]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns_nstdsums.cpp
Removed debugging code.
[ginac.git] / ginac / inifcns_nstdsums.cpp
index 22deea9e5baf0c854765ac8b5b4fd010b8f6cb92..55520e340c25d408e39fca3969c613f0c7658800 100644 (file)
@@ -1,36 +1,42 @@
 /** @file inifcns_nstdsums.cpp
  *
  *  Implementation of some special functions that have a representation as nested sums.
- *  
- *  The functions are: 
+ *
+ *  The functions are:
  *    classical polylogarithm              Li(n,x)
- *    multiple polylogarithm               Li(lst(n_1,...,n_k),lst(x_1,...,x_k))
+ *    multiple polylogarithm               Li(lst(m_1,...,m_k),lst(x_1,...,x_k))
  *    nielsen's generalized polylogarithm  S(n,p,x)
- *    harmonic polylogarithm               H(n,x) or H(lst(n_1,...,n_k),x)
- *    multiple zeta value                  zeta(n) or zeta(lst(n_1,...,n_k))
+ *    harmonic polylogarithm               H(m,x) or H(lst(m_1,...,m_k),x)
+ *    multiple zeta value                  zeta(m) or zeta(lst(m_1,...,m_k))
+ *    alternating Euler sum                zeta(m,s) or zeta(lst(m_1,...,m_k),lst(s_1,...,s_k))
  *
  *  Some remarks:
- *    
+ *
  *    - All formulae used can be looked up in the following publications:
  *      [Kol] Nielsen's Generalized Polylogarithms, K.S.Kolbig, SIAM J.Math.Anal. 17 (1986), pp. 1232-1258.
- *     [Cra] Fast Evaluation of Multiple Zeta Sums, R.E.Crandall, Math.Comp. 67 (1998), pp. 1163-1172.
- *     [ReV] Harmonic Polylogarithms, E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754
+ *      [Cra] Fast Evaluation of Multiple Zeta Sums, R.E.Crandall, Math.Comp. 67 (1998), pp. 1163-1172.
+ *      [ReV] Harmonic Polylogarithms, E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754
+ *      [BBB] Special Values of Multiple Polylogarithms, J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek, Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941
+ *
+ *    - The order of parameters and arguments of Li and zeta is defined according to the nested sums
+ *      representation. The parameters for H are understood as in [ReV]. They can be in expanded --- only
+ *      0, 1 and -1 --- or in compactified --- a string with zeros in front of 1 or -1 is written as a single
+ *      number --- notation.
  *
- *    - The order of parameters and arguments of H, Li and zeta is defined according to their order in the
- *      nested sums representation.
- *     
  *    - Except for the multiple polylogarithm all functions can be nummerically evaluated with arguments in
- *      the whole complex plane. Multiple polylogarithms evaluate only if each argument x_i is smaller than
- *      one. The parameters for every function (n, p or n_i) must be positive integers.
- *      
+ *      the whole complex plane. Multiple polylogarithms evaluate only if for each argument x_i the product
+ *      x_1 * x_2 * ... * x_i is smaller than one. The parameters for Li, zeta and S must be positive integers.
+ *      If you want to have an alternating Euler sum, you have to give the signs of the parameters as a
+ *      second argument s to zeta(m,s) containing 1 and -1.
+ *
  *    - The calculation of classical polylogarithms is speed up by using Bernoulli numbers and 
- *      look-up tables. S uses look-up tables as well. The zeta function applies the algorithm in
- *      [Cra] for speed up.
- *      
- *    - The functions have no series expansion as nested sums. To do it, you have to convert these functions
+ *      look-up tables. S uses look-up tables as well. The zeta function applies the algorithms in
+ *      [Cra] and [BBB] for speed up.
+ *
+ *    - The functions have no series expansion into nested sums. To do this, you have to convert these functions
  *      into the appropriate objects from the nestedsums library, do the expansion and convert the
- *      result back. 
- *      
+ *      result back.
+ *
  *    - Numerical testing of this implementation has been performed by doing a comparison of results
  *      between this software and the commercial M.......... 4.1. Multiple zeta values have been checked
  *      by means of evaluations into simple zeta values. Harmonic polylogarithms have been checked by
@@ -82,7 +88,7 @@ namespace GiNaC {
 
 //////////////////////////////////////////////////////////////////////
 //
-// Classical polylogarithm  Li
+// Classical polylogarithm  Li(n,x)
 //
 // helper functions
 //
@@ -183,7 +189,7 @@ cln::cl_N Li2_do_sum(const cln::cl_N& x)
 {
        cln::cl_N res = x;
        cln::cl_N resbuf;
-       cln::cl_N num = x;
+       cln::cl_N num = x * cln::cl_float(1, cln::float_format(Digits));
        cln::cl_I den = 1; // n^2 = 1
        unsigned i = 3;
        do {
@@ -202,7 +208,7 @@ cln::cl_N Li2_do_sum_Xn(const cln::cl_N& x)
 {
        std::vector<cln::cl_N>::const_iterator it = Xn[0].begin();
        cln::cl_N u = -cln::log(1-x);
-       cln::cl_N factor = u;
+       cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
        cln::cl_N res = u - u*u/4;
        cln::cl_N resbuf;
        unsigned i = 1;
@@ -220,7 +226,7 @@ cln::cl_N Li2_do_sum_Xn(const cln::cl_N& x)
 // calculates Li(n,x), n>2 without Xn
 cln::cl_N Lin_do_sum(int n, const cln::cl_N& x)
 {
-       cln::cl_N factor = x;
+       cln::cl_N factor = x * cln::cl_float(1, cln::float_format(Digits));
        cln::cl_N res = x;
        cln::cl_N resbuf;
        int i=2;
@@ -239,7 +245,7 @@ cln::cl_N Lin_do_sum_Xn(int n, const cln::cl_N& x)
 {
        std::vector<cln::cl_N>::const_iterator it = Xn[n-2].begin();
        cln::cl_N u = -cln::log(1-x);
-       cln::cl_N factor = u;
+       cln::cl_N factor = u * cln::cl_float(1, cln::float_format(Digits));
        cln::cl_N res = u;
        cln::cl_N resbuf;
        unsigned i=2;
@@ -307,7 +313,7 @@ cln::cl_N Li_projection(int n, const cln::cl_N& x, const cln::float_format_t& pr
                        cln::cl_N result = -cln::expt(cln::log(x), n-1) * cln::log(1-x) / cln::factorial(n-1);
                        for (int j=0; j<n-1; j++) {
                                result = result + (S_num(n-j-1, 1, 1).to_cl_N() - S_num(1, n-j-1, 1-x).to_cl_N())
-                                       * cln::expt(cln::log(x), j) / cln::factorial(j);
+                                                 * cln::expt(cln::log(x), j) / cln::factorial(j);
                        }
                        return result;
                }
@@ -367,7 +373,7 @@ numeric Li_num(int n, const numeric& x)
                cln::cl_N add;
                for (int j=0; j<n-1; j++) {
                        add = add + (1+cln::expt(cln::cl_I(-1),n-j)) * (1-cln::expt(cln::cl_I(2),1-n+j))
-                                       * Li_num(n-j,1).to_cl_N() * cln::expt(cln::log(-value),j) / cln::factorial(j);
+                                   * Li_num(n-j,1).to_cl_N() * cln::expt(cln::log(-value),j) / cln::factorial(j);
                }
                result = result - add;
                return result;
@@ -383,7 +389,7 @@ numeric Li_num(int n, const numeric& x)
 
 //////////////////////////////////////////////////////////////////////
 //
-// Multiple polylogarithm  Li
+// Multiple polylogarithm  Li(n,x)
 //
 // helper function
 //
@@ -405,50 +411,39 @@ cln::cl_N multipleLi_do_sum(const std::vector<int>& s, const std::vector<cln::cl
        int q = 0;
        do {
                t0buf = t[0];
+               // do it once ...
+               q++;
+               t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
+               for (int k=j-2; k>=0; k--) {
+                       t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
+               }
+               // ... and do it again (to avoid premature drop out due to special arguments)
                q++;
                t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one;
                for (int k=j-2; k>=0; k--) {
                        t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]);
                }
        } while (t[0] != t0buf);
-       
+
        return t[0];
 }
 
+// forward declaration for Li_eval()
+lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf);
+
 
 } // end of anonymous namespace
 
 
 //////////////////////////////////////////////////////////////////////
 //
-// Classical polylogarithm and multiple polylogarithm  Li
+// Classical polylogarithm and multiple polylogarithm  Li(n,x)
 //
 // GiNaC function
 //
 //////////////////////////////////////////////////////////////////////
 
 
-static ex Li_eval(const ex& x1, const ex& x2)
-{
-       if (x2.is_zero()) {
-               return _ex0;
-       }
-       else {
-               if (x2.info(info_flags::numeric) && (!x2.info(info_flags::crational)))
-                       return Li_num(ex_to<numeric>(x1).to_int(), ex_to<numeric>(x2));
-               if (is_a<lst>(x2)) {
-                       for (int i=0; i<x2.nops(); i++) {
-                               if (!is_a<numeric>(x2.op(i))) {
-                                       return Li(x1,x2).hold();
-                               }
-                       }
-                       return Li(x1,x2).evalf();
-               }
-               return Li(x1,x2).hold();
-       }
-}
-
-
 static ex Li_evalf(const ex& x1, const ex& x2)
 {
        // classical polylogs
@@ -457,15 +452,17 @@ static ex Li_evalf(const ex& x1, const ex& x2)
        }
        // multiple polylogs
        else if (is_a<lst>(x1) && is_a<lst>(x2)) {
+               ex conv = 1;
                for (int i=0; i<x1.nops(); i++) {
                        if (!x1.op(i).info(info_flags::posint)) {
-                               return Li(x1,x2).hold();
+                               return Li(x1, x2).hold();
                        }
                        if (!is_a<numeric>(x2.op(i))) {
-                               return Li(x1,x2).hold();
+                               return Li(x1, x2).hold();
                        }
-                       if (x2.op(i) >= 1) {
-                               return Li(x1,x2).hold();
+                       conv *= x2.op(i);
+                       if (abs(conv) >= 1) {
+                               return Li(x1, x2).hold();
                        }
                }
 
@@ -483,39 +480,168 @@ static ex Li_evalf(const ex& x1, const ex& x2)
 }
 
 
-static ex Li_series(const ex& x1, const ex& x2, const relational& rel, int order, unsigned options)
+static ex Li_eval(const ex& m_, const ex& x_)
+{
+       if (m_.nops() < 2) {
+               ex m;
+               if (is_a<lst>(m_)) {
+                       m = m_.op(0);
+               } else {
+                       m = m_;
+               }
+               ex x;
+               if (is_a<lst>(x_)) {
+                       x = x_.op(0);
+               } else {
+                       x = x_;
+               }
+               if (x == _ex0) {
+                       return _ex0;
+               }
+               if (x == _ex1) {
+                       return zeta(m);
+               }
+               if (x == _ex_1) {
+                       return (pow(2,1-m)-1) * zeta(m);
+               }
+               if (m == _ex1) {
+                       return -log(1-x);
+               }
+               if (m.info(info_flags::posint) && x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
+                       return Li_num(ex_to<numeric>(m).to_int(), ex_to<numeric>(x));
+               }
+       } else {
+               bool ish = true;
+               bool iszeta = true;
+               bool iszero = false;
+               bool doevalf = false;
+               bool doevalfveto = true;
+               const lst& m = ex_to<lst>(m_);
+               const lst& x = ex_to<lst>(x_);
+               lst::const_iterator itm = m.begin();
+               lst::const_iterator itx = x.begin();
+               for (; itm != m.end(); itm++, itx++) {
+                       if (!(*itm).info(info_flags::posint)) {
+                               return Li(m_, x_).hold();
+                       }
+                       if ((*itx != _ex1) && (*itx != _ex_1)) {
+                               if (itx != x.begin()) {
+                                       ish = false;
+                               }
+                               iszeta = false;
+                       }
+                       if (*itx == _ex0) {
+                               iszero = true;
+                       }
+                       if (!(*itx).info(info_flags::numeric)) {
+                               doevalfveto = false;
+                       }
+                       if (!(*itx).info(info_flags::crational)) {
+                               doevalf = true;
+                       }
+               }
+               if (iszeta) {
+                       return zeta(m_, x_);
+               }
+               if (iszero) {
+                       return _ex0;
+               }
+               if (ish) {
+                       ex pf;
+                       lst newm = convert_parameter_Li_to_H(m, x, pf);
+                       return pf * H(newm, x[0]);
+               }
+               if (doevalfveto && doevalf) {
+                       return Li(m_, x_).evalf();
+               }
+       }
+       return Li(m_, x_).hold();
+}
+
+
+static ex Li_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
 {
        epvector seq;
-       seq.push_back(expair(Li(x1,x2), 0));
-       return pseries(rel,seq);
+       seq.push_back(expair(Li(m, x), 0));
+       return pseries(rel, seq);
 }
 
 
-static ex Li_deriv(const ex& x1, const ex& x2, unsigned deriv_param)
+static ex Li_deriv(const ex& m_, const ex& x_, unsigned deriv_param)
 {
        GINAC_ASSERT(deriv_param < 2);
        if (deriv_param == 0) {
                return _ex0;
        }
-       if (x1 > 0) {
-               return Li(x1-1, x2) / x2;
+       if (m_.nops() > 1) {
+               throw std::runtime_error("don't know how to derivate multiple polylogarithm!");
+       }
+       ex m;
+       if (is_a<lst>(m_)) {
+               m = m_.op(0);
+       } else {
+               m = m_;
+       }
+       ex x;
+       if (is_a<lst>(x_)) {
+               x = x_.op(0);
+       } else {
+               x = x_;
+       }
+       if (m > 0) {
+               return Li(m-1, x) / x;
        } else {
-               return 1/(1-x2);
+               return 1/(1-x);
        }
 }
 
 
+static void Li_print_latex(const ex& m_, const ex& x_, const print_context& c)
+{
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
+       } else {
+               m = lst(m_);
+       }
+       lst x;
+       if (is_a<lst>(x_)) {
+               x = ex_to<lst>(x_);
+       } else {
+               x = lst(x_);
+       }
+       c.s << "\\mbox{Li}_{";
+       lst::const_iterator itm = m.begin();
+       (*itm).print(c);
+       itm++;
+       for (; itm != m.end(); itm++) {
+               c.s << ",";
+               (*itm).print(c);
+       }
+       c.s << "}(";
+       lst::const_iterator itx = x.begin();
+       (*itx).print(c);
+       itx++;
+       for (; itx != x.end(); itx++) {
+               c.s << ",";
+               (*itx).print(c);
+       }
+       c.s << ")";
+}
+
+
 REGISTER_FUNCTION(Li,
-               eval_func(Li_eval).
-               evalf_func(Li_evalf).
-               do_not_evalf_params().
-               series_func(Li_series).
-               derivative_func(Li_deriv));
+                  evalf_func(Li_evalf).
+                  eval_func(Li_eval).
+                  series_func(Li_series).
+                  derivative_func(Li_deriv).
+                  print_func<print_latex>(Li_print_latex).
+                  do_not_evalf_params());
 
 
 //////////////////////////////////////////////////////////////////////
 //
-// Nielsen's generalized polylogarithm  S
+// Nielsen's generalized polylogarithm  S(n,p,x)
 //
 // helper functions
 //
@@ -630,24 +756,24 @@ cln::cl_N C(int n, int p)
                                if (k & 1) {
                                        if (j & 1) {
                                                result = result + cln::factorial(n+k-1)
-                                                       * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
-                                                       / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
+                                                                 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
+                                                                 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
                                        }
                                        else {
                                                result = result - cln::factorial(n+k-1)
-                                                       * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
-                                                       / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
+                                                                 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
+                                                                 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
                                        }
                                }
                                else {
                                        if (j & 1) {
                                                result = result - cln::factorial(n+k-1) * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
-                                                       / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
+                                                                 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
                                        }
                                        else {
                                                result = result + cln::factorial(n+k-1)
-                                                       * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
-                                                       / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
+                                                                 * cln::expt(cln::pi(),2*j) * S_num(n+k-2*j,p-k,1).to_cl_N()
+                                                                 / (cln::factorial(k) * cln::factorial(n-1) * cln::factorial(2*j));
                                        }
                                }
                        }
@@ -720,7 +846,9 @@ cln::cl_N S_do_sum(int n, int p, const cln::cl_N& x, const cln::float_format_t&
        }
 
        // should be done otherwise
-       cln::cl_N xf = x * cln::cl_float(1, prec);
+       cln::cl_F one = cln::cl_float(1, cln::float_format(Digits));
+       cln::cl_N xf = x * one;
+       //cln::cl_N xf = x * cln::cl_float(1, prec);
 
        cln::cl_N res;
        cln::cl_N resbuf;
@@ -749,13 +877,13 @@ cln::cl_N S_projection(int n, int p, const cln::cl_N& x, const cln::float_format
        if (cln::abs(cln::realpart(x)) > cln::cl_F("0.5")) {
 
                cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(x),n)
-                       * cln::expt(cln::log(1-x),p) / cln::factorial(n) / cln::factorial(p);
+                                  * cln::expt(cln::log(1-x),p) / cln::factorial(n) / cln::factorial(p);
 
                for (int s=0; s<n; s++) {
                        cln::cl_N res2;
                        for (int r=0; r<p; r++) {
                                res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-x),r)
-                                       * S_do_sum(p-r,n-s,1-x,prec) / cln::factorial(r);
+                                             * S_do_sum(p-r,n-s,1-x,prec) / cln::factorial(r);
                        }
                        result = result + cln::expt(cln::log(x),s) * (S_num(n-s,p,1).to_cl_N() - res2) / cln::factorial(s);
                }
@@ -786,7 +914,7 @@ numeric S_num(int n, int p, const numeric& x)
                for (int nu=0; nu<n; nu++) {
                        for (int rho=0; rho<=p; rho++) {
                                result = result + b_k(n-nu-1) * b_k(p-rho) * a_k(nu+rho+1)
-                                       * cln::factorial(nu+rho+1) / cln::factorial(rho) / cln::factorial(nu+1);
+                                                 * cln::factorial(nu+rho+1) / cln::factorial(rho) / cln::factorial(nu+1);
                        }
                }
                result = result * cln::expt(cln::cl_I(-1),n+p-1);
@@ -816,13 +944,13 @@ numeric S_num(int n, int p, const numeric& x)
        if (cln::realpart(value) < -0.5) {
 
                cln::cl_N result = cln::expt(cln::cl_I(-1),p) * cln::expt(cln::log(value),n)
-                       * cln::expt(cln::log(1-value),p) / cln::factorial(n) / cln::factorial(p);
+                                  * cln::expt(cln::log(1-value),p) / cln::factorial(n) / cln::factorial(p);
 
                for (int s=0; s<n; s++) {
                        cln::cl_N res2;
                        for (int r=0; r<p; r++) {
                                res2 = res2 + cln::expt(cln::cl_I(-1),r) * cln::expt(cln::log(1-value),r)
-                                       * S_num(p-r,n-s,1-value).to_cl_N() / cln::factorial(r);
+                                             * S_num(p-r,n-s,1-value).to_cl_N() / cln::factorial(r);
                        }
                        result = result + cln::expt(cln::log(value),s) * (S_num(n-s,p,1).to_cl_N() - res2) / cln::factorial(s);
                }
@@ -838,8 +966,8 @@ numeric S_num(int n, int p, const numeric& x)
                for (int s=0; s<p; s++) {
                        for (int r=0; r<=s; r++) {
                                result = result + cln::expt(cln::cl_I(-1),s) * cln::expt(cln::log(-value),r) * cln::factorial(n+s-r-1)
-                                       / cln::factorial(r) / cln::factorial(s-r) / cln::factorial(n-1)
-                                       * S_num(n+s-r,p-s,cln::recip(value)).to_cl_N();
+                                                 / cln::factorial(r) / cln::factorial(s-r) / cln::factorial(n-1)
+                                                 * S_num(n+s-r,p-s,cln::recip(value)).to_cl_N();
                        }
                }
                result = result * cln::expt(cln::cl_I(-1),n);
@@ -865,70 +993,94 @@ numeric S_num(int n, int p, const numeric& x)
 
 //////////////////////////////////////////////////////////////////////
 //
-// Nielsen's generalized polylogarithm  S
+// Nielsen's generalized polylogarithm  S(n,p,x)
 //
 // GiNaC function
 //
 //////////////////////////////////////////////////////////////////////
 
 
-static ex S_eval(const ex& x1, const ex& x2, const ex& x3)
+static ex S_evalf(const ex& n, const ex& p, const ex& x)
 {
-       if (x2 == 1) {
-               return Li(x1+1,x3);
+       if (n.info(info_flags::posint) && p.info(info_flags::posint) && is_a<numeric>(x)) {
+               return S_num(ex_to<numeric>(n).to_int(), ex_to<numeric>(p).to_int(), ex_to<numeric>(x));
        }
-       if (x3.info(info_flags::numeric) && (!x3.info(info_flags::crational)) && 
-                       x1.info(info_flags::posint) && x2.info(info_flags::posint)) {
-               return S_num(ex_to<numeric>(x1).to_int(), ex_to<numeric>(x2).to_int(), ex_to<numeric>(x3));
-       }
-       return S(x1,x2,x3).hold();
+       return S(n, p, x).hold();
 }
 
 
-static ex S_evalf(const ex& x1, const ex& x2, const ex& x3)
+static ex S_eval(const ex& n, const ex& p, const ex& x)
 {
-       if (is_a<numeric>(x1) && is_a<numeric>(x2) && is_a<numeric>(x3)) {
-               return S_num(ex_to<numeric>(x1).to_int(), ex_to<numeric>(x2).to_int(), ex_to<numeric>(x3));
+       if (n.info(info_flags::posint) && p.info(info_flags::posint)) {
+               if (x == 0) {
+                       return _ex0;
+               }
+               if (x == 1) {
+                       lst m(n+1);
+                       for (int i=ex_to<numeric>(p).to_int()-1; i>0; i--) {
+                               m.append(1);
+                       }
+                       return zeta(m);
+               }
+               if (p == 1) {
+                       return Li(n+1, x);
+               }
+               if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
+                       return S_num(ex_to<numeric>(n).to_int(), ex_to<numeric>(p).to_int(), ex_to<numeric>(x));
+               }
        }
-       return S(x1,x2,x3).hold();
+       return S(n, p, x).hold();
 }
 
 
-static ex S_series(const ex& x1, const ex& x2, const ex& x3, const relational& rel, int order, unsigned options)
+static ex S_series(const ex& n, const ex& p, const ex& x, const relational& rel, int order, unsigned options)
 {
        epvector seq;
-       seq.push_back(expair(S(x1,x2,x3), 0));
-       return pseries(rel,seq);
+       seq.push_back(expair(S(n, p, x), 0));
+       return pseries(rel, seq);
 }
 
 
-static ex S_deriv(const ex& x1, const ex& x2, const ex& x3, unsigned deriv_param)
+static ex S_deriv(const ex& n, const ex& p, const ex& x, unsigned deriv_param)
 {
        GINAC_ASSERT(deriv_param < 3);
        if (deriv_param < 2) {
                return _ex0;
        }
-       if (x1 > 0) {
-               return S(x1-1, x2, x3) / x3;
+       if (n > 0) {
+               return S(n-1, p, x) / x;
        } else {
-               return S(x1, x2-1, x3) / (1-x3);
+               return S(n, p-1, x) / (1-x);
        }
 }
 
 
+static void S_print_latex(const ex& n, const ex& p, const ex& x, const print_context& c)
+{
+       c.s << "\\mbox{S}_{";
+       n.print(c);
+       c.s << ",";
+       p.print(c);
+       c.s << "}(";
+       x.print(c);
+       c.s << ")";
+}
+
+
 REGISTER_FUNCTION(S,
-               eval_func(S_eval).
-               evalf_func(S_evalf).
-               do_not_evalf_params().
-               series_func(S_series).
-               derivative_func(S_deriv));
+                  evalf_func(S_evalf).
+                  eval_func(S_eval).
+                  series_func(S_series).
+                  derivative_func(S_deriv).
+                  print_func<print_latex>(S_print_latex).
+                  do_not_evalf_params());
 
 
 //////////////////////////////////////////////////////////////////////
 //
-// Harmonic polylogarithm  H
+// Harmonic polylogarithm  H(m,x)
 //
-// helper function
+// helper functions
 //
 //////////////////////////////////////////////////////////////////////
 
@@ -937,8 +1089,240 @@ REGISTER_FUNCTION(S,
 namespace {
 
 
-// forward declaration
-ex convert_from_RV(const lst& parameterlst, const ex& arg);
+// convert parameters from H to Li representation
+// parameters are expected to be in expanded form, i.e. only 0, 1 and -1
+// returns true if some parameters are negative
+bool convert_parameter_H_to_Li(const lst& l, lst& m, lst& s, ex& pf)
+{
+       // expand parameter list
+       lst mexp;
+       for (lst::const_iterator it = l.begin(); it != l.end(); it++) {
+               if (*it > 1) {
+                       for (ex count=*it-1; count > 0; count--) {
+                               mexp.append(0);
+                       }
+                       mexp.append(1);
+               } else if (*it < -1) {
+                       for (ex count=*it+1; count < 0; count++) {
+                               mexp.append(0);
+                       }
+                       mexp.append(-1);
+               } else {
+                       mexp.append(*it);
+               }
+       }
+       
+       ex signum = 1;
+       pf = 1;
+       bool has_negative_parameters = false;
+       ex acc = 1;
+       for (lst::const_iterator it = mexp.begin(); it != mexp.end(); it++) {
+               if (*it == 0) {
+                       acc++;
+                       continue;
+               }
+               if (*it > 0) {
+                       m.append((*it+acc-1) * signum);
+               } else {
+                       m.append((*it-acc+1) * signum);
+               }
+               acc = 1;
+               signum = *it;
+               pf *= *it;
+               if (pf < 0) {
+                       has_negative_parameters = true;
+               }
+       }
+       if (has_negative_parameters) {
+               for (int i=0; i<m.nops(); i++) {
+                       if (m.op(i) < 0) {
+                               m.let_op(i) = -m.op(i);
+                               s.append(-1);
+                       } else {
+                               s.append(1);
+                       }
+               }
+       }
+       
+       return has_negative_parameters;
+}
+
+
+// recursivly transforms H to corresponding multiple polylogarithms
+struct map_trafo_H_convert_to_Li : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
+                               lst parameter;
+                               if (is_a<lst>(e.op(0))) {
+                                               parameter = ex_to<lst>(e.op(0));
+                               } else {
+                                       parameter = lst(e.op(0));
+                               }
+                               ex arg = e.op(1);
+
+                               lst m;
+                               lst s;
+                               ex pf;
+                               if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
+                                       s.let_op(0) = s.op(0) * arg;
+                                       return pf * Li(m, s).hold();
+                               } else {
+                                       for (int i=0; i<m.nops(); i++) {
+                                               s.append(1);
+                                       }
+                                       s.let_op(0) = s.op(0) * arg;
+                                       return Li(m, s).hold();
+                               }
+                       }
+               }
+               return e;
+       }
+};
+
+
+// recursivly transforms H to corresponding zetas
+struct map_trafo_H_convert_to_zeta : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
+                               lst parameter;
+                               if (is_a<lst>(e.op(0))) {
+                                               parameter = ex_to<lst>(e.op(0));
+                               } else {
+                                       parameter = lst(e.op(0));
+                               }
+
+                               lst m;
+                               lst s;
+                               ex pf;
+                               if (convert_parameter_H_to_Li(parameter, m, s, pf)) {
+                                       return pf * zeta(m, s);
+                               } else {
+                                       return zeta(m);
+                               }
+                       }
+               }
+               return e;
+       }
+};
+
+
+// remove trailing zeros from H-parameters
+struct map_trafo_H_reduce_trailing_zeros : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
+                               lst parameter;
+                               if (is_a<lst>(e.op(0))) {
+                                       parameter = ex_to<lst>(e.op(0));
+                               } else {
+                                       parameter = lst(e.op(0));
+                               }
+                               ex arg = e.op(1);
+                               if (parameter.op(parameter.nops()-1) == 0) {
+                                       
+                                       //
+                                       if (parameter.nops() == 1) {
+                                               return log(arg);
+                                       }
+                                       
+                                       //
+                                       lst::const_iterator it = parameter.begin();
+                                       while ((it != parameter.end()) && (*it == 0)) {
+                                               it++;
+                                       }
+                                       if (it == parameter.end()) {
+                                               return pow(log(arg),parameter.nops()) / factorial(parameter.nops());
+                                       }
+                                       
+                                       //
+                                       parameter.remove_last();
+                                       int lastentry = parameter.nops();
+                                       while ((lastentry > 0) && (parameter[lastentry-1] == 0)) {
+                                               lastentry--;
+                                       }
+                                       
+                                       //
+                                       ex result = log(arg) * H(parameter,arg).hold();
+                                       ex acc = 0;
+                                       for (ex i=0; i<lastentry; i++) {
+                                               if (parameter[i] > 0) {
+                                                       parameter[i]++;
+                                                       result -= (acc + parameter[i]-1) * H(parameter, arg).hold();
+                                                       parameter[i]--;
+                                                       acc = 0;
+                                               } else if (parameter[i] < 0) {
+                                                       parameter[i]--;
+                                                       result -= (acc + abs(parameter[i]+1)) * H(parameter, arg).hold();
+                                                       parameter[i]++;
+                                                       acc = 0;
+                                               } else {
+                                                       acc++;
+                                               }
+                                       }
+                                       
+                                       if (lastentry < parameter.nops()) {
+                                               result = result / (parameter.nops()-lastentry+1);
+                                               return result.map(*this);
+                                       } else {
+                                               return result;
+                                       }
+                               }
+                       }
+               }
+               return e;
+       }
+};
+
+
+// returns an expression with zeta functions corresponding to the parameter list for H
+ex convert_H_to_zeta(const lst& m)
+{
+       symbol xtemp("xtemp");
+       map_trafo_H_reduce_trailing_zeros filter;
+       map_trafo_H_convert_to_zeta filter2;
+       return filter2(filter(H(m, xtemp).hold())).subs(xtemp == 1);
+}
+
+
+// convert signs form Li to H representation
+lst convert_parameter_Li_to_H(const lst& m, const lst& x, ex& pf)
+{
+       lst res;
+       lst::const_iterator itm = m.begin();
+       lst::const_iterator itx = ++x.begin();
+       ex signum = _ex1;
+       pf = _ex1;
+       res.append(*itm);
+       itm++;
+       while (itx != x.end()) {
+               signum *= *itx;
+               pf *= signum;
+               res.append((*itm) * signum);
+               itm++;
+               itx++;
+       }
+       return res;
+}
 
 
 // multiplies an one-dimensional H with another H
@@ -1041,9 +1425,9 @@ struct map_trafo_H_mult : public map_function
 };
 
 
-// do integration [ReV] (49)
-// put parameter 1 in front of existing parameters
-ex trafo_H_prepend_one(const ex& e, const ex& arg)
+// do integration [ReV] (55)
+// put parameter 0 in front of existing parameters
+ex trafo_H_1tx_prepend_zero(const ex& e, const ex& arg)
 {
        ex h;
        std::string name;
@@ -1064,17 +1448,18 @@ ex trafo_H_prepend_one(const ex& e, const ex& arg)
        }
        if (h != 0) {
                lst newparameter = ex_to<lst>(h.op(0));
-               newparameter.prepend(1);
-               return e.subs(h == H(newparameter, h.op(1)).hold());
+               newparameter.prepend(0);
+               ex addzeta = convert_H_to_zeta(newparameter);
+               return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
        } else {
-               return e * H(lst(1),1-arg).hold();
+               return e * (-H(lst(0),1/arg).hold());
        }
 }
 
 
 // do integration [ReV] (55)
-// put parameter 0 in front of existing parameters
-ex trafo_H_prepend_zero(const ex& e, const ex& arg)
+// put parameter -1 in front of existing parameters
+ex trafo_H_1tx_prepend_minusone(const ex& e, const ex& arg)
 {
        ex h;
        std::string name;
@@ -1095,70 +1480,171 @@ ex trafo_H_prepend_zero(const ex& e, const ex& arg)
        }
        if (h != 0) {
                lst newparameter = ex_to<lst>(h.op(0));
-               newparameter.prepend(0);
-               ex addzeta = convert_from_RV(newparameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1)));
+               newparameter.prepend(-1);
+               ex addzeta = convert_H_to_zeta(newparameter);
                return e.subs(h == (addzeta-H(newparameter, h.op(1)).hold())).expand();
        } else {
-               return e * (-H(lst(0),1/arg).hold());
+               ex addzeta = convert_H_to_zeta(lst(-1));
+               return (e * (addzeta - H(lst(-1),1/arg).hold())).expand();
        }
 }
 
 
-// do x -> 1-x transformation
-struct map_trafo_H_1mx : public map_function
+// do integration [ReV] (55)
+// put parameter -1 in front of existing parameters
+ex trafo_H_1mxt1px_prepend_minusone(const ex& e, const ex& arg)
 {
-       ex operator()(const ex& e)
-       {
-               if (is_a<add>(e) || is_a<mul>(e)) {
-                       return e.map(*this);
+       ex h;
+       std::string name;
+       if (is_a<function>(e)) {
+               name = ex_to<function>(e).get_name();
+       }
+       if (name == "H") {
+               h = e;
+       } else {
+               for (int i=0; i<e.nops(); i++) {
+                       if (is_a<function>(e.op(i))) {
+                               std::string name = ex_to<function>(e.op(i)).get_name();
+                               if (name == "H") {
+                                       h = e.op(i);
+                               }
+                       }
                }
-               
-               if (is_a<function>(e)) {
-                       std::string name = ex_to<function>(e).get_name();
-                       if (name == "H") {
+       }
+       if (h != 0) {
+               lst newparameter = ex_to<lst>(h.op(0));
+               newparameter.prepend(-1);
+               return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
+       } else {
+               return (e * H(lst(-1),(1-arg)/(1+arg)).hold()).expand();
+       }
+}
+
+
+// do integration [ReV] (55)
+// put parameter 1 in front of existing parameters
+ex trafo_H_1mxt1px_prepend_one(const ex& e, const ex& arg)
+{
+       ex h;
+       std::string name;
+       if (is_a<function>(e)) {
+               name = ex_to<function>(e).get_name();
+       }
+       if (name == "H") {
+               h = e;
+       } else {
+               for (int i=0; i<e.nops(); i++) {
+                       if (is_a<function>(e.op(i))) {
+                               std::string name = ex_to<function>(e.op(i)).get_name();
+                               if (name == "H") {
+                                       h = e.op(i);
+                               }
+                       }
+               }
+       }
+       if (h != 0) {
+               lst newparameter = ex_to<lst>(h.op(0));
+               newparameter.prepend(1);
+               return e.subs(h == H(newparameter, h.op(1)).hold()).expand();
+       } else {
+               return (e * H(lst(1),(1-arg)/(1+arg)).hold()).expand();
+       }
+}
+
+
+// do x -> 1/x transformation
+struct map_trafo_H_1overx : public map_function
+{
+       ex operator()(const ex& e)
+       {
+               if (is_a<add>(e) || is_a<mul>(e)) {
+                       return e.map(*this);
+               }
+
+               if (is_a<function>(e)) {
+                       std::string name = ex_to<function>(e).get_name();
+                       if (name == "H") {
 
                                lst parameter = ex_to<lst>(e.op(0));
                                ex arg = e.op(1);
 
-                               // if all parameters are either zero or one return the transformed function
-                               if (find(parameter.begin(), parameter.end(), 0) == parameter.end()) {
-                                       lst newparameter;
-                                       for (int i=parameter.nops(); i>0; i--) {
-                                               newparameter.append(0);
+                               // special cases if all parameters are either 0, 1 or -1
+                               bool allthesame = true;
+                               if (parameter.op(0) == 0) {
+                                       for (int i=1; i<parameter.nops(); i++) {
+                                               if (parameter.op(i) != 0) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
                                        }
-                                       return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
-                               } else if (find(parameter.begin(), parameter.end(), 1) == parameter.end()) {
-                                       lst newparameter;
-                                       for (int i=parameter.nops(); i>0; i--) {
-                                               newparameter.append(1);
+                                       if (allthesame) {
+                                               return pow(-1, parameter.nops()) * H(parameter, 1/arg).hold();
+                                       }
+                               } else if (parameter.op(0) == -1) {
+                                       for (int i=1; i<parameter.nops(); i++) {
+                                               if (parameter.op(i) != -1) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(H(lst(-1),1/arg).hold() - H(lst(0),1/arg).hold(), parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
+                                       }
+                               } else {
+                                       for (int i=1; i<parameter.nops(); i++) {
+                                               if (parameter.op(i) != 1) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(H(lst(1),1/arg).hold() + H(lst(0),1/arg).hold() - I*Pi, parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
                                        }
-                                       return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold();
                                }
 
                                lst newparameter = parameter;
                                newparameter.remove_first();
 
                                if (parameter.op(0) == 0) {
-
+                                       
                                        // leading zero
-                                       ex res = convert_from_RV(parameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1)));
-                                       map_trafo_H_1mx recursion;
+                                       ex res = convert_H_to_zeta(parameter);
+                                       map_trafo_H_1overx recursion;
+                                       ex buffer = recursion(H(newparameter, arg).hold());
+                                       if (is_a<add>(buffer)) {
+                                               for (int i=0; i<buffer.nops(); i++) {
+                                                       res += trafo_H_1tx_prepend_zero(buffer.op(i), arg);
+                                               }
+                                       } else {
+                                               res += trafo_H_1tx_prepend_zero(buffer, arg);
+                                       }
+                                       return res;
+
+                               } else if (parameter.op(0) == -1) {
+
+                                       // leading negative one
+                                       ex res = convert_H_to_zeta(parameter);
+                                       map_trafo_H_1overx recursion;
                                        ex buffer = recursion(H(newparameter, arg).hold());
                                        if (is_a<add>(buffer)) {
                                                for (int i=0; i<buffer.nops(); i++) {
-                                                       res -= trafo_H_prepend_one(buffer.op(i), arg);
+                                                       res += trafo_H_1tx_prepend_zero(buffer.op(i), arg) - trafo_H_1tx_prepend_minusone(buffer.op(i), arg);
                                                }
                                        } else {
-                                               res -= trafo_H_prepend_one(buffer, arg);
+                                               res += trafo_H_1tx_prepend_zero(buffer, arg) - trafo_H_1tx_prepend_minusone(buffer, arg);
                                        }
                                        return res;
 
                                } else {
 
                                        // leading one
-                                       map_trafo_H_1mx recursion;
+                                       map_trafo_H_1overx recursion;
                                        map_trafo_H_mult unify;
-                                       ex res;
+                                       ex res = H(lst(1), arg).hold() * H(newparameter, arg).hold();
                                        int firstzero = 0;
                                        while (parameter.op(firstzero) == 1) {
                                                firstzero++;
@@ -1175,8 +1661,8 @@ struct map_trafo_H_1mx : public map_function
                                                }
                                                res -= H(newparameter, arg).hold();
                                        }
-                                       return (unify((-H(lst(0), 1-arg).hold() * recursion(H(newparameter, arg).hold())).expand()) +
-                                                       recursion(res)) / firstzero;
+                                       res = recursion(res).expand() / firstzero;
+                                       return unify(res);
 
                                }
 
@@ -1187,8 +1673,8 @@ struct map_trafo_H_1mx : public map_function
 };
 
 
-// do x -> 1/x transformation
-struct map_trafo_H_1overx : public map_function
+// do x -> (1-x)/(1+x) transformation
+struct map_trafo_H_1mxt1px : public map_function
 {
        ex operator()(const ex& e)
        {
@@ -1203,37 +1689,83 @@ struct map_trafo_H_1overx : public map_function
                                lst parameter = ex_to<lst>(e.op(0));
                                ex arg = e.op(1);
 
-                               // if all parameters are either zero or one return the transformed function
-                               if (find(parameter.begin(), parameter.end(), 0) == parameter.end()) {
-                                       map_trafo_H_mult unify;
-                                       return unify((pow(H(lst(1),1/arg).hold() + H(lst(0),1/arg).hold() - I*Pi, parameter.nops()) / 
-                                                               factorial(parameter.nops())).expand());
-                               } else if (find(parameter.begin(), parameter.end(), 1) == parameter.end()) {
-                                       return pow(-1, parameter.nops()) * H(parameter, 1/arg).hold();
+                               // special cases if all parameters are either 0, 1 or -1
+                               bool allthesame = true;
+                               if (parameter.op(0) == 0) {
+                                       for (int i=1; i<parameter.nops(); i++) {
+                                               if (parameter.op(i) != 0) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(-H(lst(1),(1-arg)/(1+arg)).hold() - H(lst(-1),(1-arg)/(1+arg)).hold(), parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
+                                       }
+                               } else if (parameter.op(0) == -1) {
+                                       for (int i=1; i<parameter.nops(); i++) {
+                                               if (parameter.op(i) != -1) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(log(2) - H(lst(-1),(1-arg)/(1+arg)).hold(), parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
+                                       }
+                               } else {
+                                       for (int i=1; i<parameter.nops(); i++) {
+                                               if (parameter.op(i) != 1) {
+                                                       allthesame = false;
+                                                       break;
+                                               }
+                                       }
+                                       if (allthesame) {
+                                               map_trafo_H_mult unify;
+                                               return unify((pow(-log(2) - H(lst(0),(1-arg)/(1+arg)).hold() + H(lst(-1),(1-arg)/(1+arg)).hold(), parameter.nops())
+                                                      / factorial(parameter.nops())).expand());
+                                       }
                                }
 
                                lst newparameter = parameter;
                                newparameter.remove_first();
 
                                if (parameter.op(0) == 0) {
-                                       
+
                                        // leading zero
-                                       ex res = convert_from_RV(parameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1)));
-                                       map_trafo_H_1overx recursion;
+                                       ex res = convert_H_to_zeta(parameter);
+                                       map_trafo_H_1mxt1px recursion;
                                        ex buffer = recursion(H(newparameter, arg).hold());
                                        if (is_a<add>(buffer)) {
                                                for (int i=0; i<buffer.nops(); i++) {
-                                                       res += trafo_H_prepend_zero(buffer.op(i), arg);
+                                                       res -= trafo_H_1mxt1px_prepend_one(buffer.op(i), arg) + trafo_H_1mxt1px_prepend_minusone(buffer.op(i), arg);
                                                }
                                        } else {
-                                               res += trafo_H_prepend_zero(buffer, arg);
+                                               res -= trafo_H_1mxt1px_prepend_one(buffer, arg) + trafo_H_1mxt1px_prepend_minusone(buffer, arg);
+                                       }
+                                       return res;
+
+                               } else if (parameter.op(0) == -1) {
+
+                                       // leading negative one
+                                       ex res = convert_H_to_zeta(parameter);
+                                       map_trafo_H_1mxt1px recursion;
+                                       ex buffer = recursion(H(newparameter, arg).hold());
+                                       if (is_a<add>(buffer)) {
+                                               for (int i=0; i<buffer.nops(); i++) {
+                                                       res -= trafo_H_1mxt1px_prepend_minusone(buffer.op(i), arg);
+                                               }
+                                       } else {
+                                               res -= trafo_H_1mxt1px_prepend_minusone(buffer, arg);
                                        }
                                        return res;
 
                                } else {
 
                                        // leading one
-                                       map_trafo_H_1overx recursion;
+                                       map_trafo_H_1mxt1px recursion;
                                        map_trafo_H_mult unify;
                                        ex res = H(lst(1), arg).hold() * H(newparameter, arg).hold();
                                        int firstzero = 0;
@@ -1264,133 +1796,10 @@ struct map_trafo_H_1overx : public map_function
 };
 
 
-// remove trailing zeros from H-parameters
-struct map_trafo_H_reduce_trailing_zeros : public map_function
-{
-       ex operator()(const ex& e)
-       {
-               if (is_a<add>(e) || is_a<mul>(e)) {
-                       return e.map(*this);
-               }
-               if (is_a<function>(e)) {
-                       std::string name = ex_to<function>(e).get_name();
-                       if (name == "H") {
-                               lst parameter;
-                               if (is_a<lst>(e.op(0))) {
-                                               parameter = ex_to<lst>(e.op(0));
-                               } else {
-                                       parameter = lst(e.op(0));
-                               }
-                               ex arg = e.op(1);
-                               if (parameter.op(parameter.nops()-1) == 0) {
-                                       
-                                       //
-                                       if (parameter.nops() == 1) {
-                                               return log(arg);
-                                       }
-                                       
-                                       //
-                                       lst::const_iterator it = parameter.begin();
-                                       while ((it != parameter.end()) && (*it == 0)) {
-                                               it++;
-                                       }
-                                       if (it == parameter.end()) {
-                                               return pow(log(arg),parameter.nops()) / factorial(parameter.nops());
-                                       }
-                                       
-                                       //
-                                       parameter.remove_last();
-                                       int lastentry = parameter.nops();
-                                       while ((lastentry > 0) && (parameter[lastentry-1] == 0)) {
-                                               lastentry--;
-                                       }
-                                       
-                                       //
-                                       ex result = log(arg) * H(parameter,arg).hold();
-                                       for (ex i=0; i<lastentry; i++) {
-                                               parameter[i]++;
-                                               result -= (parameter[i]-1) * H(parameter, arg).hold();
-                                               parameter[i]--;
-                                       }
-                                       
-                                       if (lastentry < parameter.nops()) {
-                                               result = result / (parameter.nops()-lastentry+1);
-                                               return result.map(*this);
-                                       } else {
-                                               return result;
-                                       }
-                               }
-                       }
-               }
-               return e;
-       }
-};
-
-
-// recursively call convert_from_RV on expression
-struct map_trafo_H_convert : public map_function
-{
-       ex operator()(const ex& e)
-       {
-               if (is_a<add>(e) || is_a<mul>(e) || is_a<power>(e)) {
-                       return e.map(*this);
-               }
-               if (is_a<function>(e)) {
-                       std::string name = ex_to<function>(e).get_name();
-                       if (name == "H") {
-                               lst parameter = ex_to<lst>(e.op(0));
-                               ex arg = e.op(1);
-                               return convert_from_RV(parameter, arg);
-                       }
-               }
-               return e;
-       }
-};
-
-
-// translate notation from nested sums to Remiddi/Vermaseren
-lst convert_to_RV(const lst& o)
-{
-       lst res;
-       for (lst::const_iterator it = o.begin(); it != o.end(); it++) {
-               for (ex i=0; i<(*it)-1; i++) {
-                       res.append(0);
-               }
-               res.append(1);
-       }
-       return res;
-}
-
-
-// translate notation from Remiddi/Vermaseren to nested sums
-ex convert_from_RV(const lst& parameterlst, const ex& arg)
-{
-       lst newparameterlst;
-
-       lst::const_iterator it = parameterlst.begin();
-       int count = 1;
-       while (it != parameterlst.end()) {
-               if (*it == 0) {
-                       count++;
-               } else {
-                       newparameterlst.append((*it>0) ? count : -count);
-                       count = 1;
-               }
-               it++;
-       }
-       for (int i=1; i<count; i++) {
-               newparameterlst.append(0);
-       }
-       
-       map_trafo_H_reduce_trailing_zeros filter;
-       return filter(H(newparameterlst, arg).hold());
-}
-
-
 // do the actual summation.
-cln::cl_N H_do_sum(const std::vector<int>& s, const cln::cl_N& x)
+cln::cl_N H_do_sum(const std::vector<int>& m, const cln::cl_N& x)
 {
-       const int j = s.size();
+       const int j = m.size();
 
        std::vector<cln::cl_N> t(j);
 
@@ -1401,14 +1810,14 @@ cln::cl_N H_do_sum(const std::vector<int>& s, const cln::cl_N& x)
        do {
                t0buf = t[0];
                q++;
-               t[j-1] = t[j-1] + 1 / cln::expt(cln::cl_I(q),s[j-1]);
+               t[j-1] = t[j-1] + 1 / cln::expt(cln::cl_I(q),m[j-1]);
                for (int k=j-2; k>=1; k--) {
-                       t[k] = t[k] + t[k+1] / cln::expt(cln::cl_I(q+j-1-k), s[k]);
+                       t[k] = t[k] + t[k+1] / cln::expt(cln::cl_I(q+j-1-k), m[k]);
                }
-               t[0] = t[0] + t[1] * factor / cln::expt(cln::cl_I(q+j-1), s[0]);
+               t[0] = t[0] + t[1] * factor / cln::expt(cln::cl_I(q+j-1), m[0]);
                factor = factor * x;
        } while (t[0] != t0buf);
-       
+
        return t[0];
 }
 
@@ -1418,129 +1827,328 @@ cln::cl_N H_do_sum(const std::vector<int>& s, const cln::cl_N& x)
 
 //////////////////////////////////////////////////////////////////////
 //
-// Harmonic polylogarithm  H
+// Harmonic polylogarithm  H(m,x)
 //
 // GiNaC function
 //
 //////////////////////////////////////////////////////////////////////
 
 
-static ex H_eval(const ex& x1, const ex& x2)
-{
-       if (x2 == 0) {
-               return 0;
-       }
-       if (x2 == 1) {
-               return zeta(x1);
-       }
-       if (x1.nops() == 1) {
-               return Li(x1.op(0), x2);
-       }
-       if (x2.info(info_flags::numeric) && (!x2.info(info_flags::crational))) {
-               return H(x1,x2).evalf();
-       }
-       return H(x1,x2).hold();
-}
-
-
 static ex H_evalf(const ex& x1, const ex& x2)
 {
        if (is_a<lst>(x1) && is_a<numeric>(x2)) {
                for (int i=0; i<x1.nops(); i++) {
-                       if (!x1.op(i).info(info_flags::posint)) {
+                       if (!x1.op(i).info(info_flags::integer)) {
                                return H(x1,x2).hold();
                        }
                }
                if (x1.nops() < 1) {
-                       return _ex1;
-               }
-               if (x1.nops() == 1) {
-                       return Li(x1.op(0), x2).evalf();
+                       return H(x1,x2).hold();
                }
+
                cln::cl_N x = ex_to<numeric>(x2).to_cl_N();
-               if (x == 1) {
-                       return zeta(x1).evalf();
+               
+               const lst& morg = ex_to<lst>(x1);
+               // remove trailing zeros ...
+               if (*(--morg.end()) == 0) {
+                       symbol xtemp("xtemp");
+                       map_trafo_H_reduce_trailing_zeros filter;
+                       return filter(H(x1, xtemp).hold()).subs(xtemp==x2).evalf();
+               }
+               // ... and expand parameter notation
+               lst m;
+               for (lst::const_iterator it = morg.begin(); it != morg.end(); it++) {
+                       if (*it > 1) {
+                               for (ex count=*it-1; count > 0; count--) {
+                                       m.append(0);
+                               }
+                               m.append(1);
+                       } else if (*it < -1) {
+                               for (ex count=*it+1; count < 0; count++) {
+                                       m.append(0);
+                               }
+                               m.append(-1);
+                       } else {
+                               m.append(*it);
+                       }
                }
 
-               // choose trafo
-               if (cln::abs(x) > 1) {
-                       symbol xtemp("xtemp");
-                       map_trafo_H_1overx trafo;
-                       ex res = trafo(H(convert_to_RV(ex_to<lst>(x1)), xtemp));
-                       map_trafo_H_convert converter;
-                       res = converter(res);
-                       return res.subs(xtemp==x2).evalf();
+               // since the transformations produce a lot of terms, they are only efficient for
+               // argument near one.
+               // no transformation needed -> do summation
+               if (cln::abs(x) < 0.95) {
+                       lst m_lst;
+                       lst s_lst;
+                       ex pf;
+                       if (convert_parameter_H_to_Li(m, m_lst, s_lst, pf)) {
+                               // negative parameters -> s_lst is filled
+                               std::vector<int> m_int;
+                               std::vector<cln::cl_N> x_cln;
+                               for (lst::const_iterator it_int = m_lst.begin(), it_cln = s_lst.begin(); 
+                                    it_int != m_lst.end(); it_int++, it_cln++) {
+                                       m_int.push_back(ex_to<numeric>(*it_int).to_int());
+                                       x_cln.push_back(ex_to<numeric>(*it_cln).to_cl_N());
+                               }
+                               x_cln.front() = x_cln.front() * x;
+                               return pf * numeric(multipleLi_do_sum(m_int, x_cln));
+                       } else {
+                               // only positive parameters
+                               //TODO
+                               if (m_lst.nops() == 1) {
+                                       return Li(m_lst.op(0), x2).evalf();
+                               }
+                               std::vector<int> m_int;
+                               for (lst::const_iterator it = m_lst.begin(); it != m_lst.end(); it++) {
+                                       m_int.push_back(ex_to<numeric>(*it).to_int());
+                               }
+                               return numeric(H_do_sum(m_int, x));
+                       }
                }
 
-               // since the x->1-x transformation produces a lot of terms, it is only
-               // efficient for argument near one.
-               if (cln::realpart(x) > 0.95) {
-                       symbol xtemp("xtemp");
-                       map_trafo_H_1mx trafo;
-                       ex res = trafo(H(convert_to_RV(ex_to<lst>(x1)), xtemp));
-                       map_trafo_H_convert converter;
-                       res = converter(res);
-                       return res.subs(xtemp==x2).evalf();
+               ex res = 1;     
+               
+               // ensure that the realpart of the argument is positive
+               if (cln::realpart(x) < 0) {
+                       x = -x;
+                       for (int i=0; i<m.nops(); i++) {
+                               if (m.op(i) != 0) {
+                                       m.let_op(i) = -m.op(i);
+                                       res *= -1;
+                               }
+                       }
                }
 
-               // no trafo -> do summation
-               int count = x1.nops();
-               std::vector<int> r(count);
-               for (int i=0; i<count; i++) {
-                       r[i] = ex_to<numeric>(x1.op(i)).to_int();
+               // choose transformations
+               symbol xtemp("xtemp");
+               if (cln::abs(x-1) < 1.4142) {
+                       // x -> (1-x)/(1+x)
+                       map_trafo_H_1mxt1px trafo;
+                       res *= trafo(H(m, xtemp));
+               } else {
+                       // x -> 1/x
+                       map_trafo_H_1overx trafo;
+                       res *= trafo(H(m, xtemp));
                }
 
-               return numeric(H_do_sum(r,x));
+               // simplify result
+// TODO
+//             map_trafo_H_convert converter;
+//             res = converter(res).expand();
+//             lst ll;
+//             res.find(H(wild(1),wild(2)), ll);
+//             res.find(zeta(wild(1)), ll);
+//             res.find(zeta(wild(1),wild(2)), ll);
+//             res = res.collect(ll);
+
+               return res.subs(xtemp == numeric(x)).evalf();
        }
 
        return H(x1,x2).hold();
 }
 
 
-static ex H_series(const ex& x1, const ex& x2, const relational& rel, int order, unsigned options)
+static ex H_eval(const ex& m_, const ex& x)
+{
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
+       } else {
+               m = lst(m_);
+       }
+       if (m.nops() == 0) {
+               return _ex1;
+       }
+       ex pos1;
+       ex pos2;
+       ex n;
+       ex p;
+       int step = 0;
+       if (*m.begin() > _ex1) {
+               step++;
+               pos1 = _ex0;
+               pos2 = _ex1;
+               n = *m.begin()-1;
+               p = _ex1;
+       } else if (*m.begin() < _ex_1) {
+               step++;
+               pos1 = _ex0;
+               pos2 = _ex_1;
+               n = -*m.begin()-1;
+               p = _ex1;
+       } else if (*m.begin() == _ex0) {
+               pos1 = _ex0;
+               n = _ex1;
+       } else {
+               pos1 = *m.begin();
+               p = _ex1;
+       }
+       for (lst::const_iterator it = ++m.begin(); it != m.end(); it++) {
+               if ((*it).info(info_flags::integer)) {
+                       if (step == 0) {
+                               if (*it > _ex1) {
+                                       if (pos1 == _ex0) {
+                                               step = 1;
+                                               pos2 = _ex1;
+                                               n += *it-1;
+                                               p = _ex1;
+                                       } else {
+                                               step = 2;
+                                       }
+                               } else if (*it < _ex_1) {
+                                       if (pos1 == _ex0) {
+                                               step = 1;
+                                               pos2 = _ex_1;
+                                               n += -*it-1;
+                                               p = _ex1;
+                                       } else {
+                                               step = 2;
+                                       }
+                               } else {
+                                       if (*it != pos1) {
+                                               step = 1;
+                                               pos2 = *it;
+                                       }
+                                       if (*it == _ex0) {
+                                               n++;
+                                       } else {
+                                               p++;
+                                       }
+                               }
+                       } else if (step == 1) {
+                               if (*it != pos2) {
+                                       step = 2;
+                               } else {
+                                       if (*it == _ex0) {
+                                               n++;
+                                       } else {
+                                               p++;
+                                       }
+                               }
+                       }
+               } else {
+                       // if some m_i is not an integer
+                       return H(m_, x).hold();
+               }
+       }
+       if ((x == _ex1) && (*(--m.end()) != _ex0)) {
+               return convert_H_to_zeta(m);
+       }
+       if (step == 0) {
+               if (pos1 == _ex0) {
+                       // all zero
+                       if (x == _ex0) {
+                               return H(m_, x).hold();
+                       }
+                       return pow(log(x), m.nops()) / factorial(m.nops());
+               } else {
+                       // all (minus) one
+                       return pow(-pos1*log(1-pos1*x), m.nops()) / factorial(m.nops());
+               }
+       } else if ((step == 1) && (pos1 == _ex0)){
+               // convertible to S
+               if (pos2 == _ex1) {
+                       return S(n, p, x);
+               } else {
+                       return pow(-1, p) * S(n, p, -x);
+               }
+       }
+       if (x == _ex0) {
+               return _ex0;
+       }
+       if (x.info(info_flags::numeric) && (!x.info(info_flags::crational))) {
+               return H(m_, x).evalf();
+       }
+       return H(m_, x).hold();
+}
+
+
+static ex H_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options)
 {
        epvector seq;
-       seq.push_back(expair(H(x1,x2), 0));
-       return pseries(rel,seq);
+       seq.push_back(expair(H(m, x), 0));
+       return pseries(rel, seq);
 }
 
 
-static ex H_deriv(const ex& x1, const ex& x2, unsigned deriv_param)
+static ex H_deriv(const ex& m_, const ex& x, unsigned deriv_param)
 {
        GINAC_ASSERT(deriv_param < 2);
        if (deriv_param == 0) {
                return _ex0;
        }
-       if (is_a<lst>(x1)) {
-               lst newparameter = ex_to<lst>(x1);
-               if (x1.op(0) == 1) {
-                       newparameter.remove_first();
-                       return 1/(1-x2) * H(newparameter, x2);
-               } else {
-                       newparameter[0]--;
-                       return H(newparameter, x2).hold() / x2;
-               }
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
        } else {
-               if (x1 == 1) {
-                       return 1/(1-x2);
-               } else {
-                       return H(x1-1, x2).hold() / x2;
-               }
+               m = lst(m_);
+       }
+       ex mb = *m.begin();
+       if (mb > _ex1) {
+               m[0]--;
+               return H(m, x) / x;
+       }
+       if (mb < _ex_1) {
+               m[0]++;
+               return H(m, x) / x;
+       }
+       m.remove_first();
+       if (mb == _ex1) {
+               return 1/(1-x) * H(m, x);
+       } else if (mb == _ex_1) {
+               return 1/(1+x) * H(m, x);
+       } else {
+               return H(m, x) / x;
        }
 }
 
 
+static void H_print_latex(const ex& m_, const ex& x, const print_context& c)
+{
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
+       } else {
+               m = lst(m_);
+       }
+       c.s << "\\mbox{H}_{";
+       lst::const_iterator itm = m.begin();
+       (*itm).print(c);
+       itm++;
+       for (; itm != m.end(); itm++) {
+               c.s << ",";
+               (*itm).print(c);
+       }
+       c.s << "}(";
+       x.print(c);
+       c.s << ")";
+}
+
+
 REGISTER_FUNCTION(H,
-               eval_func(H_eval).
-               evalf_func(H_evalf).
-               do_not_evalf_params().
-               series_func(H_series).
-               derivative_func(H_deriv));
+                  evalf_func(H_evalf).
+                  eval_func(H_eval).
+                  series_func(H_series).
+                  derivative_func(H_deriv).
+                  print_func<print_latex>(H_print_latex).
+                  do_not_evalf_params());
+
+
+// takes a parameter list for H and returns an expression with corresponding multiple polylogarithms
+ex convert_H_to_Li(const ex& m, const ex& x)
+{
+       map_trafo_H_reduce_trailing_zeros filter;
+       map_trafo_H_convert_to_Li filter2;
+       if (is_a<lst>(m)) {
+               return filter2(filter(H(m, x).hold()));
+       } else {
+               return filter2(filter(H(lst(m), x).hold()));
+       }
+}
 
 
 //////////////////////////////////////////////////////////////////////
 //
-// Multiple zeta values  zeta
+// Multiple zeta values  zeta(x) and zeta(x,s)
 //
 // helper functions
 //
@@ -1797,12 +2405,98 @@ cln::cl_N zeta_do_sum_simple(const std::vector<int>& r)
 }
 
 
+// does Hoelder convolution. see [BBB] (7.0)
+cln::cl_N zeta_do_Hoelder_convolution(const std::vector<int>& m_, const std::vector<int>& s_)
+{
+       // prepare parameters
+       // holds Li arguments in [BBB] notation
+       std::vector<int> s = s_;
+       std::vector<int> m_p = m_;
+       std::vector<int> m_q;
+       // holds Li arguments in nested sums notation
+       std::vector<cln::cl_N> s_p(s.size(), cln::cl_N(1));
+       s_p[0] = s_p[0] * cln::cl_N("1/2");
+       // convert notations
+       int sig = 1;
+       for (int i=0; i<s_.size(); i++) {
+               if (s_[i] < 0) {
+                       sig = -sig;
+                       s_p[i] = -s_p[i];
+               }
+               s[i] = sig * std::abs(s[i]);
+       }
+       std::vector<cln::cl_N> s_q;
+       cln::cl_N signum = 1;
+
+       // first term
+       cln::cl_N res = multipleLi_do_sum(m_p, s_p);
+
+       // middle terms
+       do {
+
+               // change parameters
+               if (s.front() > 0) {
+                       if (m_p.front() == 1) {
+                               m_p.erase(m_p.begin());
+                               s_p.erase(s_p.begin());
+                               if (s_p.size() > 0) {
+                                       s_p.front() = s_p.front() * cln::cl_N("1/2");
+                               }
+                               s.erase(s.begin());
+                               m_q.front()++;
+                       } else {
+                               m_p.front()--;
+                               m_q.insert(m_q.begin(), 1);
+                               if (s_q.size() > 0) {
+                                       s_q.front() = s_q.front() * 2;
+                               }
+                               s_q.insert(s_q.begin(), cln::cl_N("1/2"));
+                       }
+               } else {
+                       if (m_p.front() == 1) {
+                               m_p.erase(m_p.begin());
+                               cln::cl_N spbuf = s_p.front();
+                               s_p.erase(s_p.begin());
+                               if (s_p.size() > 0) {
+                                       s_p.front() = s_p.front() * spbuf;
+                               }
+                               s.erase(s.begin());
+                               m_q.insert(m_q.begin(), 1);
+                               if (s_q.size() > 0) {
+                                       s_q.front() = s_q.front() * 4;
+                               }
+                               s_q.insert(s_q.begin(), cln::cl_N("1/4"));
+                               signum = -signum;
+                       } else {
+                               m_p.front()--;
+                               m_q.insert(m_q.begin(), 1);
+                               if (s_q.size() > 0) {
+                                       s_q.front() = s_q.front() * 2;
+                               }
+                               s_q.insert(s_q.begin(), cln::cl_N("1/2"));
+                       }
+               }
+
+               // exiting the loop
+               if (m_p.size() == 0) break;
+
+               res = res + signum * multipleLi_do_sum(m_p, s_p) * multipleLi_do_sum(m_q, s_q);
+
+       } while (true);
+
+       // last term
+       res = res + signum * multipleLi_do_sum(m_q, s_q);
+
+       return res;
+}
+
+
 } // end of anonymous namespace
 
 
 //////////////////////////////////////////////////////////////////////
 //
-// Multiple zeta values  zeta
+// Multiple zeta values  zeta(x)
 //
 // GiNaC function
 //
@@ -1844,7 +2538,7 @@ static ex zeta1_evalf(const ex& x)
                        return numeric(zeta_do_sum_simple(r));
                }
        }
-               
+
        // single zeta value
        if (is_exactly_a<numeric>(x) && (x != 1)) {
                try {
@@ -1856,28 +2550,28 @@ static ex zeta1_evalf(const ex& x)
 }
 
 
-static ex zeta1_eval(const ex& x)
+static ex zeta1_eval(const ex& m)
 {
-       if (is_exactly_a<lst>(x)) {
-               if (x.nops() == 1) {
-                       return zeta(x.op(0));
+       if (is_exactly_a<lst>(m)) {
+               if (m.nops() == 1) {
+                       return zeta(m.op(0));
                }
-               return zeta(x).hold();
+               return zeta(m).hold();
        }
 
-       if (x.info(info_flags::numeric)) {
-               const numeric& y = ex_to<numeric>(x);
+       if (m.info(info_flags::numeric)) {
+               const numeric& y = ex_to<numeric>(m);
                // trap integer arguments:
                if (y.is_integer()) {
                        if (y.is_zero()) {
                                return _ex_1_2;
                        }
                        if (y.is_equal(_num1)) {
-                               return zeta(x).hold();
+                               return zeta(m).hold();
                        }
                        if (y.info(info_flags::posint)) {
                                if (y.info(info_flags::odd)) {
-                                       return zeta(x).hold();
+                                       return zeta(m).hold();
                                } else {
                                        return abs(bernoulli(y)) * pow(Pi, y) * pow(_num2, y-_num1) / factorial(y);
                                }
@@ -1890,105 +2584,189 @@ static ex zeta1_eval(const ex& x)
                        }
                }
                // zeta(float)
-               if (y.info(info_flags::numeric) && !y.info(info_flags::crational))
-                       return zeta1_evalf(x);
+               if (y.info(info_flags::numeric) && !y.info(info_flags::crational)) {
+                       return zeta1_evalf(m);
+               }
        }
-       return zeta(x).hold();
+       return zeta(m).hold();
 }
 
 
-static ex zeta1_deriv(const ex& x, unsigned deriv_param)
+static ex zeta1_deriv(const ex& m, unsigned deriv_param)
 {
        GINAC_ASSERT(deriv_param==0);
 
-       if (is_exactly_a<lst>(x)) {
+       if (is_exactly_a<lst>(m)) {
                return _ex0;
        } else {
-               return zeta(_ex1, x);
+               return zetaderiv(_ex1, m);
+       }
+}
+
+
+static void zeta1_print_latex(const ex& m_, const print_context& c)
+{
+       c.s << "\\zeta(";
+       if (is_a<lst>(m_)) {
+               const lst& m = ex_to<lst>(m_);
+               lst::const_iterator it = m.begin();
+               (*it).print(c);
+               it++;
+               for (; it != m.end(); it++) {
+                       c.s << ",";
+                       (*it).print(c);
+               }
+       } else {
+               m_.print(c);
        }
+       c.s << ")";
 }
 
 
-unsigned zeta1_SERIAL::serial =
-                       function::register_new(function_options("zeta").
-                                               eval_func(zeta1_eval).
-                                               evalf_func(zeta1_evalf).
-                                               do_not_evalf_params().
-                                               derivative_func(zeta1_deriv).
-                                               latex_name("\\zeta").
-                                               overloaded(2));
+unsigned zeta1_SERIAL::serial = function::register_new(function_options("zeta").
+                                evalf_func(zeta1_evalf).
+                                eval_func(zeta1_eval).
+                                derivative_func(zeta1_deriv).
+                                print_func<print_latex>(zeta1_print_latex).
+                                do_not_evalf_params().
+                                overloaded(2));
 
 
 //////////////////////////////////////////////////////////////////////
 //
-// Multiple zeta values  mZeta
-//
-// The use of mZeta is deprecated! This function will be removed
-// from GiNaC source soon. Use zeta instead!!
+// Alternating Euler sum  zeta(x,s)
 //
 // GiNaC function
 //
 //////////////////////////////////////////////////////////////////////
 
 
-static ex mZeta_eval(const ex& x1)
+static ex zeta2_evalf(const ex& x, const ex& s)
 {
-       return mZeta(x1).hold();
+       if (is_exactly_a<lst>(x)) {
+
+               // alternating Euler sum
+               const int count = x.nops();
+               const lst& xlst = ex_to<lst>(x);
+               const lst& slst = ex_to<lst>(s);
+               std::vector<int> xi(count);
+               std::vector<int> si(count);
+
+               // check parameters and convert them
+               lst::const_iterator it_xread = xlst.begin();
+               lst::const_iterator it_sread = slst.begin();
+               std::vector<int>::iterator it_xwrite = xi.begin();
+               std::vector<int>::iterator it_swrite = si.begin();
+               do {
+                       if (!(*it_xread).info(info_flags::posint)) {
+                               return zeta(x, s).hold();
+                       }
+                       *it_xwrite = ex_to<numeric>(*it_xread).to_int();
+                       if (*it_sread > 0) {
+                               *it_swrite = 1;
+                       } else {
+                               *it_swrite = -1;
+                       }
+                       it_xread++;
+                       it_sread++;
+                       it_xwrite++;
+                       it_swrite++;
+               } while (it_xwrite != xi.end());
+
+               // check for divergence
+               if ((xi[0] == 1) && (si[0] == 1)) {
+                       return zeta(x, s).hold();
+               }
+
+               // use Hoelder convolution
+               return numeric(zeta_do_Hoelder_convolution(xi, si));
+       }
+
+       return zeta(x, s).hold();
 }
 
 
-static ex mZeta_evalf(const ex& x1)
+static ex zeta2_eval(const ex& m, const ex& s_)
 {
-       if (is_a<lst>(x1)) {
-               for (int i=0; i<x1.nops(); i++) {
-                       if (!x1.op(i).info(info_flags::posint))
-                               return mZeta(x1).hold();
+       if (is_exactly_a<lst>(s_)) {
+               const lst& s = ex_to<lst>(s_);
+               for (lst::const_iterator it = s.begin(); it != s.end(); it++) {
+                       if ((*it).info(info_flags::positive)) {
+                               continue;
+                       }
+                       return zeta(m, s_).hold();
                }
+               return zeta(m);
+       } else if (s_.info(info_flags::positive)) {
+               return zeta(m);
+       }
 
-               const int j = x1.nops();
+       return zeta(m, s_).hold();
+}
 
-               std::vector<int> r(j);
-               for (int i=0; i<j; i++) {
-                       r[j-1-i] = ex_to<numeric>(x1.op(i)).to_int();
-               }
 
-               // check for divergence
-               if (r[0] == 1) {
-                       return mZeta(x1).hold();
-               }
+static ex zeta2_deriv(const ex& m, const ex& s, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param==0);
 
-               // if only one argument, use cln::zeta
-               if (j == 1) {
-                       return numeric(cln::zeta(r[0]));
-               }
-               
-               // decide on summation algorithm
-               // this is still a bit clumsy
-               int limit = (Digits>17) ? 10 : 6;
-               if (r[0]<limit || (j>3 && r[1]<limit/2)) {
-                       return numeric(zeta_do_sum_Crandall(r));
-               } else {
-                       return numeric(zeta_do_sum_simple(r));
+       if (is_exactly_a<lst>(m)) {
+               return _ex0;
+       } else {
+               if ((is_exactly_a<lst>(s) && s.op(0).info(info_flags::positive)) || s.info(info_flags::positive)) {
+                       return zetaderiv(_ex1, m);
                }
-       } else if (x1.info(info_flags::posint) && (x1 != 1)) {
-               return numeric(cln::zeta(ex_to<numeric>(x1).to_int()));
+               return _ex0;
        }
-
-       return mZeta(x1).hold();
 }
 
 
-static ex mZeta_deriv(const ex& x, unsigned deriv_param)
+static void zeta2_print_latex(const ex& m_, const ex& s_, const print_context& c)
 {
-       return 0;
+       lst m;
+       if (is_a<lst>(m_)) {
+               m = ex_to<lst>(m_);
+       } else {
+               m = lst(m_);
+       }
+       lst s;
+       if (is_a<lst>(s_)) {
+               s = ex_to<lst>(s_);
+       } else {
+               s = lst(s_);
+       }
+       c.s << "\\zeta(";
+       lst::const_iterator itm = m.begin();
+       lst::const_iterator its = s.begin();
+       if (*its < 0) {
+               c.s << "\\overline{";
+               (*itm).print(c);
+               c.s << "}";
+       } else {
+               (*itm).print(c);
+       }
+       its++;
+       itm++;
+       for (; itm != m.end(); itm++, its++) {
+               c.s << ",";
+               if (*its < 0) {
+                       c.s << "\\overline{";
+                       (*itm).print(c);
+                       c.s << "}";
+               } else {
+                       (*itm).print(c);
+               }
+       }
+       c.s << ")";
 }
 
 
-REGISTER_FUNCTION(mZeta, 
-               eval_func(mZeta_eval).
-               evalf_func(mZeta_evalf).
-               do_not_evalf_params().
-               derivative_func(mZeta_deriv));
+unsigned zeta2_SERIAL::serial = function::register_new(function_options("zeta").
+                                evalf_func(zeta2_evalf).
+                                eval_func(zeta2_eval).
+                                derivative_func(zeta2_deriv).
+                                print_func<print_latex>(zeta2_print_latex).
+                                do_not_evalf_params().
+                                overloaded(2));
 
 
 } // namespace GiNaC