (int j=0; j<n-1; j++) {
+                       result = result + (S_num(n-j-1, 1, 1) - S_num(1, n-j-1, 1-x))
+                               * cln::expt(cln::log(x), j) / cln::factorial(j);
+               }
+               return result;
+       }
+
        // what is the desired float format?
        // first guess: default format
        cln::float_format_t prec = cln::default_float_format;
-       const cln::cl_N value = x.to_cl_N();
+       const cln::cl_N value = x;
        // second guess: the argument's format
-       if (!x.real().is_rational())
+       if (!instanceof(realpart(x), cln::cl_RA_ring))
                prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
-       else if (!x.imag().is_rational())
+       else if (!instanceof(imagpart(x), cln::cl_RA_ring))
                prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
        
        // [Kol] (5.15)
@@ -422,7 +443,7 @@ static numeric Li_num(int n, const numeric& x)
                cln::cl_N add;
                for (int j=0; j<n-1; j++) {
                        add = add + (1+cln::expt(cln::cl_I(-1),n-j)) * (1-cln::expt(cln::cl_I(2),1-n+j))
-                                       * Li_num(n-j,1).to_cl_N() * cln::expt(cln::log(-value),j) / cln::factorial(j);
+                                   * Lin_numeric(n-j,1) * cln::expt(cln::log(-value),j) / cln::factorial(j);
                }
                result = result - add;
                return result;
@@ -433,536 +454,3679 @@ static numeric Li_num(int n, const numeric& x)
 }
 
 
-// helper function for S(n,p,x)
-static cln::cl_N numeric_nielsen(int n, int step)
+} // end of anonymous namespace
+
+
+//////////////////////////////////////////////////////////////////////
+//
+// Multiple polylogarithm  Li(n,x)
+//
+// helper function
+//
+//////////////////////////////////////////////////////////////////////
+
+
+// anonymous namespace for helper function
+namespace {
+
+
+// performs the actual series summation for multiple polylogarithms
+cln::cl_N multipleLi_do_sum(const std::vector<int>& s, const std::vector<cln::cl_N>& x)
 {
-       if (step) {
-               cln::cl_N res;
-               for (int i=1; i<n; i++) {
-                       res = res + numeric_nielsen(i, step-1) / cln::cl_I(i);
-               }
-               return res;
+       // ensure all x <> 0.
+       for (std::vector<cln::cl_N>::const_iterator it = x.begin(); it != x.end(); ++it) {
+               if ( *it == 0 ) return cln::cl_float(0, cln::float_format(Digits));
        }
-       else {
-               return 1;
-       }
-}
 
+       const int j = s.size();
+       bool flag_accidental_zero = false;
 
-// helper function for S(n,p,x)
-// [Kol] (7.2)
-static cln::cl_N C(int n, int p)
-{
-       cln::cl_N result;
+       std::vector<cln::cl_N> t(j);
+       cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
 
-       for (int k=0; k<p; k++) {
-               for (int j=0; j<=(n+k-1)/2; j++) {
-                       if (k == 0) {
-                               if (n & 1) {
-                                       if (j & 1) {
-                                               result = result - 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1).to_cl_N() / cln::factorial(2*j);
-                                       }
-                                       else {
-                                               result = result + 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1).to_cl_N() / cln::factorial(2*j);
-                                       }
-                               }
-                       }
-                       else {
-                               if (k & 1) {
-                                       if (j & 1) {
-                                               result = result + cln::factorial(n+k-1)
-                                                       * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
-                                                       / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
-                                       }
-                                       else {
-                                               result = result - cln::factorial(n+k-1)
-                                                       * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
-                                                       / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
-                                       }
-                               }
-                               else {
-                                       if (j & 1) {
-                                               result = result - cln::factorial(n+k-1) * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
-                                                       / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
-                                       }
-                                       else {
-                                               result = result + cln::factorial(n+k-1)
-                                                       * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
-                                                       / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
-                                       }
-                               }
-                       }
-               }
-       }
-       int np = n+p;
-       if ((np-1) & 1) {
-               if (((np)/2+n) & 1) {
-                       result = -result - cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
+       cln::cl_N t0buf;
+       int q = 0;
+       do {
+               t0buf = t[0];
+               q++;
+               t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
+               for (int k=j-2; k>=0; k--) {
+                       t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
                }
-               else {
-                       result = -result + cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
+               q++;
+               t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
+               for (int k=j-2; k>=0; k--) {
+                       flag_accidental_zero = cln::zerop(t[k+1]);
+                       t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
                }
-       }
+       } while ( (t[0] != t0buf) || cln::zerop(t[0]) || flag_accidental_zero );
 
-       return result;
+       return t[0];
 }
 
 
-// helper function for S(n,p,x)
-// [Kol] remark to (9.1)
-static cln::cl_N a_k(int k)
-{
-       cln::cl_N result;
-
-       if (k == 0) {
-               return 1;
-       }
+// forward declaration for Li_eval()
+lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf);
 
-       result = result;
-       for (int m=2; m<=k; m++) {
-               result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * a_k(k-m);
-       }
 
-       return -result / k;
-}
+// type used by the transformation functions for G
+typedef std::vector<int> Gparameter;
 
 
-// helper function for S(n,p,x)
-// [Kol] remark to (9.1)
-static cln::cl_N b_k(int k)
+// G_eval1-function for G transformations
+ex G_eval1(int a, int scale, const exvector& gsyms)
 {
-       cln::cl_N result;
-
-       if (k == 0) {
-               return 1;
-       }
-
-       result = result;
-       for (int m=2; m<=k; m++) {
-               result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * b_k(k-m);
+       if (a != 0) {
+               const ex& scs = gsyms[std::abs(scale)];
+               const ex& as = gsyms[std::abs(a)];
+               if (as != scs) {
+                       return -log(1 - scs/as);
+               } else {
+                       return -zeta(1);
+               }
+       } else {
+               return log(gsyms[std::abs(scale)]);
        }
-
-       return result / k;
 }
 
 
-// helper function for S(n,p,x)
-static cln::cl_N S_series(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
+// G_eval-function for G transformations
+ex G_eval(const Gparameter& a, int scale, const exvector& gsyms)
 {
-       if (p==1) {
-               return Li_projection(n+1, x, prec);
+       // check for properties of G
+       ex sc = gsyms[std::abs(scale)];
+       lst newa;
+       bool all_zero = true;
+       bool all_ones = true;
+       int count_ones = 0;
+       for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
+               if (*it != 0) {
+                       const ex sym = gsyms[std::abs(*it)];
+                       newa.append(sym);
+                       all_zero = false;
+                       if (sym != sc) {
+                               all_ones = false;
+                       }
+                       if (all_ones) {
+                               ++count_ones;
+                       }
+               } else {
+                       all_ones = false;
+               }
        }
-       
-       // TODO -> check for vector boundaries and do missing calculations
 
-       // check if precalculated values are sufficient
-       if (p > ynsize+1) {
-               for (int i=ynsize; i<p-1; i++) {
-                       fill_Yn(i, prec);
+       // care about divergent G: shuffle to separate divergencies that will be canceled
+       // later on in the transformation
+       if (newa.nops() > 1 && newa.op(0) == sc && !all_ones && a.front()!=0) {
+               // do shuffle
+               Gparameter short_a;
+               Gparameter::const_iterator it = a.begin();
+               ++it;
+               for (; it != a.end(); ++it) {
+                       short_a.push_back(*it);
+               }
+               ex result = G_eval1(a.front(), scale, gsyms) * G_eval(short_a, scale, gsyms);
+               it = short_a.begin();
+               for (int i=1; i<count_ones; ++i) {
+                       ++it;
+               }
+               for (; it != short_a.end(); ++it) {
+
+                       Gparameter newa;
+                       Gparameter::const_iterator it2 = short_a.begin();
+                       for (; it2 != it; ++it2) {
+                               newa.push_back(*it2);
+                       }
+                       newa.push_back(*it);
+                       newa.push_back(a[0]);
+                       it2 = it;
+                       ++it2;
+                       for (; it2 != short_a.end(); ++it2) {
+                               newa.push_back(*it2);   
+                       }
+                       result -= G_eval(newa, scale, gsyms);
                }
+               return result / count_ones;
        }
 
-       // should be done otherwise
-       cln::cl_N xf = x * cln::cl_float(1, prec);
+       // G({1,...,1};y) -> G({1};y)^k / k!
+       if (all_ones && a.size() > 1) {
+               return pow(G_eval1(a.front(),scale, gsyms), count_ones) / factorial(count_ones);
+       }
 
-       cln::cl_N result;
-       cln::cl_N resultbuffer;
-       int i;
-       for (i=p; true; i++) {
-               resultbuffer = result;
-               if (i-p >= ynlength) {
-                       // make Yn longer
-                       make_Yn_longer(ynlength*2, prec);
-               }
-               result = result + cln::expt(xf,i) / cln::expt(cln::cl_I(i),n+1) * Yn[p-2][i-p]; // should we check it? or rely on magic number? ...
-               if (cln::zerop(result-resultbuffer)) {
-                       break;
+       // G({0,...,0};y) -> log(y)^k / k!
+       if (all_zero) {
+               return pow(log(gsyms[std::abs(scale)]), a.size()) / factorial(a.size());
+       }
+
+       // no special cases anymore -> convert it into Li
+       lst m;
+       lst x;
+       ex argbuf = gsyms[std::abs(scale)];
+       ex mval = _ex1;
+       for (Gparameter::const_iterator it=a.begin(); it!=a.end(); ++it) {
+               if (*it != 0) {
+                       const ex& sym = gsyms[std::abs(*it)];
+                       x.append(argbuf / sym);
+                       m.append(mval);
+                       mval = _ex1;
+                       argbuf = sym;
+               } else {
+                       ++mval;
                }
        }
-       
-       return result;
+       return pow(-1, x.nops()) * Li(m, x);
 }
 
 
-// helper function for S(n,p,x)
-static cln::cl_N S_projection(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
+// converts data for G: pending_integrals -> a
+Gparameter convert_pending_integrals_G(const Gparameter& pending_integrals)
 {
-       // [Kol] (5.3)
-       if (cln::abs(cln::realpart(x)) > cln::cl_F("0.5")) {
+       GINAC_ASSERT(pending_integrals.size() != 1);
 
-               cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(x),n)
-                       * cln::expt(cln::log(1-x),p) / cln::factorial(n) / cln::factorial(p);
+       if (pending_integrals.size() > 0) {
+               // get rid of the first element, which would stand for the new upper limit
+               Gparameter new_a(pending_integrals.begin()+1, pending_integrals.end());
+               return new_a;
+       } else {
+               // just return empty parameter list
+               Gparameter new_a;
+               return new_a;
+       }
+}
 
-               for (int s=0; s<n; s++) {
-                       cln::cl_N res2;
-                       for (int r=0; r<p; r++) {
-                               res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-x),r)
-                                       * S_series(p-r,n-s,1-x,prec) / cln::factorial(r);
+
+// check the parameters a and scale for G and return information about convergence, depth, etc.
+// convergent     : true if G(a,scale) is convergent
+// depth          : depth of G(a,scale)
+// trailing_zeros : number of trailing zeros of a
+// min_it         : iterator of a pointing on the smallest element in a
+Gparameter::const_iterator check_parameter_G(const Gparameter& a, int scale,
+               bool& convergent, int& depth, int& trailing_zeros, Gparameter::const_iterator& min_it)
+{
+       convergent = true;
+       depth = 0;
+       trailing_zeros = 0;
+       min_it = a.end();
+       Gparameter::const_iterator lastnonzero = a.end();
+       for (Gparameter::const_iterator it = a.begin(); it != a.end(); ++it) {
+               if (std::abs(*it) > 0) {
+                       ++depth;
+                       trailing_zeros = 0;
+                       lastnonzero = it;
+                       if (std::abs(*it) < scale) {
+                               convergent = false;
+                               if ((min_it == a.end()) || (std::abs(*it) < std::abs(*min_it))) {
+                                       min_it = it;
+                               }
                        }
-                       result = result + cln::expt(cln::log(x),s) * (S_num(n-s,p,1).to_cl_N() - res2) / cln::factorial(s);
+               } else {
+                       ++trailing_zeros;
                }
-
-               return result;
        }
-       
-       return S_series(n, p, x, prec);
+       if (lastnonzero == a.end())
+               return a.end();
+       return ++lastnonzero;
 }
 
 
-// helper function for S(n,p,x)
-static numeric S_num(int n, int p, const numeric& x)
+// add scale to pending_integrals if pending_integrals is empty
+Gparameter prepare_pending_integrals(const Gparameter& pending_integrals, int scale)
 {
-       if (x == 1) {
-               if (n == 1) {
-                   // [Kol] (2.22) with (2.21)
-                       return cln::zeta(p+1);
-               }
+       GINAC_ASSERT(pending_integrals.size() != 1);
 
-               if (p == 1) {
-                   // [Kol] (2.22)
-                       return cln::zeta(n+1);
+       if (pending_integrals.size() > 0) {
+               return pending_integrals;
+       } else {
+               Gparameter new_pending_integrals;
+               new_pending_integrals.push_back(scale);
+               return new_pending_integrals;
+       }
+}
+
+
+// handles trailing zeroes for an otherwise convergent integral
+ex trailing_zeros_G(const Gparameter& a, int scale, const exvector& gsyms)
+{
+       bool convergent;
+       int depth, trailing_zeros;
+       Gparameter::const_iterator last, dummyit;
+       last = check_parameter_G(a, scale, convergent, depth, trailing_zeros, dummyit);
+
+       GINAC_ASSERT(convergent);
+
+       if ((trailing_zeros > 0) && (depth > 0)) {
+               ex result;
+               Gparameter new_a(a.begin(), a.end()-1);
+               result += G_eval1(0, scale, gsyms) * trailing_zeros_G(new_a, scale, gsyms);
+               for (Gparameter::const_iterator it = a.begin(); it != last; ++it) {
+                       Gparameter new_a(a.begin(), it);
+                       new_a.push_back(0);
+                       new_a.insert(new_a.end(), it, a.end()-1);
+                       result -= trailing_zeros_G(new_a, scale, gsyms);
                }
 
-               // [Kol] (9.1)
-               cln::cl_N result;
-               for (int nu=0; nu<n; nu++) {
-                       for (int rho=0; rho<=p; rho++) {
-                               result = result + b_k(n-nu-1) * b_k(p-rho) * a_k(nu+rho+1)
-                                       * cln::factorial(nu+rho+1) / cln::factorial(rho) / cln::factorial(nu+1);
-                       }
+               return result / trailing_zeros;
+       } else {
+               return G_eval(a, scale, gsyms);
+       }
+}
+
+
+// G transformation [VSW] (57),(58)
+ex depth_one_trafo_G(const Gparameter& pending_integrals, const Gparameter& a, int scale, const exvector& gsyms)
+{
+       // pendint = ( y1, b1, ..., br )
+       //       a = ( 0, ..., 0, amin )
+       //   scale = y2
+       //
+       // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(0, ..., 0, sr; y2)
+       // where sr replaces amin
+
+       GINAC_ASSERT(a.back() != 0);
+       GINAC_ASSERT(a.size() > 0);
+
+       ex result;
+       Gparameter new_pending_integrals = prepare_pending_integrals(pending_integrals, std::abs(a.back()));
+       const int psize = pending_integrals.size();
+
+       // length == 1
+       // G(sr_{+-}; y2 ) = G(y2_{-+}; sr) - G(0; sr) + ln(-y2_{-+})
+
+       if (a.size() == 1) {
+
+         // ln(-y2_{-+})
+         result += log(gsyms[ex_to<numeric>(scale).to_int()]);
+               if (a.back() > 0) {
+                       new_pending_integrals.push_back(-scale);
+                       result += I*Pi;
+               } else {
+                       new_pending_integrals.push_back(scale);
+                       result -= I*Pi;
                }
-               result = result * cln::expt(cln::cl_I(-1),n+p-1);
+               if (psize) {
+                       result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
+                                                  pending_integrals.front(),
+                                                  gsyms);
+               }
+               
+               // G(y2_{-+}; sr)
+               result += trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
+                                          new_pending_integrals.front(),
+                                          gsyms);
+               
+               // G(0; sr)
+               new_pending_integrals.back() = 0;
+               result -= trailing_zeros_G(convert_pending_integrals_G(new_pending_integrals),
+                                          new_pending_integrals.front(),
+                                          gsyms);
 
                return result;
        }
-       else if (x == -1) {
-               // [Kol] (2.22)
-               if (p == 1) {
-                       return -(1-cln::expt(cln::cl_I(2),-n)) * cln::zeta(n+1);
-               }
-//             throw std::runtime_error("don't know how to evaluate this function!");
+
+       // length > 1
+       // G_m(sr_{+-}; y2) = -zeta_m + int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
+       //                            - int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
+
+       //term zeta_m
+       result -= zeta(a.size());
+       if (psize) {
+               result *= trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
+                                          pending_integrals.front(),
+                                          gsyms);
+       }
+       
+       // term int_0^sr dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
+       //    = int_0^sr dt/t G_{m-1}( t_{+-}; y2 )
+       Gparameter new_a(a.begin()+1, a.end());
+       new_pending_integrals.push_back(0);
+       result -= depth_one_trafo_G(new_pending_integrals, new_a, scale, gsyms);
+       
+       // term int_0^y2 dt/t G_{m-1}( (1/y2)_{+-}; 1/t )
+       //    = int_0^y2 dt/t G_{m-1}( t_{+-}; y2 )
+       Gparameter new_pending_integrals_2;
+       new_pending_integrals_2.push_back(scale);
+       new_pending_integrals_2.push_back(0);
+       if (psize) {
+               result += trailing_zeros_G(convert_pending_integrals_G(pending_integrals),
+                                          pending_integrals.front(),
+                                          gsyms)
+                         * depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
+       } else {
+               result += depth_one_trafo_G(new_pending_integrals_2, new_a, scale, gsyms);
        }
 
-       // what is the desired float format?
-       // first guess: default format
-       cln::float_format_t prec = cln::default_float_format;
-       const cln::cl_N value = x.to_cl_N();
-       // second guess: the argument's format
-       if (!x.real().is_rational())
-               prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
-       else if (!x.imag().is_rational())
-               prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
+       return result;
+}
 
 
-       // [Kol] (5.3)
-       if (cln::realpart(value) < -0.5) {
+// forward declaration
+ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
+            const Gparameter& pendint, const Gparameter& a_old, int scale,
+            const exvector& gsyms, bool flag_trailing_zeros_only);
 
-               cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(value),n)
-                       * cln::expt(cln::log(1-value),p) / cln::factorial(n) / cln::factorial(p);
 
-               for (int s=0; s<n; s++) {
-                       cln::cl_N res2;
-                       for (int r=0; r<p; r++) {
-                               res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-value),r)
-                                       * S_num(p-r,n-s,1-value).to_cl_N() / cln::factorial(r);
-                       }
-                       result = result + cln::expt(cln::log(value),s) * (S_num(n-s,p,1).to_cl_N() - res2) / cln::factorial(s);
+// G transformation [VSW]
+ex G_transform(const Gparameter& pendint, const Gparameter& a, int scale,
+              const exvector& gsyms, bool flag_trailing_zeros_only)
+{
+       // main recursion routine
+       //
+       // pendint = ( y1, b1, ..., br )
+       //       a = ( a1, ..., amin, ..., aw )
+       //   scale = y2
+       //
+       // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
+       // where sr replaces amin
+
+       // find smallest alpha, determine depth and trailing zeros, and check for convergence
+       bool convergent;
+       int depth, trailing_zeros;
+       Gparameter::const_iterator min_it;
+       Gparameter::const_iterator firstzero = 
+               check_parameter_G(a, scale, convergent, depth, trailing_zeros, min_it);
+       int min_it_pos = min_it - a.begin();
+
+       // special case: all a's are zero
+       if (depth == 0) {
+               ex result;
+
+               if (a.size() == 0) {
+                 result = 1;
+               } else {
+                 result = G_eval(a, scale, gsyms);
                }
-
+               if (pendint.size() > 0) {
+                 result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
+                                            pendint.front(),
+                                            gsyms);
+               } 
                return result;
-               
        }
-       // [Kol] (5.12)
-       if (cln::abs(value) > 1) {
-               
-               cln::cl_N result;
 
-               for (int s=0; s<p; s++) {
-                       for (int r=0; r<=s; r++) {
-                               result = result + cln::expt(cln::cl_I(-1),s) * cln::expt(cln::log(-value),r) * cln::factorial(n+s-r-1)
-                                       / cln::factorial(r) / cln::factorial(s-r) / cln::factorial(n-1)
-                                       * S_num(n+s-r,p-s,cln::recip(value)).to_cl_N();
-                       }
+       // handle trailing zeros
+       if (trailing_zeros > 0) {
+               ex result;
+               Gparameter new_a(a.begin(), a.end()-1);
+               result += G_eval1(0, scale, gsyms) * G_transform(pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
+               for (Gparameter::const_iterator it = a.begin(); it != firstzero; ++it) {
+                       Gparameter new_a(a.begin(), it);
+                       new_a.push_back(0);
+                       new_a.insert(new_a.end(), it, a.end()-1);
+                       result -= G_transform(pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
                }
-               result = result * cln::expt(cln::cl_I(-1),n);
+               return result / trailing_zeros;
+       }
 
-               cln::cl_N res2;
-               for (int r=0; r<n; r++) {
-                       res2 = res2 + cln::expt(cln::log(-value),r) * C(n-r,p) / cln::factorial(r);
+       // convergence case or flag_trailing_zeros_only
+       if (convergent || flag_trailing_zeros_only) {
+               if (pendint.size() > 0) {
+                       return G_eval(convert_pending_integrals_G(pendint),
+                                     pendint.front(), gsyms)*
+                               G_eval(a, scale, gsyms);
+               } else {
+                       return G_eval(a, scale, gsyms);
                }
-               res2 = res2 + cln::expt(cln::log(-value),n+p) / cln::factorial(n+p);
+       }
 
-               result = result + cln::expt(cln::cl_I(-1),p) * res2;
+       // call basic transformation for depth equal one
+       if (depth == 1) {
+               return depth_one_trafo_G(pendint, a, scale, gsyms);
+       }
 
+       // do recursion
+       // int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,sr,...,aw,y2)
+       //  =  int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) G(a1,...,0,...,aw,y2)
+       //   + int_0^y1 ds1/(s1-b1) ... int dsr/(sr-br) int_0^{sr} ds_{r+1} d/ds_{r+1} G(a1,...,s_{r+1},...,aw,y2)
+
+       // smallest element in last place
+       if (min_it + 1 == a.end()) {
+               do { --min_it; } while (*min_it == 0);
+               Gparameter empty;
+               Gparameter a1(a.begin(),min_it+1);
+               Gparameter a2(min_it+1,a.end());
+
+               ex result = G_transform(pendint, a2, scale, gsyms, flag_trailing_zeros_only)*
+                           G_transform(empty, a1, scale, gsyms, flag_trailing_zeros_only);
+
+               result -= shuffle_G(empty, a1, a2, pendint, a, scale, gsyms, flag_trailing_zeros_only);
                return result;
        }
-       else {
-               return S_projection(n, p, value, prec);
-       }
-}
-
 
-// helper function for multiple polylogarithm
-static cln::cl_N numeric_zsum(int n, std::vector<cln::cl_N>& x, std::vector<cln::cl_N>& m)
-{
-       cln::cl_N res;
-       if (x.empty()) {
-               return 1;
+       Gparameter empty;
+       Gparameter::iterator changeit;
+
+       // first term G(a_1,..,0,...,a_w;a_0)
+       Gparameter new_pendint = prepare_pending_integrals(pendint, a[min_it_pos]);
+       Gparameter new_a = a;
+       new_a[min_it_pos] = 0;
+       ex result = G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
+       if (pendint.size() > 0) {
+               result *= trailing_zeros_G(convert_pending_integrals_G(pendint),
+                                          pendint.front(), gsyms);
        }
-       for (int i=1; i<n; i++) {
-               std::vector<cln::cl_N>::iterator be;
-               std::vector<cln::cl_N>::iterator en;
-               be = x.begin();
-               be++;
-               en = x.end();
-               std::vector<cln::cl_N> xbuf(be, en);
-               be = m.begin();
-               be++;
-               en = m.end();
-               std::vector<cln::cl_N> mbuf(be, en);
-               res = res + cln::expt(x[0],i) / cln::expt(i,m[0]) * numeric_zsum(i, xbuf, mbuf);
+
+       // other terms
+       changeit = new_a.begin() + min_it_pos;
+       changeit = new_a.erase(changeit);
+       if (changeit != new_a.begin()) {
+               // smallest in the middle
+               new_pendint.push_back(*changeit);
+               result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
+                                          new_pendint.front(), gsyms)*
+                         G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
+               int buffer = *changeit;
+               *changeit = *min_it;
+               result += G_transform(new_pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
+               *changeit = buffer;
+               new_pendint.pop_back();
+               --changeit;
+               new_pendint.push_back(*changeit);
+               result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
+                                          new_pendint.front(), gsyms)*
+                         G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
+               *changeit = *min_it;
+               result -= G_transform(new_pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
+       } else {
+               // smallest at the front
+               new_pendint.push_back(scale);
+               result += trailing_zeros_G(convert_pending_integrals_G(new_pendint),
+                                          new_pendint.front(), gsyms)*
+                         G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
+               new_pendint.back() =  *changeit;
+               result -= trailing_zeros_G(convert_pending_integrals_G(new_pendint),
+                                          new_pendint.front(), gsyms)*
+                         G_transform(empty, new_a, scale, gsyms, flag_trailing_zeros_only);
+               *changeit = *min_it;
+               result += G_transform(new_pendint, new_a, scale, gsyms, flag_trailing_zeros_only);
        }
-       return res;
+       return result;
 }
 
 
-// helper function for harmonic polylogarithm
-static cln::cl_N numeric_harmonic(int n, std::vector<cln::cl_N>& m)
+// shuffles the two parameter list a1 and a2 and calls G_transform for every term except
+// for the one that is equal to a_old
+ex shuffle_G(const Gparameter & a0, const Gparameter & a1, const Gparameter & a2,
+            const Gparameter& pendint, const Gparameter& a_old, int scale,
+            const exvector& gsyms, bool flag_trailing_zeros_only) 
 {
-       cln::cl_N res;
-       if (m.empty()) {
-               return 1;
+       if (a1.size()==0 && a2.size()==0) {
+               // veto the one configuration we don't want
+               if ( a0 == a_old ) return 0;
+
+               return G_transform(pendint, a0, scale, gsyms, flag_trailing_zeros_only);
        }
-       for (int i=1; i<n; i++) {
-               std::vector<cln::cl_N>::iterator be;
-               std::vector<cln::cl_N>::iterator en;
-               be = m.begin();
-               be++;
-               en = m.end();
-               std::vector<cln::cl_N> mbuf(be, en);
-               res = res + cln::recip(cln::expt(i,m[0])) * numeric_harmonic(i, mbuf);
+
+       if (a2.size()==0) {
+               Gparameter empty;
+               Gparameter aa0 = a0;
+               aa0.insert(aa0.end(),a1.begin(),a1.end());
+               return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms, flag_trailing_zeros_only);
+       }
+
+       if (a1.size()==0) {
+               Gparameter empty;
+               Gparameter aa0 = a0;
+               aa0.insert(aa0.end(),a2.begin(),a2.end());
+               return shuffle_G(aa0, empty, empty, pendint, a_old, scale, gsyms, flag_trailing_zeros_only);
        }
-       return res;
-}
 
+       Gparameter a1_removed(a1.begin()+1,a1.end());
+       Gparameter a2_removed(a2.begin()+1,a2.end());
 
-/////////////////////////////
-// end of helper functions //
-/////////////////////////////
+       Gparameter a01 = a0;
+       Gparameter a02 = a0;
 
+       a01.push_back( a1[0] );
+       a02.push_back( a2[0] );
 
-// Polylogarithm and multiple polylogarithm
+       return shuffle_G(a01, a1_removed, a2, pendint, a_old, scale, gsyms, flag_trailing_zeros_only)
+            + shuffle_G(a02, a1, a2_removed, pendint, a_old, scale, gsyms, flag_trailing_zeros_only);
+}
 
-static ex Li_eval(const ex& x1, const ex& x2)
+// handles the transformations and the numerical evaluation of G
+// the parameter x, s and y must only contain numerics
+static cln::cl_N
+G_numeric(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
+         const cln::cl_N& y);
+
+// do acceleration transformation (hoelder convolution [BBB])
+// the parameter x, s and y must only contain numerics
+static cln::cl_N
+G_do_hoelder(std::vector<cln::cl_N> x, /* yes, it's passed by value */
+            const std::vector<int>& s, const cln::cl_N& y)
 {
-       if (x2.is_zero()) {
-               return 0;
-       }
-       else {
-               if (x2.info(info_flags::numeric) && (!x2.info(info_flags::crational)))
-                       return Li_num(ex_to<numeric>(x1).to_int(), ex_to<numeric>(x2));
-               return Li(x1,x2).hold();
+       cln::cl_N result;
+       const std::size_t size = x.size();
+       for (std::size_t i = 0; i < size; ++i)
+               x[i] = x[i]/y;
+
+       for (std::size_t r = 0; r <= size; ++r) {
+               cln::cl_N buffer(1 & r ? -1 : 1);
+               cln::cl_RA p(2);
+               bool adjustp;
+               do {
+                       adjustp = false;
+                       for (std::size_t i = 0; i < size; ++i) {
+                               if (x[i] == cln::cl_RA(1)/p) {
+                                       p = p/2 + cln::cl_RA(3)/2;
+                                       adjustp = true;
+                                       continue;
+                               }
+                       }
+               } while (adjustp);
+               cln::cl_RA q = p/(p-1);
+               std::vector<cln::cl_N> qlstx;
+               std::vector<int> qlsts;
+               for (std::size_t j = r; j >= 1; --j) {
+                       qlstx.push_back(cln::cl_N(1) - x[j-1]);
+                       if (instanceof(x[j-1], cln::cl_R_ring) && realpart(x[j-1]) > 1) {
+                               qlsts.push_back(1);
+                       } else {
+                               qlsts.push_back(-s[j-1]);
+                       }
+               }
+               if (qlstx.size() > 0) {
+                       buffer = buffer*G_numeric(qlstx, qlsts, 1/q);
+               }
+               std::vector<cln::cl_N> plstx;
+               std::vector<int> plsts;
+               for (std::size_t j = r+1; j <= size; ++j) {
+                       plstx.push_back(x[j-1]);
+                       plsts.push_back(s[j-1]);
+               }
+               if (plstx.size() > 0) {
+                       buffer = buffer*G_numeric(plstx, plsts, 1/p);
+               }
+               result = result + buffer;
        }
+       return result;
 }
 
-static ex Li_evalf(const ex& x1, const ex& x2)
+class less_object_for_cl_N
 {
-       // classical polylogs
-       if (is_a<numeric>(x1) && is_a<numeric>(x2)) {
-               return Li_num(ex_to<numeric>(x1).to_int(), ex_to<numeric>(x2));
+public:
+       bool operator() (const cln::cl_N & a, const cln::cl_N & b) const
+       {
+               // absolute value?
+               if (abs(a) != abs(b))
+                       return (abs(a) < abs(b)) ? true : false;
+
+               // complex phase?
+               if (phase(a) != phase(b))
+                       return (phase(a) < phase(b)) ? true : false;
+
+               // equal, therefore "less" is not true
+               return false;
        }
-       // multiple polylogs
-       else if (is_a<lst>(x1) && is_a<lst>(x2)) {
-               for (int i=0; i<x1.nops(); i++) {
-                       if (!is_a<numeric>(x1.op(i)))
-                               return Li(x1,x2).hold();
-                       if (!is_a<numeric>(x2.op(i)))
-                               return Li(x1,x2).hold();
-                       if (x2.op(i) >= 1)
-                               return Li(x1,x2).hold();
-               }
+};
 
-               cln::cl_N m_1 = ex_to<numeric>(x1.op(x1.nops()-1)).to_cl_N();
-               cln::cl_N x_1 = ex_to<numeric>(x2.op(x2.nops()-1)).to_cl_N();
-               std::vector<cln::cl_N> x;
-               std::vector<cln::cl_N> m;
-               const int nops = ex_to<numeric>(x1.nops()).to_int();
-               for (int i=nops-2; i>=0; i--) {
-                       m.push_back(ex_to<numeric>(x1.op(i)).to_cl_N());
-                       x.push_back(ex_to<numeric>(x2.op(i)).to_cl_N());
+
+// convergence transformation, used for numerical evaluation of G function.
+// the parameter x, s and y must only contain numerics
+static cln::cl_N
+G_do_trafo(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
+           const cln::cl_N& y, bool flag_trailing_zeros_only)
+{
+       // sort (|x|<->position) to determine indices
+       typedef std::multimap<cln::cl_N, std::size_t, less_object_for_cl_N> sortmap_t;
+       sortmap_t sortmap;
+       std::size_t size = 0;
+       for (std::size_t i = 0; i < x.size(); ++i) {
+               if (!zerop(x[i])) {
+                       sortmap.insert(std::make_pair(x[i], i));
+                       ++size;
+               }
+       }
+       // include upper limit (scale)
+       sortmap.insert(std::make_pair(y, x.size()));
+
+       // generate missing dummy-symbols
+       int i = 1;
+       // holding dummy-symbols for the G/Li transformations
+       exvector gsyms;
+       gsyms.push_back(symbol("GSYMS_ERROR"));
+       cln::cl_N lastentry(0);
+       for (sortmap_t::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
+               if (it != sortmap.begin()) {
+                       if (it->second < x.size()) {
+                               if (x[it->second] == lastentry) {
+                                       gsyms.push_back(gsyms.back());
+                                       continue;
+                               }
+                       } else {
+                               if (y == lastentry) {
+                                       gsyms.push_back(gsyms.back());
+                                       continue;
+                               }
+                       }
                }
+               std::ostringstream os;
+               os << "a" << i;
+               gsyms.push_back(symbol(os.str()));
+               ++i;
+               if (it->second < x.size()) {
+                       lastentry = x[it->second];
+               } else {
+                       lastentry = y;
+               }
+       }
 
-               cln::cl_N res;
-               cln::cl_N resbuf;
-               for (int i=nops; true; i++) {
-                       resbuf = res;
-                       res = res + cln::expt(x_1,i) / cln::expt(i,m_1) * numeric_zsum(i, x, m);
-                       if (cln::zerop(res-resbuf))
-                               break;
+       // fill position data according to sorted indices and prepare substitution list
+       Gparameter a(x.size());
+       exmap subslst;
+       std::size_t pos = 1;
+       int scale = pos;
+       for (sortmap_t::const_iterator it = sortmap.begin(); it != sortmap.end(); ++it) {
+               if (it->second < x.size()) {
+                       if (s[it->second] > 0) {
+                               a[it->second] = pos;
+                       } else {
+                               a[it->second] = -int(pos);
+                       }
+                       subslst[gsyms[pos]] = numeric(x[it->second]);
+               } else {
+                       scale = pos;
+                       subslst[gsyms[pos]] = numeric(y);
                }
+               ++pos;
+       }
+
+       // do transformation
+       Gparameter pendint;
+       ex result = G_transform(pendint, a, scale, gsyms, flag_trailing_zeros_only);
+       // replace dummy symbols with their values
+       result = result.eval().expand();
+       result = result.subs(subslst).evalf();
+       if (!is_a<numeric>(result))
+               throw std::logic_error("G_do_trafo: G_transform returned non-numeric result");
+       
+       cln::cl_N ret = ex_to<numeric>(result).to_cl_N();
+       return ret;
+}
 
-               return numeric(res);
+// handles the transformations and the numerical evaluation of G
+// the parameter x, s and y must only contain numerics
+static cln::cl_N
+G_numeric(const std::vector<cln::cl_N>& x, const std::vector<int>& s,
+         const cln::cl_N& y)
+{
+       // check for convergence and necessary accelerations
+       bool need_trafo = false;
+       bool need_hoelder = false;
+       bool have_trailing_zero = false;
+       std::size_t depth = 0;
+       for (std::size_t i = 0; i < x.size(); ++i) {
+               if (!zerop(x[i])) {
+                       ++depth;
+                       const cln::cl_N x_y = abs(x[i]) - y;
+                       if (instanceof(x_y, cln::cl_R_ring) &&
+                           realpart(x_y) < cln::least_negative_float(cln::float_format(Digits - 2)))
+                               need_trafo = true;
+
+                       if (abs(abs(x[i]/y) - 1) < 0.01)
+                               need_hoelder = true;
+               }
+       }
+       if (zerop(x.back())) {
+               have_trailing_zero = true;
+               need_trafo = true;
+       }
 
+       if (depth == 1 && x.size() == 2 && !need_trafo)
+               return - Li_projection(2, y/x[1], cln::float_format(Digits));
+       
+       // do acceleration transformation (hoelder convolution [BBB])
+       if (need_hoelder && !have_trailing_zero)
+               return G_do_hoelder(x, s, y);
+       
+       // convergence transformation
+       if (need_trafo)
+               return G_do_trafo(x, s, y, have_trailing_zero);
+
+       // do summation
+       std::vector<cln::cl_N> newx;
+       newx.reserve(x.size());
+       std::vector<int> m;
+       m.reserve(x.size());
+       int mcount = 1;
+       int sign = 1;
+       cln::cl_N factor = y;
+       for (std::size_t i = 0; i < x.size(); ++i) {
+               if (zerop(x[i])) {
+                       ++mcount;
+               } else {
+                       newx.push_back(factor/x[i]);
+                       factor = x[i];
+                       m.push_back(mcount);
+                       mcount = 1;
+                       sign = -sign;
+               }
        }
 
-       return Li(x1,x2).hold();
+       return sign*multipleLi_do_sum(m, newx);
 }
 
-static ex Li_series(const ex& x1, const ex& x2, const relational& rel, int order, unsigned options)
+
+ex mLi_numeric(const lst& m, const lst& x)
 {
-       epvector seq;
-       seq.push_back(expair(Li(x1,x2), 0));
-       return pseries(rel,seq);
+       // let G_numeric do the transformation
+       std::vector<cln::cl_N> newx;
+       newx.reserve(x.nops());
+       std::vector<int> s;
+       s.reserve(x.nops());
+       cln::cl_N factor(1);
+       for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
+               for (int i = 1; i < *itm; ++i) {
+                       newx.push_back(cln::cl_N(0));
+                       s.push_back(1);
+               }
+               const cln::cl_N xi = ex_to<numeric>(*itx).to_cl_N();
+               factor = factor/xi;
+               newx.push_back(factor);
+               if ( !instanceof(factor, cln::cl_R_ring) && imagpart(factor) < 0 ) {
+                       s.push_back(-1);
+               }
+               else {
+                       s.push_back(1);
+               }
+       }
+       return numeric(cln::cl_N(1 & m.nops() ? - 1 : 1)*G_numeric(newx, s, cln::cl_N(1)));
 }
 
-REGISTER_FUNCTION(Li, eval_func(Li_eval).evalf_func(Li_evalf).do_not_evalf_params().series_func(Li_series));
+
+} // end of anonymous namespace
 
 
-// Nielsen's generalized polylogarithm
+//////////////////////////////////////////////////////////////////////
+//
+// Generalized multiple polylogarithm  G(x, y) and G(x, s, y)
+//
+// GiNaC function
+//
+//////////////////////////////////////////////////////////////////////
 
-static ex S_eval(const ex& x1, const ex& x2, const ex& x3)
+
+static ex G2_evalf(const ex& x_, const ex& y)
 {
-       if (x2 == 1) {
-               return Li(x1+1,x3);
+       if ((!y.info(info_flags::numeric)) || (!y.info(info_flags::positive))) {
+               return G(x_, y).hold();
        }
-       if (x3.info(info_flags::numeric) && (!x3.info(info_flags::crational)) && 
-                       x1.info(info_flags::posint) && x2.info(info_flags::posint)) {
-               return S_num(ex_to<numeric>(x1).to_int(), ex_to<numeric>(x2).to_int(), ex_to<numeric>(x3));
+       lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
+       if (x.nops() == 0) {
+               return _ex1;
        }
-       return S(x1,x2,x3).hold();
-}
-
-static ex S_evalf(const ex& x1, const ex& x2, const ex& x3)
-{
-       if (is_a<numeric>(x1) && is_a<numeric>(x2) && is_a<numeric>(x3)) {
-               if ((x3 == -1) && (x2 != 1)) {
-                       // no formula to evaluate this ... sorry
-//                     return S(x1,x2,x3).hold();
+       if (x.op(0) == y) {
+               return G(x_, y).hold();
+       }
+       std::vector<int> s;
+       s.reserve(x.nops());
+       bool all_zero = true;
+       for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
+               if (!(*it).info(info_flags::numeric)) {
+                       return G(x_, y).hold();
+               }
+               if (*it != _ex0) {
+                       all_zero = false;
                }
-               return S_num(ex_to<numeric>(x1).to_int(), ex_to<numeric>(x2).to_int(), ex_to<numeric>(x3));
+               if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
+                       s.push_back(-1);
+               }
+               else {
+                       s.push_back(1);
+               }
+       }
+       if (all_zero) {
+               return pow(log(y), x.nops()) / factorial(x.nops());
        }
-       return S(x1,x2,x3).hold();
+       std::vector<cln::cl_N> xv;
+       xv.reserve(x.nops());
+       for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
+               xv.push_back(ex_to<numeric>(*it).to_cl_N());
+       cln::cl_N result = G_numeric(xv, s, ex_to<numeric>(y).to_cl_N());
+       return numeric(result);
 }
 
-static ex S_series(const ex& x1, const ex& x2, const ex& x3, const relational& rel, int order, unsigned options)
+
+static ex G2_eval(const ex& x_, const ex& y)
 {
-       epvector seq;
-       seq.push_back(expair(S(x1,x2,x3), 0));
-       return pseries(rel,seq);
+       //TODO eval to MZV or H or S or Lin
+
+       if ((!y.info(info_flags::numeric)) || (!y.info(info_flags::positive))) {
+               return G(x_, y).hold();
+       }
+       lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
+       if (x.nops() == 0) {
+               return _ex1;
+       }
+       if (x.op(0) == y) {
+               return G(x_, y).hold();
+       }
+       std::vector<int> s;
+       s.reserve(x.nops());
+       bool all_zero = true;
+       bool crational = true;
+       for (lst::const_iterator it = x.begin(); it != x.end(); ++it) {
+               if (!(*it).info(info_flags::numeric)) {
+                       return G(x_, y).hold();
+               }
+               if (!(*it).info(info_flags::crational)) {
+                       crational = false;
+               }
+               if (*it != _ex0) {
+                       all_zero = false;
+               }
+               if ( !ex_to<numeric>(*it).is_real() && ex_to<numeric>(*it).imag() < 0 ) {
+                       s.push_back(-1);
+               }
+               else {
+                       s.push_back(+1);
+               }
+       }
+       if (all_zero) {
+               return pow(log(y), x.nops()) / factorial(x.nops());
+       }
+       if (!y.info(info_flags::crational)) {
+               crational = false;
+       }
+       if (crational) {
+               return G(x_, y).hold();
+       }
+       std::vector<cln::cl_N> xv;
+       xv.reserve(x.nops());
+       for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
+               xv.push_back(ex_to<numeric>(*it).to_cl_N());
+       cln::cl_N result = G_numeric(xv, s, ex_to<numeric>(y).to_cl_N());
+       return numeric(result);
 }
 
-REGISTER_FUNCTION(S, eval_func(S_eval).evalf_func(S_evalf).do_not_evalf_params().series_func(S_series));
 
+// option do_not_evalf_params() removed.
+unsigned G2_SERIAL::serial = function::register_new(function_options("G", 2).
+                                evalf_func(G2_evalf).
+                                eval_func(G2_eval).
+                                overloaded(2));
+//TODO
+//                                derivative_func(G2_deriv).
+//                                print_func<print_latex>(G2_print_latex).
 
-// Harmonic polylogarithm
 
-static ex H_eval(const ex& x1, const ex& x2)
+static ex G3_evalf(const ex& x_, const ex& s_, const ex& y)
 {
-       if (x2.info(info_flags::numeric) && (!x2.info(info_flags::crational))) {
-               return H(x1,x2).evalf();
+       if ((!y.info(info_flags::numeric)) || (!y.info(info_flags::positive))) {
+               return G(x_, s_, y).hold();
        }
-       return H(x1,x2).hold();
+       lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
+       lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
+       if (x.nops() != s.nops()) {
+               return G(x_, s_, y).hold();
+       }
+       if (x.nops() == 0) {
+               return _ex1;
+       }
+       if (x.op(0) == y) {
+               return G(x_, s_, y).hold();
+       }
+       std::vector<int> sn;
+       sn.reserve(s.nops());
+       bool all_zero = true;
+       for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
+               if (!(*itx).info(info_flags::numeric)) {
+                       return G(x_, y).hold();
+               }
+               if (!(*its).info(info_flags::real)) {
+                       return G(x_, y).hold();
+               }
+               if (*itx != _ex0) {
+                       all_zero = false;
+               }
+               if ( ex_to<numeric>(*itx).is_real() ) {
+                       if ( ex_to<numeric>(*itx).is_positive() ) {
+                               if ( *its >= 0 ) {
+                                       sn.push_back(1);
+                               }
+                               else {
+                                       sn.push_back(-1);
+                               }
+                       } else {
+                               sn.push_back(1);
+                       }
+               }
+               else {
+                       if ( ex_to<numeric>(*itx).imag() > 0 ) {
+                               sn.push_back(1);
+                       }
+                       else {
+                               sn.push_back(-1);
+                       }
+               }
+       }
+       if (all_zero) {
+               return pow(log(y), x.nops()) / factorial(x.nops());
+       }
+       std::vector<cln::cl_N> xn;
+       xn.reserve(x.nops());
+       for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
+               xn.push_back(ex_to<numeric>(*it).to_cl_N());
+       cln::cl_N result = G_numeric(xn, sn, ex_to<numeric>(y).to_cl_N());
+       return numeric(result);
 }
 
-static ex H_evalf(const ex& x1, const ex& x2)
+
+static ex G3_eval(const ex& x_, const ex& s_, const ex& y)
 {
-       if (is_a<lst>(x1) && is_a<numeric>(x2)) {
-               for (int i=0; i<x1.nops(); i++) {
-                       if (!is_a<numeric>(x1.op(i)))
-                               return H(x1,x2).hold();
+       //TODO eval to MZV or H or S or Lin
+
+       if ((!y.info(info_flags::numeric)) || (!y.info(info_flags::positive))) {
+               return G(x_, s_, y).hold();
+       }
+       lst x = is_a<lst>(x_) ? ex_to<lst>(x_) : lst(x_);
+       lst s = is_a<lst>(s_) ? ex_to<lst>(s_) : lst(s_);
+       if (x.nops() != s.nops()) {
+               return G(x_, s_, y).hold();
+       }
+       if (x.nops() == 0) {
+               return _ex1;
+       }
+       if (x.op(0) == y) {
+               return G(x_, s_, y).hold();
+       }
+       std::vector<int> sn;
+       sn.reserve(s.nops());
+       bool all_zero = true;
+       bool crational = true;
+       for (lst::const_iterator itx = x.begin(), its = s.begin(); itx != x.end(); ++itx, ++its) {
+               if (!(*itx).info(info_flags::numeric)) {
+                       return G(x_, s_, y).hold();
                }
-               if (x2 >= 1) {
-                       return H(x1,x2).hold();
+               if (!(*its).info(info_flags::real)) {
+                       return G(x_, s_, y).hold();
                }
-
-               cln::cl_N m_1 = ex_to<numeric>(x1.op(x1.nops()-1)).to_cl_N();
-               cln::cl_N x_1 = ex_to<numeric>(x2).to_cl_N();
-               std::vector<cln::cl_N> m;
-               const int nops = ex_to<numeric>(x1.nops()).to_int();
-               for (int i=nops-2; i>=0; i--) {
-                       m.push_back(ex_to<numeric>(x1.op(i)).to_cl_N());
+               if (!(*itx).info(info_flags::crational)) {
+                       crational = false;
                }
-
-               cln::cl_N res;
-               cln::cl_N resbuf;
-               for (int i=nops; true; i++) {
-                       resbuf = res;
-                       res = res + cln::expt(x_1,i) / cln::expt(i,m_1) * numeric_harmonic(i, m);
-                       if (cln::zerop(res-resbuf))
-                               break;
+               if (*itx != _ex0) {
+                       all_zero = false;
+               }
+               if ( ex_to<numeric>(*itx).is_real() ) {
+                       if ( ex_to<numeric>(*itx).is_positive() ) {
+                               if ( *its >= 0 ) {
+                                       sn.push_back(1);
+                               }
+                               else {
+                                       sn.push_back(-1);
+                               }
+                       } else {
+                               sn.push_back(1);
+                       }
+               }
+               else {
+                       if ( ex_to<numeric>(*itx).imag() > 0 ) {
+                               sn.push_back(1);
+                       }
+                       else {
+                               sn.push_back(-1);
+                       }
                }
-
-               return numeric(res);
-
        }
-
-       return H(x1,x2).hold();
+       if (all_zero) {
+               return pow(log(y), x.nops()) / factorial(x.nops());
+       }
+       if (!y.info(info_flags::crational)) {
+               crational = false;
+       }
+       if (crational) {
+               return G(x_, s_, y).hold();
+       }
+       std::vector<cln::cl_N> xn;
+       xn.reserve(x.nops());
+       for (lst::const_iterator it = x.begin(); it != x.end(); ++it)
+               xn.push_back(ex_to<numeric>(*it).to_cl_N());
+       cln::cl_N result = G_numeric(xn, sn, ex_to<numeric>(y).to_cl_N());
+       return numeric(result);
 }
 
-static ex H_series(const ex& x1, const ex& x2, const relational& rel, int order, unsigned options)
-{
-       epvector seq;
-       seq.push_back(expair(H(x1,x2), 0));
-       return pseries(rel,seq);
-}
 
-REGISTER_FUNCTION(H, eval_func(H_eval).evalf_func(H_evalf).do_not_evalf_params().series_func(H_series));
+// option do_not_evalf_params() removed.
+// This is safe: in the code above it only matters if s_ > 0 or s_ < 0,
+// s_ is allowed to be of floating type.
+unsigned G3_SERIAL::serial = function::register_new(function_options("G", 3).
+                                evalf_func(G3_evalf).
+                                eval_func(G3_eval).
+                                overloaded(2));
+//TODO
+//                                derivative_func(G3_deriv).
+//                                print_func<print_latex>(G3_print_latex).
 
 
-// Multiple zeta value
+//////////////////////////////////////////////////////////////////////
+//
+// Classical polylogarithm and multiple polylogarithm  Li(m,x)
+//
+// GiNaC function
+//
+//////////////////////////////////////////////////////////////////////
 
-static ex mZeta_eval(const ex& x1)
-{
-       return mZeta(x1).hold();
-}
 
-static ex mZeta_evalf(const ex& x1)
+static ex Li_evalf(const ex& m_, const ex& x_)
 {
-       if (is_a<lst>(x1)) {
-               for (int i=0; i<x1.nops(); i++) {
-                       if (!is_a<numeric>(x1.op(i)))
-                               return mZeta(x1).hold();
+       // classical polylogs
+       if (m_.info(info_flags::posint)) {
+               if (x_.info(info_flags::numeric)) {
+                       int m__ = ex_to<numeric>(m_).to_int();
+                       const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
+                       const cln::cl_N result = Lin_numeric(m__, x__);
+                       return numeric(result);
+               } else {
+                       // try to numerically evaluate second argument
+                       ex x_val = x_.evalf();
+                       if (x_val.info(info_flags::numeric)) {
+                               int m__ = ex_to<numeric>(m_).to_int();
+                               const cln::cl_N x__ = ex_to<numeric>(x_val).to_cl_N();
+                               const cln::cl_N result = Lin_numeric(m__, x__);
+                               return numeric(result);
+                       }
                }
+       }
+       // multiple polylogs
+       if (is_a<lst>(m_) && is_a<lst>(x_)) {
 
-               cln::cl_N m_1 = ex_to<numeric>(x1.op(x1.nops()-1)).to_cl_N();
-
-               // check for divergence
-               if (m_1 == 1) {
-                       return mZeta(x1).hold();
+               const lst& m = ex_to<lst>(m_);
+               const lst& x = ex_to<lst>(x_);
+               if (m.nops() != x.nops()) {
+                       return Li(m_,x_).hold();
                }
-               
-               std::vector<cln::cl_N> m;
-               const int nops = ex_to<numeric>(x1.nops()).to_int();
-               for (int i=nops-2; i>=0; i--) {
-                       m.push_back(ex_to<numeric>(x1.op(i)).to_cl_N());
+               if (x.nops() == 0) {
+                       return _ex1;
                }
-
-               cln::float_format_t prec = cln::default_float_format;
-               cln::cl_N res = cln::complex(cln::cl_float(0, prec), 0);
-               cln::cl_N resbuf;
-               for (int i=nops; true; i++) {
-                       // to infinity and beyond ... timewise
-                       resbuf = res;
-                       res = res + cln::recip(cln::expt(i,m_1)) * numeric_harmonic(i, m);
-                       if (cln::zerop(res-resbuf))
-                               break;
+               if ((m.op(0) == _ex1) && (x.op(0) == _ex1)) {
+                       return Li(m_,x_).hold();
                }
 
-               return numeric(res);
+               for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
+                       if (!(*itm).info(info_flags::posint)) {
+                               return Li(m_, x_).hold();
+                       }
+                       if (!(*itx).info(info_flags::numeric)) {
+                               return Li(m_, x_).hold();
+                       }
+                       if (*itx == _ex0) {
+                               return _ex0;
+                       }
+               }
 
+               return mLi_numeric(m, x);
        }
 
-       return mZeta(x1).hold();
+       return Li(m_,x_).hold();
 }
 
-static ex mZeta_series(const ex& x1, const relational& rel, int order, unsigned options)
+
+static ex Li_eval(const ex& m_, const ex& x_)
 {
-       epvector seq;
-       seq.push_back(expair(mZeta(x1), 0));
-       return pseries(rel,seq);
-}
+       if (is_a<lst>(m_)) {
+               if (is_a<lst>(x_)) {
+                       // multiple polylogs
+                       const lst& m = ex_to<lst>(m_);
+                       const lst& x = ex_to<lst>(x_);
+                       if (m.nops() != x.nops()) {
+                               return Li(m_,x_).hold();
+                       }
+                       if (x.nops() == 0) {
+                               return _ex1;
+                       }
+                       bool is_H = true;
+                       bool is_zeta = true;
+                       bool do_evalf = true;
+                       bool crational = true;
+                       for (lst::const_iterator itm = m.begin(), itx = x.begin(); itm != m.end(); ++itm, ++itx) {
+                               if (!(*itm).info(info_flags::posint)) {
+                                       return Li(m_,x_).hold();
+                               }
+                               if ((*itx != _ex1) && (*itx != _ex_1)) {
+                                       if (itx != x.begin()) {
+                                               is_H = false;
+                                       }
+                                       is_zeta = false;
+                               }
+                               if (*itx == _ex0) {
+                                       return _ex0;
+                               }
+                               if (!(*itx).info(info_flags::numeric)) {
+                                       do_evalf = false;
+                               }
+                               if (!(*itx).info(info_flags::crational)) {
+                                       crational = false;
+                               }
+                       }
+                       if (is_zeta) {
+                               lst newx;
+                               for (lst::const_iterator itx = x.begin(); itx != x.end(); ++itx) {
+                                       GINAC_ASSERT((*itx == _ex1) || (*itx == _ex_1));
+                                       // XXX: 1 + 0.0*I is considered equal to 1. However
+                                       // the former is a not automatically converted
+                                       // to a real number. Do the conversion explicitly
+                                       // to avoid the "numeric::operator>(): complex inequality"
+                                       // exception (and similar problems).
+                                       newx.append(*itx != _ex_1 ? _ex1 : _ex_1);
+                               }
+                               return zeta(m_, newx);
+                       }
+                       if (is_H) {
+                               ex prefactor;
+                               lst newm = convert_parameter_Li_to_H(m, x, prefactor);
+                               return prefactor * H(newm, x[0]);
+                       }
+                       if (do_evalf && !crational) {
+                               return mLi_numeric(m,x);
+                       }
+               }
+               return Li(m_, x_).hold();
+       } else if (is_a<lst>(x_)) {
+               return Li(m_, x_).hold();
+       }
+
+       // classical polylogs
+       if (x_ == _ex0) {
+               return _ex0;
+       }
+       if (x_ == _ex1) {
+               return zeta(m_);
+       }
+       if (x_ == _ex_1) {
+               return (pow(2,1-m_)-1) * zeta(m_);
+       }
+       if (m_ == _ex1) {
+               return -log(1-x_);
+       }
+       if (m_ == _ex2) {
+               if (x_.is_equal(I)) {
+                       return power(Pi,_ex2)/_ex_48 + Catalan*I;
+               }
+               if (x_.is_equal(-I)) {
+                       return power(Pi,_ex2)/_ex_48 - Catalan*I;
+               }
+       }
+       if (m_.info(info_flags::posint) && x_.info(info_flags::numeric) && !x_.info(info_flags::crational)) {
+               int m__ = ex_to<numeric>(m_).to_int();
+               const cln::cl_N x__ = ex_to<numeric>(x_).to_cl_N();
+               const cln::cl_N result = Lin_numeric(m__, x__);
+               return numeric(result);
+       }
+
+       return Li(m_, x_).hold();
+}
+
+
+static ex Li_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
+{
+       if (is_a<lst>(m) || is_a<lst>(x)) {
+               // multiple polylog
+               epvector seq;
+               seq.push_back(expair(Li(m, x), 0));
+               return pseries(rel, seq);
+       }
+       
+       // classical polylog
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
+       if (m.info(info_flags::numeric) && x_pt.info(info_flags::numeric)) {
+               // First special case: x==0 (derivatives have poles)
+               if (x_pt.is_zero()) {
+                       const symbol s;
+                       ex ser;
+                       // manually construct the primitive expansion
+                       for (int i=1; i<order; ++i)
+                               ser += pow(s,i) / pow(numeric(i), m);
+                       // substitute the argument's series expansion
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
+                       // maybe that was terminating, so add a proper order term
+                       epvector nseq;
+                       nseq.push_back(expair(Order(_ex1), order));
+                       ser += pseries(rel, nseq);
+                       // reexpanding it will collapse the series again
+                       return ser.series(rel, order);
+               }
+               // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
+               throw std::runtime_error("Li_series: don't know how to do the series expansion at this point!");
+       }
+       // all other cases should be safe, by now:
+       throw do_taylor();  // caught by function::series()
+}
+
+
+static ex Li_deriv(const ex& m_, const ex& x_, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param < 2);
+       if (deriv_param == 0) {
+               return _ex0;
+       }
+       if (m_.nops() > 1) {
+               throw std::runtime_error("don't know how to derivate multiple polylogarithm!");
+       }
+       ex m;
+       if (is_a<lst>(m_)) {
+               m = m_.op(0);
+       } else {
+               m = m_;
+       }
+       ex x;
+       if (is_a<lst>(x_)) {
+               x = x_.op(0);
+       } else {
+               x = x_;
+       }
+       if (m > 0) {
+               return Li(m-1, x) / x;
+       } else {
+               return 1/(1-x);
+       }
+}
+
+
+static void Li_print_latex(const ex& m_, const ex& x_, const print_context& c)
+{
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
+       } else {
+               m = lst(m_);
+       }
+       lst x;
+       if (is_a<lst>(x_)) {
+               x = ex_to<lst>(x_);
+       } else {
+               x = lst(x_);
+       }
+       c.s << "\\mathrm{Li}_{";
+       lst::const_iterator itm = m.begin();
+       (*itm).print(c);
+       itm++;
+       for (; itm != m.end(); itm++) {
+               c.s << ",";
+               (*itm).print(c);
+       }
+       c.s << "}(";
+       lst::const_iterator itx = x.begin();
+       (*itx).print(c);
+       itx++;
+       for (; itx != x.end(); itx++) {
+               c.s << ",";
+               (*itx).print(c);
+       }
+       c.s << ")";
+}
+
+
+REGISTER_FUNCTION(Li,
+                  evalf_func(Li_evalf).
+                  eval_func(Li_eval).
+                  series_func(Li_series).
+                  derivative_func(Li_deriv).
+                  print_func<print_latex>(Li_print_latex).
+                  do_not_evalf_params());
+
+
+//////////////////////////////////////////////////////////////////////
+//
+// Nielsen's generalized polylogarithm  S(n,p,x)
+//
+// helper functions
+//
+//////////////////////////////////////////////////////////////////////
+
+
+// anonymous namespace for helper functions
+namespace {
+
+
+// lookup table for special Euler-Zagier-Sums (used for S_n,p(x))
+// see fill_Yn()
+std::vector<std::vector<cln::cl_N> > Yn;
+int ynsize = 0; // number of Yn[]
+int ynlength = 100; // initial length of all Yn[i]
+
+
+// This function calculates the Y_n. The Y_n are needed for the evaluation of S_{n,p}(x).
+// The Y_n are basically Euler-Zagier sums with all m_i=1. They are subsums in the Z-sum
+// representing S_{n,p}(x).
+// The first index in Y_n corresponds to the parameter p minus one, i.e. the depth of the
+// equivalent Z-sum.
+// The second index in Y_n corresponds to the running index of the outermost sum in the full Z-sum
+// representing S_{n,p}(x).
+// The calculation of Y_n uses the values from Y_{n-1}.
+void fill_Yn(int n, const cln::float_format_t& prec)
+{
+       const int initsize = ynlength;
+       //const int initsize = initsize_Yn;
+       cln::cl_N one = cln::cl_float(1, prec);
+
+       if (n) {
+               std::vector<cln::cl_N> buf(initsize);
+               std::vector<cln::cl_N>::iterator it = buf.begin();
+               std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
+               *it = (*itprev) / cln::cl_N(n+1) * one;
+               it++;
+               itprev++;
+               // sums with an index smaller than the depth are zero and need not to be calculated.
+               // calculation starts with depth, which is n+2)
+               for (int i=n+2; i<=initsize+n; i++) {
+                       *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
+                       it++;
+                       itprev++;
+               }
+               Yn.push_back(buf);
+       } else {
+               std::vector<cln::cl_N> buf(initsize);
+               std::vector<cln::cl_N>::iterator it = buf.begin();
+               *it = 1 * one;
+               it++;
+               for (int i=2; i<=initsize; i++) {
+                       *it = *(it-1) + 1 / cln::cl_N(i) * one;
+                       it++;
+               }
+               Yn.push_back(buf);
+       }
+       ynsize++;
+}
+
+
+// make Yn longer ... 
+void make_Yn_longer(int newsize, const cln::float_format_t& prec)
+{
+
+       cln::cl_N one = cln::cl_float(1, prec);
+
+       Yn[0].resize(newsize);
+       std::vector<cln::cl_N>::iterator it = Yn[0].begin();
+       it += ynlength;
+       for (int i=ynlength+1; i<=newsize; i++) {
+               *it = *(it-1) + 1 / cln::cl_N(i) * one;
+               it++;
+       }
+
+       for (int n=1; n<ynsize; n++) {
+               Yn[n].resize(newsize);
+               std::vector<cln::cl_N>::iterator it = Yn[n].begin();
+               std::vector<cln::cl_N>::iterator itprev = Yn[n-1].begin();
+               it += ynlength;
+               itprev += ynlength;
+               for (int i=ynlength+n+1; i<=newsize+n; i++) {
+                       *it = *(it-1) + (*itprev) / cln::cl_N(i) * one;
+                       it++;
+                       itprev++;
+               }
+       }
+       
+       ynlength = newsize;
+}
+
+
+// helper function for S(n,p,x)
+// [Kol] (7.2)
+cln::cl_N C(int n, int p)
+{
+       cln::cl_N result;
+
+       for (int k=0; k<p; k++) {
+               for (int j=0; j<=(n+k-1)/2; j++) {
+                       if (k == 0) {
+                               if (n & 1) {
+                                       if (j & 1) {
+                                               result = result - 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
+                                       }
+                                       else {
+                                               result = result + 2 * cln::expt(cln::pi(),2*j) * S_num(n-2*j,p,1) / cln::factorial(2*j);
+                                       }
+                               }
+                       }
+                       else {
+                               if (k & 1) {
+                                       if (j & 1) {
+                                               result = result + cln::factorial(n+k-1)
+                                                                 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
+                                                                 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
+                                       }
+                                       else {
+                                               result = result - cln::factorial(n+k-1)
+                                                                 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
+                                                                 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
+                                       }
+                               }
+                               else {
+                                       if (j & 1) {
+                                               result = result - cln::factorial(n+k-1) * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
+                                                                 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
+                                       }
+                                       else {
+                                               result = result + cln::factorial(n+k-1)
+                                                                 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1)
+                                                                 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
+                                       }
+                               }
+                       }
+               }
+       }
+       int np = n+p;
+       if ((np-1) & 1) {
+               if (((np)/2+n) & 1) {
+                       result = -result - cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
+               }
+               else {
+                       result = -result + cln::expt(cln::pi(),np) / (np * cln::factorial(n-1) * cln::factorial(p));
+               }
+       }
+
+       return result;
+}
+
+
+// helper function for S(n,p,x)
+// [Kol] remark to (9.1)
+cln::cl_N a_k(int k)
+{
+       cln::cl_N result;
+
+       if (k == 0) {
+               return 1;
+       }
+
+       result = result;
+       for (int m=2; m<=k; m++) {
+               result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * a_k(k-m);
+       }
+
+       return -result / k;
+}
+
+
+// helper function for S(n,p,x)
+// [Kol] remark to (9.1)
+cln::cl_N b_k(int k)
+{
+       cln::cl_N result;
+
+       if (k == 0) {
+               return 1;
+       }
+
+       result = result;
+       for (int m=2; m<=k; m++) {
+               result = result + cln::expt(cln::cl_N(-1),m) * cln::zeta(m) * b_k(k-m);
+       }
+
+       return result / k;
+}
+
+
+// helper function for S(n,p,x)
+cln::cl_N S_do_sum(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
+{
+       static cln::float_format_t oldprec = cln::default_float_format;
+
+       if (p==1) {
+               return Li_projection(n+1, x, prec);
+       }
+
+       // precision has changed, we need to clear lookup table Yn
+       if ( oldprec != prec ) {
+               Yn.clear();
+               ynsize = 0;
+               ynlength = 100;
+               oldprec = prec;
+       }
+               
+       // check if precalculated values are sufficient
+       if (p > ynsize+1) {
+               for (int i=ynsize; i<p-1; i++) {
+                       fill_Yn(i, prec);
+               }
+       }
+
+       // should be done otherwise
+       cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
+       cln::cl_N xf = x * one;
+       //cln::cl_N xf = x * cln::cl_float(1, prec);
+
+       cln::cl_N res;
+       cln::cl_N resbuf;
+       cln::cl_N factor = cln::expt(xf, p);
+       int i = p;
+       do {
+               resbuf = res;
+               if (i-p >= ynlength) {
+                       // make Yn longer
+                       make_Yn_longer(ynlength*2, prec);
+               }
+               res = res + factor / cln::expt(cln::cl_I(i),n+1) * Yn[p-2][i-p]; // should we check it? or rely on magic number? ...
+               //res = res + factor / cln::expt(cln::cl_I(i),n+1) * (*it); // should we check it? or rely on magic number? ...
+               factor = factor * xf;
+               i++;
+       } while (res != resbuf);
+       
+       return res;
+}
+
+
+// helper function for S(n,p,x)
+cln::cl_N S_projection(int n, int p, const cln::cl_N& x, const cln::float_format_t& prec)
+{
+       // [Kol] (5.3)
+       if (cln::abs(cln::realpart(x)) > cln::cl_F("0.5")) {
+
+               cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(x),n)
+                                  * cln::expt(cln::log(1-x),p) / cln::factorial(n) / cln::factorial(p);
+
+               for (int s=0; s<n; s++) {
+                       cln::cl_N res2;
+                       for (int r=0; r<p; r++) {
+                               res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-x),r)
+                                             * S_do_sum(p-r,n-s,1-x,prec) / cln::factorial(r);
+                       }
+                       result = result + cln::expt(cln::log(x),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
+               }
+
+               return result;
+       }
+       
+       return S_do_sum(n, p, x, prec);
+}
+
+
+// helper function for S(n,p,x)
+const cln::cl_N S_num(int n, int p, const cln::cl_N& x)
+{
+       if (x == 1) {
+               if (n == 1) {
+                   // [Kol] (2.22) with (2.21)
+                       return cln::zeta(p+1);
+               }
+
+               if (p == 1) {
+                   // [Kol] (2.22)
+                       return cln::zeta(n+1);
+               }
+
+               // [Kol] (9.1)
+               cln::cl_N result;
+               for (int nu=0; nu<n; nu++) {
+                       for (int rho=0; rho<=p; rho++) {
+                               result = result + b_k(n-nu-1) * b_k(p-rho) * a_k(nu+rho+1)
+                                                 * cln::factorial(nu+rho+1) / cln::factorial(rho) / cln::factorial(nu+1);
+                       }
+               }
+               result = result * cln::expt(cln::cl_I(-1),n+p-1);
+
+               return result;
+       }
+       else if (x == -1) {
+               // [Kol] (2.22)
+               if (p == 1) {
+                       return -(1-cln::expt(cln::cl_I(2),-n)) * cln::zeta(n+1);
+               }
+//             throw std::runtime_error("don't know how to evaluate this function!");
+       }
+
+       // what is the desired float format?
+       // first guess: default format
+       cln::float_format_t prec = cln::default_float_format;
+       const cln::cl_N value = x;
+       // second guess: the argument's format
+       if (!instanceof(realpart(value), cln::cl_RA_ring))
+               prec = cln::float_format(cln::the<cln::cl_F>(cln::realpart(value)));
+       else if (!instanceof(imagpart(value), cln::cl_RA_ring))
+               prec = cln::float_format(cln::the<cln::cl_F>(cln::imagpart(value)));
+
+       // [Kol] (5.3)
+       // the condition abs(1-value)>1 avoids an infinite recursion in the region abs(value)<=1 && abs(value)>0.95 && abs(1-value)<=1 && abs(1-value)>0.95
+       // we don't care here about abs(value)<1 && real(value)>0.5, this will be taken care of in S_projection
+       if ((cln::realpart(value) < -0.5) || (n == 0) || ((cln::abs(value) <= 1) && (cln::abs(value) > 0.95) && (cln::abs(1-value) > 1) )) {
+
+               cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(value),n)
+                                  * cln::expt(cln::log(1-value),p) / cln::factorial(n) / cln::factorial(p);
+
+               for (int s=0; s<n; s++) {
+                       cln::cl_N res2;
+                       for (int r=0; r<p; r++) {
+                               res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-value),r)
+                                             * S_num(p-r,n-s,1-value) / cln::factorial(r);
+                       }
+                       result = result + cln::expt(cln::log(value),s) * (S_num(n-s,p,1) - res2) / cln::factorial(s);
+               }
+
+               return result;
+               
+       }
+       // [Kol] (5.12)
+       if (cln::abs(value) > 1) {
+               
+               cln::cl_N result;
+
+               for (int s=0; s<p; s++) {
+                       for (int r=0; r<=s; r++) {
+                               result = result + cln::expt(cln::cl_I(-1),s) * cln::expt(cln::log(-value),r) * cln::factorial(n+s-r-1)
+                                                 / cln::factorial(r) / cln::factorial(s-r) / cln::factorial(n-1)
+                                                 * S_num(n+s-r,p-s,cln::recip(value));
+                       }
+               }
+               result = result * cln::expt(cln::cl_I(-1),n);
+
+               cln::cl_N res2;
+               for (int r=0; r<n; r++) {
+                       res2 = res2 + cln::expt(cln::log(-value),r) * C(n-r,p) / cln::factorial(r);
+               }
+               res2 = res2 + cln::expt(cln::log(-value),n+p) / cln::factorial(n+p);
+
+               result = result + cln::expt(cln::cl_I(-1),p) * res2;
+
+               return result;
+       }
+
+       if ((cln::abs(value) > 0.95) && (cln::abs(value-9.53) < 9.47)) {
+               lst m;
+               m.append(n+1);
+               for (int s=0; s<p-1; s++)
+                       m.append(1);
+
+               ex res = H(m,numeric(value)).evalf();
+               return ex_to<numeric>(res).to_cl_N();
+       }
+       else {
+               return S_projection(n, p, value, prec);
+       }
+}
+
+
+} // end of anonymous namespace
+
+
+//////////////////////////////////////////////////////////////////////
+//
+// Nielsen's generalized polylogarithm  S(n,p,x)
+//
+// GiNaC function
+//
+//////////////////////////////////////////////////////////////////////
+
+
+static ex S_evalf(const ex& n, const ex& p, const ex& x)
+{
+       if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
+               const int n_ = ex_to<numeric>(n).to_int();
+               const int p_ = ex_to<numeric>(p).to_int();
+               if (is_a<numeric>(x)) {
+                       const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
+                       const cln::cl_N result = S_num(n_, p_, x_);
+                       return numeric(result);
+               } else {
+                       ex x_val = x.evalf();
+                       if (is_a<numeric>(x_val)) {
+                               const cln::cl_N x_val_ = ex_to<numeric>(x_val).to_cl_N();
+                               const cln::cl_N result = S_num(n_, p_, x_val_);
+                               return numeric(result);
+                       }
+               }
+       }
+       return S(n, p, x).hold();
+}
+
+
+static ex S_eval(const ex& n, const ex& p, const ex& x)
+{
+       if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
+               if (x == 0) {
+                       return _ex0;
+               }
+               if (x == 1) {
+                       lst m(n+1);
+                       for (int i=ex_to<numeric>(p).to_int()-1; i>0; i--) {
+                               m.append(1);
+                       }
+                       return zeta(m);
+               }
+               if (p == 1) {
+                       return Li(n+1, x);
+               }
+               if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
+                       int n_ = ex_to<numeric>(n).to_int();
+                       int p_ = ex_to<numeric>(p).to_int();
+                       const cln::cl_N x_ = ex_to<numeric>(x).to_cl_N();
+                       const cln::cl_N result = S_num(n_, p_, x_);
+                       return numeric(result);
+               }
+       }
+       if (n.is_zero()) {
+               // [Kol] (5.3)
+               return pow(-log(1-x), p) / factorial(p);
+       }
+       return S(n, p, x).hold();
+}
+
+
+static ex S_series(const ex& n, const ex& p, const ex& x, const relational& rel, int order, unsigned options)
+{
+       if (p == _ex1) {
+               return Li(n+1, x).series(rel, order, options);
+       }
+
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
+       if (n.info(info_flags::posint) && p.info(info_flags::posint) && x_pt.info(info_flags::numeric)) {
+               // First special case: x==0 (derivatives have poles)
+               if (x_pt.is_zero()) {
+                       const symbol s;
+                       ex ser;
+                       // manually construct the primitive expansion
+                       // subsum = Euler-Zagier-Sum is needed
+                       // dirty hack (slow ...) calculation of subsum:
+                       std::vector<ex> presubsum, subsum;
+                       subsum.push_back(0);
+                       for (int i=1; i<order-1; ++i) {
+                               subsum.push_back(subsum[i-1] + numeric(1, i));
+                       }
+                       for (int depth=2; depth<p; ++depth) {
+                               presubsum = subsum;
+                               for (int i=1; i<order-1; ++i) {
+                                       subsum[i] = subsum[i-1] + numeric(1, i) * presubsum[i-1];
+                               }
+                       }
+                               
+                       for (int i=1; i<order; ++i) {
+                               ser += pow(s,i) / pow(numeric(i), n+1) * subsum[i-1];
+                       }
+                       // substitute the argument's series expansion
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
+                       // maybe that was terminating, so add a proper order term
+                       epvector nseq;
+                       nseq.push_back(expair(Order(_ex1), order));
+                       ser += pseries(rel, nseq);
+                       // reexpanding it will collapse the series again
+                       return ser.series(rel, order);
+               }
+               // TODO special cases: x==1 (branch point) and x real, >=1 (branch cut)
+               throw std::runtime_error("S_series: don't know how to do the series expansion at this point!");
+       }
+       // all other cases should be safe, by now:
+       throw do_taylor();  // caught by function::series()
+}
+
+
+static ex S_deriv(const ex& n, const ex& p, const ex& x, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param < 3);
+       if (deriv_param < 2) {
+               return _ex0;
+       }
+       if (n > 0) {
+               return S(n-1, p, x) / x;
+       } else {
+               return S(n, p-1, x) / (1-x);
+       }
+}
+
+
+static void S_print_latex(const ex& n, const ex& p, const ex& x, const print_context& c)
+{
+       c.s << "\\mathrm{S}_{";
+       n.print(c);
+       c.s << ",";
+       p.print(c);
+       c.s << "}(";
+       x.print(c);
+       c.s << ")";
+}
+
+
+REGISTER_FUNCTION(S,
+                  evalf_func(S_evalf).
+                  eval_func(S_eval).
+                  series_func(S_series).
+                  derivative_func(S_deriv).
+                  print_func<print_latex>(S_print_latex).
+                  do_not_evalf_params());
+
+
+//////////////////////////////////////////////////////////////////////
+//
+// Harmonic polylogarithm  H(m,x)
+//
+// helper functions
+//
+//////////////////////////////////////////////////////////////////////
+
+
+// anonymous namespace for helper functions
+namespace {
+
+       
+// regulates the pole (used by 1/x-transformation)
+symbol H_polesign("IMSIGN");
+
+
+// convert parameters from H to Li representation
+// parameters are expected to be in expanded form, i.e. only 0, 1 and -1
+// returns true if some parameters are negative
+bool convert_parameter_H_to_Li(const lst& l, lst& m, lst& s, ex& pf)
+{
+       // expand parameter list
+       lst mexp;
+       for (lst::const_iterator it = l.begin(); it != l.end(); it++) {
+               if (*it > 1) {
+                       for (ex count=*it-1; count > 0; count--) {
+                               mexp.append(0);
+                       }
+                       mexp.append(1);
+               } else if (*it < -1) {
+                       for (ex count=*it+1; count < 0; count++) {
+                               mexp.append(0);
+                       }
+                       mexp.append(-1);
+               } else {
+                       mexp.append(*it);
+               }
+       }
+       
+       ex signum = 1;
+       pf = 1;
+       bool has_negative_parameters = false;
+       ex acc = 1;
+       for (lst::const_iterator it = mexp.begin(); it != mexp.end(); it++) {
+               if (*it == 0) {
+                       acc++;
+                       continue;
+               }
+               if (*it > 0) {
+                       m.append((*it+acc-1) * signum);
+               } else {
+                       m.append((*it-acc+1) * signum);
+               }
+               acc = 1;
+               signum = *it;
+               pf *= *it;
+               if (pf < 0) {
+                       has_negative_parameters = true;
+               }
+       }
+       if (has_negative_parameters) {
+               for (std::size_t i=0; i<m.nops(); i++) {
+                       if (m.op(i) < 0) {
+                               m.let_op(i) = -m.op(i);
+                               s.append(-1);
+                       } else {
+                               s.append(1);
+                       }
+               }
+       }
+       
+       return has_negative_parameters;
+}
+
+
+// recursivly transforms H to corresponding multiple polylogarithms
+struct map_trafo_H_convert_to_Li : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
+                               lst parameter;
+                               if (is_a<lst>(e.op(0))) {
+                                               parameter = ex_to<lst>(e.op(0));
+                               } else {
+                                       parameter = lst(e.op(0));
+                               }
+                               ex arg = e.op(1);
+
+                               lst m;
+                               lst s;
+                               ex pf;
+                               if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
+                                       s.let_op(0) = s.op(0) * arg;
+                                       return pf * Li(m, s).hold();
+                               } else {
+                                       for (std::size_t i=0; i<m.nops(); i++) {
+                                               s.append(1);
+                                       }
+                                       s.let_op(0) = s.op(0) * arg;
+                                       return Li(m, s).hold();
+                               }
+                       }
+               }
+               return e;
+       }
+};
+
+
+// recursivly transforms H to corresponding zetas
+struct map_trafo_H_convert_to_zeta : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
+                               lst parameter;
+                               if (is_a<lst>(e.op(0))) {
+                                               parameter = ex_to<lst>(e.op(0));
+                               } else {
+                                       parameter = lst(e.op(0));
+                               }
+
+                               lst m;
+                               lst s;
+                               ex pf;
+                               if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
+                                       return pf * zeta(m, s);
+                               } else {
+                                       return zeta(m);
+                               }
+                       }
+               }
+               return e;
+       }
+};
+
+
+// remove trailing zeros from H-parameters
+struct map_trafo_H_reduce_trailing_zeros : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
+                               lst parameter;
+                               if (is_a<lst>(e.op(0))) {
+                                       parameter = ex_to<lst>(e.op(0));
+                               } else {
+                                       parameter = lst(e.op(0));
+                               }
+                               ex arg = e.op(1);
+                               if (parameter.op(parameter.nops()-1) == 0) {
+                                       
+                                       //
+                                       if (parameter.nops() == 1) {
+                                               return log(arg);
+                                       }
+                                       
+                                       //
+                                       lst::const_iterator it = parameter.begin();
+                                       while ((it != parameter.end()) && (*it == 0)) {
+                                               it++;
+                                       }
+                                       if (it == parameter.end()) {
+                                               return pow(log(arg),parameter.nops()) / factorial(parameter.nops());
+                                       }
+                                       
+                                       //
+                                       parameter.remove_last();
+                                       std::size_t lastentry = parameter.nops();
+                                       while ((lastentry > 0) && (parameter[lastentry-1] == 0)) {
+                                               lastentry--;
+                                       }
+                                       
+                                       //
+                                       ex result = log(arg) * H(parameter,arg).hold();
+                                       ex acc = 0;
+                                       for (ex i=0; i<lastentry; i++) {
+                                               if (parameter[i] > 0) {
+                                                       parameter[i]++;
+                                                       result -= (acc + parameter[i]-1) * H(parameter, arg).hold();
+                                                       parameter[i]--;
+                                                       acc = 0;
+                                               } else if (parameter[i] < 0) {
+                                                       parameter[i]--;
+                                                       result -= (acc + abs(parameter[i]+1)) * H(parameter, arg).hold();
+                                                       parameter[i]++;
+                                                       acc = 0;
+                                               } else {
+                                                       acc++;
+                                               }
+                                       }
+                                       
+                                       if (lastentry < parameter.nops()) {
+                                               result = result / (parameter.nops()-lastentry+1);
+                                               return result.map(*this);
+                                       } else {
+                                               return result;
+                                       }
+                               }
+                       }
+               }
+               return e;
+       }
+};
+
+
+// returns an expression with zeta functions corresponding to the parameter list for H
+ex convert_H_to_zeta(const lst& m)
+{
+       symbol xtemp("xtemp");
+       map_trafo_H_reduce_trailing_zeros filter;
+       map_trafo_H_convert_to_zeta filter2;
+       return filter2(filter(H(m, xtemp).hold())).subs(xtemp == 1);
+}
+
+
+// convert signs form Li to H representation
+lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf)
+{
+       lst res;
+       lst::const_iterator itm = m.begin();
+       lst::const_iterator itx = ++x.begin();
+       int signum = 1;
+       pf = _ex1;
+       res.append(*itm);
+       itm++;
+       while (itx != x.end()) {
+               GINAC_ASSERT((*itx == _ex1) || (*itx == _ex_1));
+               // XXX: 1 + 0.0*I is considered equal to 1. However the former
+               // is not automatically converted to a real number.
+               // Do the conversion explicitly to avoid the
+               // "numeric::operator>(): complex inequality" exception.
+               signum *= (*itx != _ex_1) ? 1 : -1;
+               pf *= signum;
+               res.append((*itm) * signum);
+               itm++;
+               itx++;
+       }
+       return res;
+}
+
+
+// multiplies an one-dimensional H with another H
+// [ReV] (18)
+ex trafo_H_mult(const ex& h1, const ex& h2)
+{
+       ex res;
+       ex hshort;
+       lst hlong;
+       ex h1nops = h1.op(0).nops();
+       ex h2nops = h2.op(0).nops();
+       if (h1nops > 1) {
+               hshort = h2.op(0).op(0);
+               hlong = ex_to<lst>(h1.op(0));
+       } else {
+               hshort = h1.op(0).op(0);
+               if (h2nops > 1) {
+                       hlong = ex_to<lst>(h2.op(0));
+               } else {
+                       hlong = h2.op(0).op(0);
+               }
+       }
+       for (std::size_t i=0; i<=hlong.nops(); i++) {
+               lst newparameter;
+               std::size_t j=0;
+               for (; j<i; j++) {
+                       newparameter.append(hlong[j]);
+               }
+               newparameter.append(hshort);
+               for (; j<hlong.nops(); j++) {
+                       newparameter.append(hlong[j]);
+               }
+               res += H(newparameter, h1.op(1)).hold();
+       }
+       return res;
+}
+
+
+// applies trafo_H_mult recursively on expressions
+struct map_trafo_H_mult : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e)) {
+                       return e.map(*this);
+               }
+
+               if (is_a<mul>(e)) {
+
+                       ex result = 1;
+                       ex firstH;
+                       lst Hlst;
+                       for (std::size_t pos=0; pos<e.nops(); pos++) {
+                               if (is_a<power>(e.op(pos)) && is_a<function>(e.op(pos).op(0))) {
+                                       std::string name = ex_to<function>(e.op(pos).op(0)).get_name();
+                                       if (name == "H") {
+                                               for (ex i=0; i<e.op(pos).op(1); i++) {
+                                                       Hlst.append(e.op(pos).op(0));
+                                               }
+                                               continue;
+                                       }
+                               } else if (is_a<function>(e.op(pos))) {
+                                       std::string name = ex_to<function>(e.op(pos)).get_name();
+                                       if (name == "H") {
+                                               if (e.op(pos).op(0).nops() > 1) {
+                                                       firstH = e.op(pos);
+                                               } else {
+                                                       Hlst.append(e.op(pos));
+                                               }
+                                               continue;
+                                       }
+                               }
+                               result *= e.op(pos);
+                       }
+                       if (firstH == 0) {
+                               if (Hlst.nops() > 0) {
+                                       firstH = Hlst[Hlst.nops()-1];
+                                       Hlst.remove_last();
+                               } else {
+                                       return e;
+                               }
+                       }
+
+                       if (Hlst.nops() > 0) {
+                               ex buffer = trafo_H_mult(firstH, Hlst.op(0));
+                               result *= buffer;
+                               for (std::size_t i=1; i<Hlst.nops(); i++) {
+                                       result *= Hlst.op(i);
+                               }
+                               result = result.expand();
+                               map_trafo_H_mult recursion;
+                               return recursion(result);
+                       } else {
+                               return e;
+                       }
+
+               }
+               return e;
+       }
+};
+
+
+// do integration [ReV] (55)
+// put parameter 0 in front of existing parameters
+ex trafo_H_1tx_prepend_zero(const ex& e, const ex& arg)
+{
+       ex h;
+       std::string name;
+       if (is_a<function>(e)) {
+               name = ex_to<function>(e).get_name();
+       }
+       if (name == "H") {
+               h = e;
+       } else {
+               for (std::size_t i=0; i<e.nops(); i++) {
+                       if (is_a<function>(e.op(i))) {
+                               std::string name = ex_to<function>(e.op(i)).get_name();
+                               if (name == "H") {
+                                       h = e.op(i);
+                               }
+                       }
+               }
+       }
+       if (h != 0) {
+               lst newparameter = ex_to<lst>(h.op(0));
+               newparameter.prepend(0);
+               ex addzeta = convert_H_to_zeta(newparameter);
+               return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
+       } else {
+               return e * (-H(lst(ex(0)),1/arg).hold());
+       }
+}
+
+
+// do integration [ReV] (49)
+// put parameter 1 in front of existing parameters
+ex trafo_H_prepend_one(const ex& e, const ex& arg)
+{
+       ex h;
+       std::string name;
+       if (is_a<function>(e)) {
+               name = ex_to<function>(e).get_name();
+       }
+       if (name == "H") {
+               h = e;
+       } else {
+               for (std::size_t i=0; i<e.nops(); i++) {
+                       if (is_a<function>(e.op(i))) {
+                               std::string name = ex_to<function>(e.op(i)).get_name();
+                               if (name == "H") {
+                                       h = e.op(i);
+                               }
+                       }
+               }
+       }
+       if (h != 0) {
+               lst newparameter = ex_to<lst>(h.op(0));
+               newparameter.prepend(1);
+               return e.subs(h == H(newparameter, h.op(1)).hold());
+       } else {
+               return e * H(lst(ex(1)),1-arg).hold();
+       }
+}
+
+
+// do integration [ReV] (55)
+// put parameter -1 in front of existing parameters
+ex trafo_H_1tx_prepend_minusone(const ex& e, const ex& arg)
+{
+       ex h;
+       std::string name;
+       if (is_a<function>(e)) {
+               name = ex_to<function>(e).get_name();
+       }
+       if (name == "H") {
+               h = e;
+       } else {
+               for (std::size_t i=0; i<e.nops(); i++) {
+                       if (is_a<function>(e.op(i))) {
+                               std::string name = ex_to<function>(e.op(i)).get_name();
+                               if (name == "H") {
+                                       h = e.op(i);
+                               }
+                       }
+               }
+       }
+       if (h != 0) {
+               lst newparameter = ex_to<lst>(h.op(0));
+               newparameter.prepend(-1);
+               ex addzeta = convert_H_to_zeta(newparameter);
+               return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
+       } else {
+               ex addzeta = convert_H_to_zeta(lst(ex(-1)));
+               return (e * (addzeta - H(lst(ex(-1)),1/arg).hold())).expand();
+       }
+}
+
+
+// do integration [ReV] (55)
+// put parameter -1 in front of existing parameters
+ex trafo_H_1mxt1px_prepend_minusone(const ex& e, const ex& arg)
+{
+       ex h;
+       std::string name;
+       if (is_a<function>(e)) {
+               name = ex_to<function>(e).get_name();
+       }
+       if (name == "H") {
+               h = e;
+       } else {
+               for (std::size_t i = 0; i < e.nops(); i++) {
+                       if (is_a<function>(e.op(i))) {
+                               std::string name = ex_to<function>(e.op(i)).get_name();
+                               if (name == "H") {
+                                       h = e.op(i);
+                               }
+                       }
+               }
+       }
+       if (h != 0) {
+               lst newparameter = ex_to<lst>(h.op(0));
+               newparameter.prepend(-1);
+               return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
+       } else {
+               return (e * H(lst(ex(-1)),(1-arg)/(1+arg)).hold()).expand();
+       }
+}
+
+
+// do integration [ReV] (55)
+// put parameter 1 in front of existing parameters
+ex trafo_H_1mxt1px_prepend_one(const ex& e, const ex& arg)
+{
+       ex h;
+       std::string name;
+       if (is_a<function>(e)) {
+               name = ex_to<function>(e).get_name();
+       }
+       if (name == "H") {
+               h = e;
+       } else {
+               for (std::size_t i = 0; i < e.nops(); i++) {
+                       if (is_a<function>(e.op(i))) {
+                               std::string name = ex_to<function>(e.op(i)).get_name();
+                               if (name == "H") {
+                                       h = e.op(i);
+                               }
+                       }
+               }
+       }
+       if (h != 0) {
+               lst newparameter = ex_to<lst>(h.op(0));
+               newparameter.prepend(1);
+               return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
+       } else {
+               return (e * H(lst(ex(1)),(1-arg)/(1+arg)).hold()).expand();
+       }
+}
+
+
+// do x -> 1-x transformation
+struct map_trafo_H_1mx : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+               
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
+
+                               lst parameter = ex_to<lst>(e.op(0));
+                               ex arg = e.op(1);
+
+                               // special cases if all parameters are either 0, 1 or -1
+                               bool allthesame = true;
+                               if (parameter.op(0) == 0) {
+                                       for (std::size_t i = 1; i < parameter.nops(); i++) {
+                                               if (parameter.op(i) != 0) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               lst newparameter;
+                                               for (int i=parameter.nops(); i>0; i--) {
+                                                       newparameter.append(1);
+                                               }
+                                               return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
+                                       }
+                               } else if (parameter.op(0) == -1) {
+                                       throw std::runtime_error("map_trafo_H_1mx: cannot handle weights equal -1!");
+                               } else {
+                                       for (std::size_t i = 1; i < parameter.nops(); i++) {
+                                               if (parameter.op(i) != 1) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               lst newparameter;
+                                               for (int i=parameter.nops(); i>0; i--) {
+                                                       newparameter.append(0);
+                                               }
+                                               return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
+                                       }
+                               }
+
+                               lst newparameter = parameter;
+                               newparameter.remove_first();
+
+                               if (parameter.op(0) == 0) {
+
+                                       // leading zero
+                                       ex res = convert_H_to_zeta(parameter);
+                                       //ex res = convert_from_RV(parameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1)));
+                                       map_trafo_H_1mx recursion;
+                                       ex buffer = recursion(H(newparameter, arg).hold());
+                                       if (is_a<add>(buffer)) {
+                                               for (std::size_t i = 0; i < buffer.nops(); i++) {
+                                                       res -= trafo_H_prepend_one(buffer.op(i), arg);
+                                               }
+                                       } else {
+                                               res -= trafo_H_prepend_one(buffer, arg);
+                                       }
+                                       return res;
+
+                               } else {
+
+                                       // leading one
+                                       map_trafo_H_1mx recursion;
+                                       map_trafo_H_mult unify;
+                                       ex res = H(lst(ex(1)), arg).hold() * H(newparameter, arg).hold();
+                                       std::size_t firstzero = 0;
+                                       while (parameter.op(firstzero) == 1) {
+                                               firstzero++;
+                                       }
+                                       for (std::size_t i = firstzero-1; i < parameter.nops()-1; i++) {
+                                               lst newparameter;
+                                               std::size_t j=0;
+                                               for (; j<=i; j++) {
+                                                       newparameter.append(parameter[j+1]);
+                                               }
+                                               newparameter.append(1);
+                                               for (; j<parameter.nops()-1; j++) {
+                                                       newparameter.append(parameter[j+1]);
+                                               }
+                                               res -= H(newparameter, arg).hold();
+                                       }
+                                       res = recursion(res).expand() / firstzero;
+                                       return unify(res);
+                               }
+                       }
+               }
+               return e;
+       }
+};
+
+
+// do x -> 1/x transformation
+struct map_trafo_H_1overx : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
+
+                               lst parameter = ex_to<lst>(e.op(0));
+                               ex arg = e.op(1);
+
+                               // special cases if all parameters are either 0, 1 or -1
+                               bool allthesame = true;
+                               if (parameter.op(0) == 0) {
+                                       for (std::size_t i = 1; i < parameter.nops(); i++) {
+                                               if (parameter.op(i) != 0) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               return pow(-1, parameter.nops()) * H(parameter, 1/arg).hold();
+                                       }
+                               } else if (parameter.op(0) == -1) {
+                                       for (std::size_t i = 1; i < parameter.nops(); i++) {
+                                               if (parameter.op(i) != -1) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(H(lst(ex(-1)),1/arg).hold() - H(lst(ex(0)),1/arg).hold(), parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
+                                       }
+                               } else {
+                                       for (std::size_t i = 1; i < parameter.nops(); i++) {
+                                               if (parameter.op(i) != 1) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(H(lst(ex(1)),1/arg).hold() + H(lst(ex(0)),1/arg).hold() + H_polesign, parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
+                                       }
+                               }
+
+                               lst newparameter = parameter;
+                               newparameter.remove_first();
+
+                               if (parameter.op(0) == 0) {
+                                       
+                                       // leading zero
+                                       ex res = convert_H_to_zeta(parameter);
+                                       map_trafo_H_1overx recursion;
+                                       ex buffer = recursion(H(newparameter, arg).hold());
+                                       if (is_a<add>(buffer)) {
+                                               for (std::size_t i = 0; i < buffer.nops(); i++) {
+                                                       res += trafo_H_1tx_prepend_zero(buffer.op(i), arg);
+                                               }
+                                       } else {
+                                               res += trafo_H_1tx_prepend_zero(buffer, arg);
+                                       }
+                                       return res;
+
+                               } else if (parameter.op(0) == -1) {
+
+                                       // leading negative one
+                                       ex res = convert_H_to_zeta(parameter);
+                                       map_trafo_H_1overx recursion;
+                                       ex buffer = recursion(H(newparameter, arg).hold());
+                                       if (is_a<add>(buffer)) {
+                                               for (std::size_t i = 0; i < buffer.nops(); i++) {
+                                                       res += trafo_H_1tx_prepend_zero(buffer.op(i), arg) - trafo_H_1tx_prepend_minusone(buffer.op(i), arg);
+                                               }
+                                       } else {
+                                               res += trafo_H_1tx_prepend_zero(buffer, arg) - trafo_H_1tx_prepend_minusone(buffer, arg);
+                                       }
+                                       return res;
+
+                               } else {
+
+                                       // leading one
+                                       map_trafo_H_1overx recursion;
+                                       map_trafo_H_mult unify;
+                                       ex res = H(lst(ex(1)), arg).hold() * H(newparameter, arg).hold();
+                                       std::size_t firstzero = 0;
+                                       while (parameter.op(firstzero) == 1) {
+                                               firstzero++;
+                                       }
+                                       for (std::size_t i = firstzero-1; i < parameter.nops() - 1; i++) {
+                                               lst newparameter;
+                                               std::size_t j = 0;
+                                               for (; j<=i; j++) {
+                                                       newparameter.append(parameter[j+1]);
+                                               }
+                                               newparameter.append(1);
+                                               for (; j<parameter.nops()-1; j++) {
+                                                       newparameter.append(parameter[j+1]);
+                                               }
+                                               res -= H(newparameter, arg).hold();
+                                       }
+                                       res = recursion(res).expand() / firstzero;
+                                       return unify(res);
+
+                               }
+
+                       }
+               }
+               return e;
+       }
+};
+
+
+// do x -> (1-x)/(1+x) transformation
+struct map_trafo_H_1mxt1px : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
+
+                               lst parameter = ex_to<lst>(e.op(0));
+                               ex arg = e.op(1);
+
+                               // special cases if all parameters are either 0, 1 or -1
+                               bool allthesame = true;
+                               if (parameter.op(0) == 0) {
+                                       for (std::size_t i = 1; i < parameter.nops(); i++) {
+                                               if (parameter.op(i) != 0) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(-H(lst(ex(1)),(1-arg)/(1+arg)).hold() - H(lst(ex(-1)),(1-arg)/(1+arg)).hold(), parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
+                                       }
+                               } else if (parameter.op(0) == -1) {
+                                       for (std::size_t i = 1; i < parameter.nops(); i++) {
+                                               if (parameter.op(i) != -1) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(log(2) - H(lst(ex(-1)),(1-arg)/(1+arg)).hold(), parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
+                                       }
+                               } else {
+                                       for (std::size_t i = 1; i < parameter.nops(); i++) {
+                                               if (parameter.op(i) != 1) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(-log(2) - H(lst(ex(0)),(1-arg)/(1+arg)).hold() + H(lst(ex(-1)),(1-arg)/(1+arg)).hold(), parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
+                                       }
+                               }
+
+                               lst newparameter = parameter;
+                               newparameter.remove_first();
+
+                               if (parameter.op(0) == 0) {
+
+                                       // leading zero
+                                       ex res = convert_H_to_zeta(parameter);
+                                       map_trafo_H_1mxt1px recursion;
+                                       ex buffer = recursion(H(newparameter, arg).hold());
+                                       if (is_a<add>(buffer)) {
+                                               for (std::size_t i = 0; i < buffer.nops(); i++) {
+                                                       res -= trafo_H_1mxt1px_prepend_one(buffer.op(i), arg) + trafo_H_1mxt1px_prepend_minusone(buffer.op(i), arg);
+                                               }
+                                       } else {
+                                               res -= trafo_H_1mxt1px_prepend_one(buffer, arg) + trafo_H_1mxt1px_prepend_minusone(buffer, arg);
+                                       }
+                                       return res;
+
+                               } else if (parameter.op(0) == -1) {
+
+                                       // leading negative one
+                                       ex res = convert_H_to_zeta(parameter);
+                                       map_trafo_H_1mxt1px recursion;
+                                       ex buffer = recursion(H(newparameter, arg).hold());
+                                       if (is_a<add>(buffer)) {
+                                               for (std::size_t i = 0; i < buffer.nops(); i++) {
+                                                       res -= trafo_H_1mxt1px_prepend_minusone(buffer.op(i), arg);
+                                               }
+                                       } else {
+                                               res -= trafo_H_1mxt1px_prepend_minusone(buffer, arg);
+                                       }
+                                       return res;
+
+                               } else {
+
+                                       // leading one
+                                       map_trafo_H_1mxt1px recursion;
+                                       map_trafo_H_mult unify;
+                                       ex res = H(lst(ex(1)), arg).hold() * H(newparameter, arg).hold();
+                                       std::size_t firstzero = 0;
+                                       while (parameter.op(firstzero) == 1) {
+                                               firstzero++;
+                                       }
+                                       for (std::size_t i = firstzero - 1; i < parameter.nops() - 1; i++) {
+                                               lst newparameter;
+                                               std::size_t j=0;
+                                               for (; j<=i; j++) {
+                                                       newparameter.append(parameter[j+1]);
+                                               }
+                                               newparameter.append(1);
+                                               for (; j<parameter.nops()-1; j++) {
+                                                       newparameter.append(parameter[j+1]);
+                                               }
+                                               res -= H(newparameter, arg).hold();
+                                       }
+                                       res = recursion(res).expand() / firstzero;
+                                       return unify(res);
+
+                               }
+
+                       }
+               }
+               return e;
+       }
+};
+
+
+// do the actual summation.
+cln::cl_N H_do_sum(const std::vector<int>& m, const cln::cl_N& x)
+{
+       const int j = m.size();
+
+       std::vector<cln::cl_N> t(j);
+
+       cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
+       cln::cl_N factor = cln::expt(x, j) * one;
+       cln::cl_N t0buf;
+       int q = 0;
+       do {
+               t0buf = t[0];
+               q++;
+               t[j-1] = t[j-1] + 1 / cln::expt(cln::cl_I(q),m[j-1]);
+               for (int k=j-2; k>=1; k--) {
+                       t[k] = t[k] + t[k+1] / cln::expt(cln::cl_I(q+j-1-k), m[k]);
+               }
+               t[0] = t[0] + t[1] * factor / cln::expt(cln::cl_I(q+j-1), m[0]);
+               factor = factor * x;
+       } while (t[0] != t0buf);
+
+       return t[0];
+}
+
+
+} // end of anonymous namespace
+
+
+//////////////////////////////////////////////////////////////////////
+//
+// Harmonic polylogarithm  H(m,x)
+//
+// GiNaC function
+//
+//////////////////////////////////////////////////////////////////////
+
+
+static ex H_evalf(const ex& x1, const ex& x2)
+{
+       if (is_a<lst>(x1)) {
+               
+               cln::cl_N x;
+               if (is_a<numeric>(x2)) {
+                       x = ex_to<numeric>(x2).to_cl_N();
+               } else {
+                       ex x2_val = x2.evalf();
+                       if (is_a<numeric>(x2_val)) {
+                               x = ex_to<numeric>(x2_val).to_cl_N();
+                       }
+               }
+
+               for (std::size_t i = 0; i < x1.nops(); i++) {
+                       if (!x1.op(i).info(info_flags::integer)) {
+                               return H(x1, x2).hold();
+                       }
+               }
+               if (x1.nops() < 1) {
+                       return H(x1, x2).hold();
+               }
+
+               const lst& morg = ex_to<lst>(x1);
+               // remove trailing zeros ...
+               if (*(--morg.end()) == 0) {
+                       symbol xtemp("xtemp");
+                       map_trafo_H_reduce_trailing_zeros filter;
+                       return filter(H(x1, xtemp).hold()).subs(xtemp==x2).evalf();
+               }
+               // ... and expand parameter notation
+               bool has_minus_one = false;
+               lst m;
+               for (lst::const_iterator it = morg.begin(); it != morg.end(); it++) {
+                       if (*it > 1) {
+                               for (ex count=*it-1; count > 0; count--) {
+                                       m.append(0);
+                               }
+                               m.append(1);
+                       } else if (*it <= -1) {
+                               for (ex count=*it+1; count < 0; count++) {
+                                       m.append(0);
+                               }
+                               m.append(-1);
+                               has_minus_one = true;
+                       } else {
+                               m.append(*it);
+                       }
+               }
+
+               // do summation
+               if (cln::abs(x) < 0.95) {
+                       lst m_lst;
+                       lst s_lst;
+                       ex pf;
+                       if (convert_parameter_H_to_Li(m, m_lst, s_lst, pf)) {
+                               // negative parameters -> s_lst is filled
+                               std::vector<int> m_int;
+                               std::vector<cln::cl_N> x_cln;
+                               for (lst::const_iterator it_int = m_lst.begin(), it_cln = s_lst.begin(); 
+                                    it_int != m_lst.end(); it_int++, it_cln++) {
+                                       m_int.push_back(ex_to<numeric>(*it_int).to_int());
+                                       x_cln.push_back(ex_to<numeric>(*it_cln).to_cl_N());
+                               }
+                               x_cln.front() = x_cln.front() * x;
+                               return pf * numeric(multipleLi_do_sum(m_int, x_cln));
+                       } else {
+                               // only positive parameters
+                               //TODO
+                               if (m_lst.nops() == 1) {
+                                       return Li(m_lst.op(0), x2).evalf();
+                               }
+                               std::vector<int> m_int;
+                               for (lst::const_iterator it = m_lst.begin(); it != m_lst.end(); it++) {
+                                       m_int.push_back(ex_to<numeric>(*it).to_int());
+                               }
+                               return numeric(H_do_sum(m_int, x));
+                       }
+               }
+
+               symbol xtemp("xtemp");
+               ex res = 1;     
+               
+               // ensure that the realpart of the argument is positive
+               if (cln::realpart(x) < 0) {
+                       x = -x;
+                       for (std::size_t i = 0; i < m.nops(); i++) {
+                               if (m.op(i) != 0) {
+                                       m.let_op(i) = -m.op(i);
+                                       res *= -1;
+                               }
+                       }
+               }
+
+               // x -> 1/x
+               if (cln::abs(x) >= 2.0) {
+                       map_trafo_H_1overx trafo;
+                       res *= trafo(H(m, xtemp).hold());
+                       if (cln::imagpart(x) <= 0) {
+                               res = res.subs(H_polesign == -I*Pi);
+                       } else {
+                               res = res.subs(H_polesign == I*Pi);
+                       }
+                       return res.subs(xtemp == numeric(x)).evalf();
+               }
+               
+               // check transformations for 0.95 <= |x| < 2.0
+               
+               // |(1-x)/(1+x)| < 0.9 -> circular area with center=9.53+0i and radius=9.47
+               if (cln::abs(x-9.53) <= 9.47) {
+                       // x -> (1-x)/(1+x)
+                       map_trafo_H_1mxt1px trafo;
+                       res *= trafo(H(m, xtemp).hold());
+               } else {
+                       // x -> 1-x
+                       if (has_minus_one) {
+                               map_trafo_H_convert_to_Li filter;
+                               return filter(H(m, numeric(x)).hold()).evalf();
+                       }
+                       map_trafo_H_1mx trafo;
+                       res *= trafo(H(m, xtemp).hold());
+               }
+
+               return res.subs(xtemp == numeric(x)).evalf();
+       }
+
+       return H(x1,x2).hold();
+}
+
+
+static ex H_eval(const ex& m_, const ex& x)
+{
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
+       } else {
+               m = lst(m_);
+       }
+       if (m.nops() == 0) {
+               return _ex1;
+       }
+       ex pos1;
+       ex pos2;
+       ex n;
+       ex p;
+       int step = 0;
+       if (*m.begin() > _ex1) {
+               step++;
+               pos1 = _ex0;
+               pos2 = _ex1;
+               n = *m.begin()-1;
+               p = _ex1;
+       } else if (*m.begin() < _ex_1) {
+               step++;
+               pos1 = _ex0;
+               pos2 = _ex_1;
+               n = -*m.begin()-1;
+               p = _ex1;
+       } else if (*m.begin() == _ex0) {
+               pos1 = _ex0;
+               n = _ex1;
+       } else {
+               pos1 = *m.begin();
+               p = _ex1;
+       }
+       for (lst::const_iterator it = ++m.begin(); it != m.end(); it++) {
+               if ((*it).info(info_flags::integer)) {
+                       if (step == 0) {
+                               if (*it > _ex1) {
+                                       if (pos1 == _ex0) {
+                                               step = 1;
+                                               pos2 = _ex1;
+                                               n += *it-1;
+                                               p = _ex1;
+                                       } else {
+                                               step = 2;
+                                       }
+                               } else if (*it < _ex_1) {
+                                       if (pos1 == _ex0) {
+                                               step = 1;
+                                               pos2 = _ex_1;
+                                               n += -*it-1;
+                                               p = _ex1;
+                                       } else {
+                                               step = 2;
+                                       }
+                               } else {
+                                       if (*it != pos1) {
+                                               step = 1;
+                                               pos2 = *it;
+                                       }
+                                       if (*it == _ex0) {
+                                               n++;
+                                       } else {
+                                               p++;
+                                       }
+                               }
+                       } else if (step == 1) {
+                               if (*it != pos2) {
+                                       step = 2;
+                               } else {
+                                       if (*it == _ex0) {
+                                               n++;
+                                       } else {
+                                               p++;
+                                       }
+                               }
+                       }
+               } else {
+                       // if some m_i is not an integer
+                       return H(m_, x).hold();
+               }
+       }
+       if ((x == _ex1) && (*(--m.end()) != _ex0)) {
+               return convert_H_to_zeta(m);
+       }
+       if (step == 0) {
+               if (pos1 == _ex0) {
+                       // all zero
+                       if (x == _ex0) {
+                               return H(m_, x).hold();
+                       }
+                       return pow(log(x), m.nops()) / factorial(m.nops());
+               } else {
+                       // all (minus) one
+                       return pow(-pos1*log(1-pos1*x), m.nops()) / factorial(m.nops());
+               }
+       } else if ((step == 1) && (pos1 == _ex0)){
+               // convertible to S
+               if (pos2 == _ex1) {
+                       return S(n, p, x);
+               } else {
+                       return pow(-1, p) * S(n, p, -x);
+               }
+       }
+       if (x == _ex0) {
+               return _ex0;
+       }
+       if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
+               return H(m_, x).evalf();
+       }
+       return H(m_, x).hold();
+}
+
+
+static ex H_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
+{
+       epvector seq;
+       seq.push_back(expair(H(m, x), 0));
+       return pseries(rel, seq);
+}
+
+
+static ex H_deriv(const ex& m_, const ex& x, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param < 2);
+       if (deriv_param == 0) {
+               return _ex0;
+       }
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
+       } else {
+               m = lst(m_);
+       }
+       ex mb = *m.begin();
+       if (mb > _ex1) {
+               m[0]--;
+               return H(m, x) / x;
+       }
+       if (mb < _ex_1) {
+               m[0]++;
+               return H(m, x) / x;
+       }
+       m.remove_first();
+       if (mb == _ex1) {
+               return 1/(1-x) * H(m, x);
+       } else if (mb == _ex_1) {
+               return 1/(1+x) * H(m, x);
+       } else {
+               return H(m, x) / x;
+       }
+}
+
+
+static void H_print_latex(const ex& m_, const ex& x, const print_context& c)
+{
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
+       } else {
+               m = lst(m_);
+       }
+       c.s << "\\mathrm{H}_{";
+       lst::const_iterator itm = m.begin();
+       (*itm).print(c);
+       itm++;
+       for (; itm != m.end(); itm++) {
+               c.s << ",";
+               (*itm).print(c);
+       }
+       c.s << "}(";
+       x.print(c);
+       c.s << ")";
+}
+
+
+REGISTER_FUNCTION(H,
+                  evalf_func(H_evalf).
+                  eval_func(H_eval).
+                  series_func(H_series).
+                  derivative_func(H_deriv).
+                  print_func<print_latex>(H_print_latex).
+                  do_not_evalf_params());
+
+
+// takes a parameter list for H and returns an expression with corresponding multiple polylogarithms
+ex convert_H_to_Li(const ex& m, const ex& x)
+{
+       map_trafo_H_reduce_trailing_zeros filter;
+       map_trafo_H_convert_to_Li filter2;
+       if (is_a<lst>(m)) {
+               return filter2(filter(H(m, x).hold()));
+       } else {
+               return filter2(filter(H(lst(m), x).hold()));
+       }
+}
+
+
+//////////////////////////////////////////////////////////////////////
+//
+// Multiple zeta values  zeta(x) and zeta(x,s)
+//
+// helper functions
+//
+//////////////////////////////////////////////////////////////////////
+
+
+// anonymous namespace for helper functions
+namespace {
+
+
+// parameters and data for [Cra] algorithm
+const cln::cl_N lambda = cln::cl_N("319/320");
+
+void halfcyclic_convolute(const std::vector<cln::cl_N>& a, const std::vector<cln::cl_N>& b, std::vector<cln::cl_N>& c)
+{
+       const int size = a.size();
+       for (int n=0; n<size; n++) {
+               c[n] = 0;
+               for (int m=0; m<=n; m++) {
+                       c[n] = c[n] + a[m]*b[n-m];
+               }
+       }
+}
+
+
+// [Cra] section 4
+static void initcX(std::vector<cln::cl_N>& crX,
+                  const std::vector<int>& s,
+                  const int L2)
+{
+       std::vector<cln::cl_N> crB(L2 + 1);
+       for (int i=0; i<=L2; i++)
+               crB[i] = bernoulli(i).to_cl_N() / cln::factorial(i);
+
+       int Sm = 0;
+       int Smp1 = 0;
+       std::vector<std::vector<cln::cl_N> > crG(s.size() - 1, std::vector<cln::cl_N>(L2 + 1));
+       for (int m=0; m < (int)s.size() - 1; m++) {
+               Sm += s[m];
+               Smp1 = Sm + s[m+1];
+               for (int i = 0; i <= L2; i++)
+                       crG[m][i] = cln::factorial(i + Sm - m - 2) / cln::factorial(i + Smp1 - m - 2);
+       }
+
+       crX = crB;
+
+       for (std::size_t m = 0; m < s.size() - 1; m++) {
+               std::vector<cln::cl_N> Xbuf(L2 + 1);
+               for (int i = 0; i <= L2; i++)
+                       Xbuf[i] = crX[i] * crG[m][i];
+
+               halfcyclic_convolute(Xbuf, crB, crX);
+       }
+}
+
+
+// [Cra] section 4
+static cln::cl_N crandall_Y_loop(const cln::cl_N& Sqk,
+                                const std::vector<cln::cl_N>& crX)
+{
+       cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
+       cln::cl_N factor = cln::expt(lambda, Sqk);
+       cln::cl_N res = factor / Sqk * crX[0] * one;
+       cln::cl_N resbuf;
+       int N = 0;
+       do {
+               resbuf = res;
+               factor = factor * lambda;
+               N++;
+               res = res + crX[N] * factor / (N+Sqk);
+       } while ((res != resbuf) || cln::zerop(crX[N]));
+       return res;
+}
+
+
+// [Cra] section 4
+static void calc_f(std::vector<std::vector<cln::cl_N> >& f_kj,
+                  const int maxr, const int L1)
+{
+       cln::cl_N t0, t1, t2, t3, t4;
+       int i, j, k;
+       std::vector<std::vector<cln::cl_N> >::iterator it = f_kj.begin();
+       cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
+       
+       t0 = cln::exp(-lambda);
+       t2 = 1;
+       for (k=1; k<=L1; k++) {
+               t1 = k * lambda;
+               t2 = t0 * t2;
+               for (j=1; j<=maxr; j++) {
+                       t3 = 1;
+                       t4 = 1;
+                       for (i=2; i<=j; i++) {
+                               t4 = t4 * (j-i+1);
+                               t3 = t1 * t3 + t4;
+                       }
+                       (*it).push_back(t2 * t3 * cln::expt(cln::cl_I(k),-j) * one);
+               }
+               it++;
+       }
+}
+
+
+// [Cra] (3.1)
+static cln::cl_N crandall_Z(const std::vector<int>& s,
+                           const std::vector<std::vector<cln::cl_N> >& f_kj)
+{
+       const int j = s.size();
+
+       if (j == 1) {   
+               cln::cl_N t0;
+               cln::cl_N t0buf;
+               int q = 0;
+               do {
+                       t0buf = t0;
+                       q++;
+                       t0 = t0 + f_kj[q+j-2][s[0]-1];
+               } while (t0 != t0buf);
+               
+               return t0 / cln::factorial(s[0]-1);
+       }
+
+       std::vector<cln::cl_N> t(j);
+
+       cln::cl_N t0buf;
+       int q = 0;
+       do {
+               t0buf = t[0];
+               q++;
+               t[j-1] = t[j-1] + 1 / cln::expt(cln::cl_I(q),s[j-1]);
+               for (int k=j-2; k>=1; k--) {
+                       t[k] = t[k] + t[k+1] / cln::expt(cln::cl_I(q+j-1-k), s[k]);
+               }
+               t[0] = t[0] + t[1] * f_kj[q+j-2][s[0]-1];
+       } while (t[0] != t0buf);
+       
+       return t[0] / cln::factorial(s[0]-1);
+}
+
+
+// [Cra] (2.4)
+cln::cl_N zeta_do_sum_Crandall(const std::vector<int>& s)
+{
+       std::vector<int> r = s;
+       const int j = r.size();
+
+       std::size_t L1;
+
+       // decide on maximal size of f_kj for crandall_Z
+       if (Digits < 50) {
+               L1 = 150;
+       } else {
+               L1 = Digits * 3 + j*2;
+       }
+
+       std::size_t L2;
+       // decide on maximal size of crX for crandall_Y
+       if (Digits < 38) {
+               L2 = 63;
+       } else if (Digits < 86) {
+               L2 = 127;
+       } else if (Digits < 192) {
+               L2 = 255;
+       } else if (Digits < 394) {
+               L2 = 511;
+       } else if (Digits < 808) {
+               L2 = 1023;
+       } else {
+               L2 = 2047;
+       }
+
+       cln::cl_N res;
+
+       int maxr = 0;
+       int S = 0;
+       for (int i=0; i<j; i++) {
+               S += r[i];
+               if (r[i] > maxr) {
+                       maxr = r[i];
+               }
+       }
+
+       std::vector<std::vector<cln::cl_N> > f_kj(L1);
+       calc_f(f_kj, maxr, L1);
+
+       const cln::cl_N r0factorial = cln::factorial(r[0]-1);
+
+       std::vector<int> rz;
+       int skp1buf;
+       int Srun = S;
+       for (int k=r.size()-1; k>0; k--) {
+
+               rz.insert(rz.begin(), r.back());
+               skp1buf = rz.front();
+               Srun -= skp1buf;
+               r.pop_back();
+
+               std::vector<cln::cl_N> crX;
+               initcX(crX, r, L2);
+               
+               for (int q=0; q<skp1buf; q++) {
+                       
+                       cln::cl_N pp1 = crandall_Y_loop(Srun+q-k, crX);
+                       cln::cl_N pp2 = crandall_Z(rz, f_kj);
+
+                       rz.front()--;
+                       
+                       if (q & 1) {
+                               res = res - pp1 * pp2 / cln::factorial(q);
+                       } else {
+                               res = res + pp1 * pp2 / cln::factorial(q);
+                       }
+               }
+               rz.front() = skp1buf;
+       }
+       rz.insert(rz.begin(), r.back());
+
+       std::vector<cln::cl_N> crX;
+       initcX(crX, rz, L2);
+
+       res = (res + crandall_Y_loop(S-j, crX)) / r0factorial
+               + crandall_Z(rz, f_kj);
+
+       return res;
+}
+
+
+cln::cl_N zeta_do_sum_simple(const std::vector<int>& r)
+{
+       const int j = r.size();
+
+       // buffer for subsums
+       std::vector<cln::cl_N> t(j);
+       cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
+
+       cln::cl_N t0buf;
+       int q = 0;
+       do {
+               t0buf = t[0];
+               q++;
+               t[j-1] = t[j-1] + one / cln::expt(cln::cl_I(q),r[j-1]);
+               for (int k=j-2; k>=0; k--) {
+                       t[k] = t[k] + one * t[k+1] / cln::expt(cln::cl_I(q+j-1-k), r[k]);
+               }
+       } while (t[0] != t0buf);
+
+       return t[0];
+}
+
+
+// does Hoelder convolution. see [BBB] (7.0)
+cln::cl_N zeta_do_Hoelder_convolution(const std::vector<int>& m_, const std::vector<int>& s_)
+{
+       // prepare parameters
+       // holds Li arguments in [BBB] notation
+       std::vector<int> s = s_;
+       std::vector<int> m_p = m_;
+       std::vector<int> m_q;
+       // holds Li arguments in nested sums notation
+       std::vector<cln::cl_N> s_p(s.size(), cln::cl_N(1));
+       s_p[0] = s_p[0] * cln::cl_N("1/2");
+       // convert notations
+       int sig = 1;
+       for (std::size_t i = 0; i < s_.size(); i++) {
+               if (s_[i] < 0) {
+                       sig = -sig;
+                       s_p[i] = -s_p[i];
+               }
+               s[i] = sig * std::abs(s[i]);
+       }
+       std::vector<cln::cl_N> s_q;
+       cln::cl_N signum = 1;
+
+       // first term
+       cln::cl_N res = multipleLi_do_sum(m_p, s_p);
+
+       // middle terms
+       do {
+
+               // change parameters
+               if (s.front() > 0) {
+                       if (m_p.front() == 1) {
+                               m_p.erase(m_p.begin());
+                               s_p.erase(s_p.begin());
+                               if (s_p.size() > 0) {
+                                       s_p.front() = s_p.front() * cln::cl_N("1/2");
+                               }
+                               s.erase(s.begin());
+                               m_q.front()++;
+                       } else {
+                               m_p.front()--;
+                               m_q.insert(m_q.begin(), 1);
+                               if (s_q.size() > 0) {
+                                       s_q.front() = s_q.front() * 2;
+                               }
+                               s_q.insert(s_q.begin(), cln::cl_N("1/2"));
+                       }
+               } else {
+                       if (m_p.front() == 1) {
+                               m_p.erase(m_p.begin());
+                               cln::cl_N spbuf = s_p.front();
+                               s_p.erase(s_p.begin());
+                               if (s_p.size() > 0) {
+                                       s_p.front() = s_p.front() * spbuf;
+                               }
+                               s.erase(s.begin());
+                               m_q.insert(m_q.begin(), 1);
+                               if (s_q.size() > 0) {
+                                       s_q.front() = s_q.front() * 4;
+                               }
+                               s_q.insert(s_q.begin(), cln::cl_N("1/4"));
+                               signum = -signum;
+                       } else {
+                               m_p.front()--;
+                               m_q.insert(m_q.begin(), 1);
+                               if (s_q.size() > 0) {
+                                       s_q.front() = s_q.front() * 2;
+                               }
+                               s_q.insert(s_q.begin(), cln::cl_N("1/2"));
+                       }
+               }
+
+               // exiting the loop
+               if (m_p.size() == 0) break;
+
+               res = res + signum * multipleLi_do_sum(m_p, s_p) * multipleLi_do_sum(m_q, s_q);
+
+       } while (true);
+
+       // last term
+       res = res + signum * multipleLi_do_sum(m_q, s_q);
+
+       return res;
+}
+
+
+} // end of anonymous namespace
+
+
+//////////////////////////////////////////////////////////////////////
+//
+// Multiple zeta values  zeta(x)
+//
+// GiNaC function
+//
+//////////////////////////////////////////////////////////////////////
+
+
+static ex zeta1_evalf(const ex& x)
+{
+       if (is_exactly_a<lst>(x) && (x.nops()>1)) {
+
+               // multiple zeta value
+               const int count = x.nops();
+               const lst& xlst = ex_to<lst>(x);
+               std::vector<int> r(count);
+
+               // check parameters and convert them
+               lst::const_iterator it1 = xlst.begin();
+               std::vector<int>::iterator it2 = r.begin();
+               do {
+                       if (!(*it1).info(info_flags::posint)) {
+                               return zeta(x).hold();
+                       }
+                       *it2 = ex_to<numeric>(*it1).to_int();
+                       it1++;
+                       it2++;
+               } while (it2 != r.end());
+
+               // check for divergence
+               if (r[0] == 1) {
+                       return zeta(x).hold();
+               }
+
+               // decide on summation algorithm
+               // this is still a bit clumsy
+               int limit = (Digits>17) ? 10 : 6;
+               if ((r[0] < limit) || ((count > 3) && (r[1] < limit/2))) {
+                       return numeric(zeta_do_sum_Crandall(r));
+               } else {
+                       return numeric(zeta_do_sum_simple(r));
+               }
+       }
+
+       // single zeta value
+       if (is_exactly_a<numeric>(x) && (x != 1)) {
+               try {
+                       return zeta(ex_to<numeric>(x));
+               } catch (const dunno &e) { }
+       }
+
+       return zeta(x).hold();
+}
+
+
+static ex zeta1_eval(const ex& m)
+{
+       if (is_exactly_a<lst>(m)) {
+               if (m.nops() == 1) {
+                       return zeta(m.op(0));
+               }
+               return zeta(m).hold();
+       }
+
+       if (m.info(info_flags::numeric)) {
+               const numeric& y = ex_to<numeric>(m);
+               // trap integer arguments:
+               if (y.is_integer()) {
+                       if (y.is_zero()) {
+                               return _ex_1_2;
+                       }
+                       if (y.is_equal(*_num1_p)) {
+                               return zeta(m).hold();
+                       }
+                       if (y.info(info_flags::posint)) {
+                               if (y.info(info_flags::odd)) {
+                                       return zeta(m).hold();
+                               } else {
+                                       return abs(bernoulli(y)) * pow(Pi, y) * pow(*_num2_p, y-(*_num1_p)) / factorial(y);
+                               }
+                       } else {
+                               if (y.info(info_flags::odd)) {
+                                       return -bernoulli((*_num1_p)-y) / ((*_num1_p)-y);
+                               } else {
+                                       return _ex0;
+                               }
+                       }
+               }
+               // zeta(float)
+               if (y.info(info_flags::numeric) && !y.info(info_flags::crational)) {
+                       return zeta1_evalf(m);
+               }
+       }
+       return zeta(m).hold();
+}
+
+
+static ex zeta1_deriv(const ex& m, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param==0);
+
+       if (is_exactly_a<lst>(m)) {
+               return _ex0;
+       } else {
+               return zetaderiv(_ex1, m);
+       }
+}
+
+
+static void zeta1_print_latex(const ex& m_, const print_context& c)
+{
+       c.s << "\\zeta(";
+       if (is_a<lst>(m_)) {
+               const lst& m = ex_to<lst>(m_);
+               lst::const_iterator it = m.begin();
+               (*it).print(c);
+               it++;
+               for (; it != m.end(); it++) {
+                       c.s << ",";
+                       (*it).print(c);
+               }
+       } else {
+               m_.print(c);
+       }
+       c.s << ")";
+}
+
+
+unsigned zeta1_SERIAL::serial = function::register_new(function_options("zeta", 1).
+                                evalf_func(zeta1_evalf).
+                                eval_func(zeta1_eval).
+                                derivative_func(zeta1_deriv).
+                                print_func<print_latex>(zeta1_print_latex).
+                                do_not_evalf_params().
+                                overloaded(2));
+
+
+//////////////////////////////////////////////////////////////////////
+//
+// Alternating Euler sum  zeta(x,s)
+//
+// GiNaC function
+//
+//////////////////////////////////////////////////////////////////////
+
+
+static ex zeta2_evalf(const ex& x, const ex& s)
+{
+       if (is_exactly_a<lst>(x)) {
+
+               // alternating Euler sum
+               const int count = x.nops();
+               const lst& xlst = ex_to<lst>(x);
+               const lst& slst = ex_to<lst>(s);
+               std::vector<int> xi(count);
+               std::vector<int> si(count);
+
+               // check parameters and convert them
+               lst::const_iterator it_xread = xlst.begin();
+               lst::const_iterator it_sread = slst.begin();
+               std::vector<int>::iterator it_xwrite = xi.begin();
+               std::vector<int>::iterator it_swrite = si.begin();
+               do {
+                       if (!(*it_xread).info(info_flags::posint)) {
+                               return zeta(x, s).hold();
+                       }
+                       *it_xwrite = ex_to<numeric>(*it_xread).to_int();
+                       if (*it_sread > 0) {
+                               *it_swrite = 1;
+                       } else {
+                               *it_swrite = -1;
+                       }
+                       it_xread++;
+                       it_sread++;
+                       it_xwrite++;
+                       it_swrite++;
+               } while (it_xwrite != xi.end());
+
+               // check for divergence
+               if ((xi[0] == 1) && (si[0] == 1)) {
+                       return zeta(x, s).hold();
+               }
+
+               // use Hoelder convolution
+               return numeric(zeta_do_Hoelder_convolution(xi, si));
+       }
+
+       return zeta(x, s).hold();
+}
+
+
+static ex zeta2_eval(const ex& m, const ex& s_)
+{
+       if (is_exactly_a<lst>(s_)) {
+               const lst& s = ex_to<lst>(s_);
+               for (lst::const_iterator it = s.begin(); it != s.end(); it++) {
+                       if ((*it).info(info_flags::positive)) {
+                               continue;
+                       }
+                       return zeta(m, s_).hold();
+               }
+               return zeta(m);
+       } else if (s_.info(info_flags::positive)) {
+               return zeta(m);
+       }
+
+       return zeta(m, s_).hold();
+}
+
+
+static ex zeta2_deriv(const ex& m, const ex& s, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param==0);
+
+       if (is_exactly_a<lst>(m)) {
+               return _ex0;
+       } else {
+               if ((is_exactly_a<lst>(s) && s.op(0).info(info_flags::positive)) || s.info(info_flags::positive)) {
+                       return zetaderiv(_ex1, m);
+               }
+               return _ex0;
+       }
+}
+
+
+static void zeta2_print_latex(const ex& m_, const ex& s_, const print_context& c)
+{
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
+       } else {
+               m = lst(m_);
+       }
+       lst s;
+       if (is_a<lst>(s_)) {
+               s = ex_to<lst>(s_);
+       } else {
+               s = lst(s_);
+       }
+       c.s << "\\zeta(";
+       lst::const_iterator itm = m.begin();
+       lst::const_iterator its = s.begin();
+       if (*its < 0) {
+               c.s << "\\overline{";
+               (*itm).print(c);
+               c.s << "}";
+       } else {
+               (*itm).print(c);
+       }
+       its++;
+       itm++;
+       for (; itm != m.end(); itm++, its++) {
+               c.s << ",";
+               if (*its < 0) {
+                       c.s << "\\overline{";
+                       (*itm).print(c);
+                       c.s << "}";
+               } else {
+                       (*itm).print(c);
+               }
+       }
+       c.s << ")";
+}
+
 
-REGISTER_FUNCTION(mZeta, eval_func(mZeta_eval).evalf_func(mZeta_evalf).do_not_evalf_params().series_func(mZeta_series));
+unsigned zeta2_SERIAL::serial = function::register_new(function_options("zeta", 2).
+                                evalf_func(zeta2_evalf).
+                                eval_func(zeta2_eval).
+                                derivative_func(zeta2_deriv).
+                                print_func<print_latex>(zeta2_print_latex).
+                                do_not_evalf_params().
+                                overloaded(2));
 
 
 } // namespace GiNaC