]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns_gamma.cpp
Transform abs(x)^n => x^n if x is real and n is even.
[ginac.git] / ginac / inifcns_gamma.cpp
index 7bd6669bb8b5eb8c817fd016718c5e3bfdaa2546..f3d44a81e462325f5c6818ac29ba07a641903fab 100644 (file)
@@ -1,9 +1,10 @@
 /** @file inifcns_gamma.cpp
  *
- *  Implementation of Gamma function and some related stuff. */
+ *  Implementation of Gamma-function, Beta-function, Polygamma-functions, and
+ *  some related stuff. */
 
 /*
- *  GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <vector>
-#include <stdexcept>
-
 #include "inifcns.h"
-#include "ex.h"
 #include "constant.h"
+#include "pseries.h"
 #include "numeric.h"
 #include "power.h"
+#include "relational.h"
+#include "operators.h"
 #include "symbol.h"
+#include "symmetry.h"
+#include "utils.h"
+
+#include <stdexcept>
+#include <vector>
 
 namespace GiNaC {
 
 //////////
-// gamma function
+// Logarithm of Gamma function
 //////////
 
-/** Evaluation of gamma(x). Knows about integer arguments, half-integer
- *  arguments and that's it. Somebody ought to provide some good numerical
- *  evaluation some day...
+static ex lgamma_evalf(const ex & x)
+{
+       if (is_exactly_a<numeric>(x)) {
+               try {
+                       return lgamma(ex_to<numeric>(x));
+               } catch (const dunno &e) { }
+       }
+       
+       return lgamma(x).hold();
+}
+
+
+/** Evaluation of lgamma(x), the natural logarithm of the Gamma function.
+ *  Handles integer arguments as a special case.
  *
- *  @exception fail_numeric("complex_infinity") or something similar... */
-static ex gamma_eval(ex const & x)
-{
-    if (x.info(info_flags::numeric)) {
-
-        // trap integer arguments:
-        if ( x.info(info_flags::integer) ) {
-            // gamma(n+1) -> n! for postitive n
-            if ( x.info(info_flags::posint) ) {
-                return factorial(ex_to_numeric(x).sub(numONE()));
-            } else {
-                return numZERO();  // Infinity. Throw? What?
-            }
-        }
-        // trap half integer arguments:
-        if ( (x*2).info(info_flags::integer) ) {
-            // trap positive x=(n+1/2)
-            // gamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n)
-            if ( (x*2).info(info_flags::posint) ) {
-                numeric n = ex_to_numeric(x).sub(numHALF());
-                numeric coefficient = doublefactorial(n.mul(numTWO()).sub(numONE()));
-                coefficient = coefficient.div(numTWO().power(n));
-                return coefficient * pow(Pi,numHALF());
-            } else {
-                // trap negative x=(-n+1/2)
-                // gamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1))
-                numeric n = abs(ex_to_numeric(x).sub(numHALF()));
-                numeric coefficient = numeric(-2).power(n);
-                coefficient = coefficient.div(doublefactorial(n.mul(numTWO()).sub(numONE())));;
-                return coefficient*sqrt(Pi);
-            }
-        }
-    }
-    return gamma(x).hold();
-}    
-    
-static ex gamma_evalf(ex const & x)
+ *  @exception GiNaC::pole_error("lgamma_eval(): logarithmic pole",0) */
+static ex lgamma_eval(const ex & x)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(x,numeric)
-    END_TYPECHECK(gamma(x))
-    
-    return gamma(ex_to_numeric(x));
+       if (x.info(info_flags::numeric)) {
+               // trap integer arguments:
+               if (x.info(info_flags::integer)) {
+                       // lgamma(n) -> log((n-1)!) for postitive n
+                       if (x.info(info_flags::posint))
+                               return log(factorial(x + _ex_1));
+                       else
+                               throw (pole_error("lgamma_eval(): logarithmic pole",0));
+               }
+               if (!ex_to<numeric>(x).is_rational())
+                       return lgamma(ex_to<numeric>(x));
+       }
+       
+       return lgamma(x).hold();
 }
 
-static ex gamma_diff(ex const & x, unsigned diff_param)
+
+static ex lgamma_deriv(const ex & x, unsigned deriv_param)
 {
-    ASSERT(diff_param==0);
+       GINAC_ASSERT(deriv_param==0);
+       
+       // d/dx  lgamma(x) -> psi(x)
+       return psi(x);
+}
+
 
-    return psi(exZERO(),x)*gamma(x);
+static ex lgamma_series(const ex & arg,
+                        const relational & rel,
+                        int order,
+                        unsigned options)
+{
+       // method:
+       // Taylor series where there is no pole falls back to psi function
+       // evaluation.
+       // On a pole at -m we could use the recurrence relation
+       //   lgamma(x) == lgamma(x+1)-log(x)
+       // from which follows
+       //   series(lgamma(x),x==-m,order) ==
+       //   series(lgamma(x+m+1)-log(x)...-log(x+m)),x==-m,order);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
+               throw do_taylor();  // caught by function::series()
+       // if we got here we have to care for a simple pole of tgamma(-m):
+       numeric m = -ex_to<numeric>(arg_pt);
+       ex recur;
+       for (numeric p = 0; p<=m; ++p)
+               recur += log(arg+p);
+       return (lgamma(arg+m+_ex1)-recur).series(rel, order, options);
 }
 
-static ex gamma_series(ex const & x, symbol const & s, ex const & point, int order)
+
+static ex lgamma_conjugate(const ex & x)
 {
-       // FIXME: Only handle one special case for now...
-       if (x.is_equal(s) && point.is_zero()) {
-               ex e = 1 / s - EulerGamma + s * (pow(Pi, 2) / 12 + pow(EulerGamma, 2) / 2) + Order(pow(s, 2));
-               return e.series(s, point, order);
-       } else
-               throw(std::logic_error("don't know the series expansion of this particular gamma function"));
+       // conjugate(lgamma(x))==lgamma(conjugate(x)) unless on the branch cut
+       // which runs along the negative real axis.
+       if (x.info(info_flags::positive)) {
+               return lgamma(x);
+       }
+       if (is_exactly_a<numeric>(x) &&
+           !x.imag_part().is_zero()) {
+               return lgamma(x.conjugate());
+       }
+       return conjugate_function(lgamma(x)).hold();
 }
 
-REGISTER_FUNCTION(gamma, gamma_eval, gamma_evalf, gamma_diff, gamma_series);
+
+REGISTER_FUNCTION(lgamma, eval_func(lgamma_eval).
+                          evalf_func(lgamma_evalf).
+                          derivative_func(lgamma_deriv).
+                          series_func(lgamma_series).
+                          conjugate_func(lgamma_conjugate).
+                          latex_name("\\log \\Gamma"));
+
 
 //////////
-// psi function (aka polygamma function)
+// true Gamma function
 //////////
 
-/** Evaluation of polygamma-function psi(n,x). 
+static ex tgamma_evalf(const ex & x)
+{
+       if (is_exactly_a<numeric>(x)) {
+               try {
+                       return tgamma(ex_to<numeric>(x));
+               } catch (const dunno &e) { }
+       }
+       
+       return tgamma(x).hold();
+}
+
+
+/** Evaluation of tgamma(x), the true Gamma function.  Knows about integer
+ *  arguments, half-integer arguments and that's it. Somebody ought to provide
+ *  some good numerical evaluation some day...
+ *
+ *  @exception pole_error("tgamma_eval(): simple pole",0) */
+static ex tgamma_eval(const ex & x)
+{
+       if (x.info(info_flags::numeric)) {
+               // trap integer arguments:
+               const numeric two_x = (*_num2_p)*ex_to<numeric>(x);
+               if (two_x.is_even()) {
+                       // tgamma(n) -> (n-1)! for postitive n
+                       if (two_x.is_positive()) {
+                               return factorial(ex_to<numeric>(x).sub(*_num1_p));
+                       } else {
+                               throw (pole_error("tgamma_eval(): simple pole",1));
+                       }
+               }
+               // trap half integer arguments:
+               if (two_x.is_integer()) {
+                       // trap positive x==(n+1/2)
+                       // tgamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n)
+                       if (two_x.is_positive()) {
+                               const numeric n = ex_to<numeric>(x).sub(*_num1_2_p);
+                               return (doublefactorial(n.mul(*_num2_p).sub(*_num1_p)).div(pow(*_num2_p,n))) * sqrt(Pi);
+                       } else {
+                               // trap negative x==(-n+1/2)
+                               // tgamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1))
+                               const numeric n = abs(ex_to<numeric>(x).sub(*_num1_2_p));
+                               return (pow(*_num_2_p, n).div(doublefactorial(n.mul(*_num2_p).sub(*_num1_p))))*sqrt(Pi);
+                       }
+               }
+               if (!ex_to<numeric>(x).is_rational())
+                       return tgamma(ex_to<numeric>(x));
+       }
+       
+       return tgamma(x).hold();
+}
+
+
+static ex tgamma_deriv(const ex & x, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param==0);
+       
+       // d/dx  tgamma(x) -> psi(x)*tgamma(x)
+       return psi(x)*tgamma(x);
+}
+
+
+static ex tgamma_series(const ex & arg,
+                        const relational & rel,
+                        int order,
+                        unsigned options)
+{
+       // method:
+       // Taylor series where there is no pole falls back to psi function
+       // evaluation.
+       // On a pole at -m use the recurrence relation
+       //   tgamma(x) == tgamma(x+1) / x
+       // from which follows
+       //   series(tgamma(x),x==-m,order) ==
+       //   series(tgamma(x+m+1)/(x*(x+1)*...*(x+m)),x==-m,order);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
+               throw do_taylor();  // caught by function::series()
+       // if we got here we have to care for a simple pole at -m:
+       const numeric m = -ex_to<numeric>(arg_pt);
+       ex ser_denom = _ex1;
+       for (numeric p; p<=m; ++p)
+               ser_denom *= arg+p;
+       return (tgamma(arg+m+_ex1)/ser_denom).series(rel, order, options);
+}
+
+
+static ex tgamma_conjugate(const ex & x)
+{
+       // conjugate(tgamma(x))==tgamma(conjugate(x))
+       return tgamma(x.conjugate());
+}
+
+
+REGISTER_FUNCTION(tgamma, eval_func(tgamma_eval).
+                          evalf_func(tgamma_evalf).
+                          derivative_func(tgamma_deriv).
+                          series_func(tgamma_series).
+                          conjugate_func(tgamma_conjugate).
+                          latex_name("\\Gamma"));
+
+
+//////////
+// beta-function
+//////////
+
+static ex beta_evalf(const ex & x, const ex & y)
+{
+       if (is_exactly_a<numeric>(x) && is_exactly_a<numeric>(y)) {
+               try {
+                       return exp(lgamma(ex_to<numeric>(x))+lgamma(ex_to<numeric>(y))-lgamma(ex_to<numeric>(x+y)));
+               } catch (const dunno &e) { }
+       }
+       
+       return beta(x,y).hold();
+}
+
+
+static ex beta_eval(const ex & x, const ex & y)
+{
+       if (x.is_equal(_ex1))
+               return 1/y;
+       if (y.is_equal(_ex1))
+               return 1/x;
+       if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) {
+               // treat all problematic x and y that may not be passed into tgamma,
+               // because they would throw there although beta(x,y) is well-defined
+               // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y)
+               const numeric &nx = ex_to<numeric>(x);
+               const numeric &ny = ex_to<numeric>(y);
+               if (nx.is_real() && nx.is_integer() &&
+                       ny.is_real() && ny.is_integer()) {
+                       if (nx.is_negative()) {
+                               if (nx<=-ny)
+                                       return pow(*_num_1_p, ny)*beta(1-x-y, y);
+                               else
+                                       throw (pole_error("beta_eval(): simple pole",1));
+                       }
+                       if (ny.is_negative()) {
+                               if (ny<=-nx)
+                                       return pow(*_num_1_p, nx)*beta(1-y-x, x);
+                               else
+                                       throw (pole_error("beta_eval(): simple pole",1));
+                       }
+                       return tgamma(x)*tgamma(y)/tgamma(x+y);
+               }
+               // no problem in numerator, but denominator has pole:
+               if ((nx+ny).is_real() &&
+                   (nx+ny).is_integer() &&
+                  !(nx+ny).is_positive())
+                        return _ex0;
+               if (!ex_to<numeric>(x).is_rational() || !ex_to<numeric>(x).is_rational())
+                       return evalf(beta(x, y).hold());
+       }
+       
+       return beta(x,y).hold();
+}
+
+
+static ex beta_deriv(const ex & x, const ex & y, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param<2);
+       ex retval;
+       
+       // d/dx beta(x,y) -> (psi(x)-psi(x+y)) * beta(x,y)
+       if (deriv_param==0)
+               retval = (psi(x)-psi(x+y))*beta(x,y);
+       // d/dy beta(x,y) -> (psi(y)-psi(x+y)) * beta(x,y)
+       if (deriv_param==1)
+               retval = (psi(y)-psi(x+y))*beta(x,y);
+       return retval;
+}
+
+
+static ex beta_series(const ex & arg1,
+                      const ex & arg2,
+                      const relational & rel,
+                      int order,
+                      unsigned options)
+{
+       // method:
+       // Taylor series where there is no pole of one of the tgamma functions
+       // falls back to beta function evaluation.  Otherwise, fall back to
+       // tgamma series directly.
+       const ex arg1_pt = arg1.subs(rel, subs_options::no_pattern);
+       const ex arg2_pt = arg2.subs(rel, subs_options::no_pattern);
+       GINAC_ASSERT(is_a<symbol>(rel.lhs()));
+       const symbol &s = ex_to<symbol>(rel.lhs());
+       ex arg1_ser, arg2_ser, arg1arg2_ser;
+       if ((!arg1_pt.info(info_flags::integer) || arg1_pt.info(info_flags::positive)) &&
+           (!arg2_pt.info(info_flags::integer) || arg2_pt.info(info_flags::positive)))
+               throw do_taylor();  // caught by function::series()
+       // trap the case where arg1 is on a pole:
+       if (arg1.info(info_flags::integer) && !arg1.info(info_flags::positive))
+               arg1_ser = tgamma(arg1+s);
+       else
+               arg1_ser = tgamma(arg1);
+       // trap the case where arg2 is on a pole:
+       if (arg2.info(info_flags::integer) && !arg2.info(info_flags::positive))
+               arg2_ser = tgamma(arg2+s);
+       else
+               arg2_ser = tgamma(arg2);
+       // trap the case where arg1+arg2 is on a pole:
+       if ((arg1+arg2).info(info_flags::integer) && !(arg1+arg2).info(info_flags::positive))
+               arg1arg2_ser = tgamma(arg2+arg1+s);
+       else
+               arg1arg2_ser = tgamma(arg2+arg1);
+       // compose the result (expanding all the terms):
+       return (arg1_ser*arg2_ser/arg1arg2_ser).series(rel, order, options).expand();
+}
+
+
+REGISTER_FUNCTION(beta, eval_func(beta_eval).
+                        evalf_func(beta_evalf).
+                        derivative_func(beta_deriv).
+                        series_func(beta_series).
+                        latex_name("\\mathrm{B}").
+                        set_symmetry(sy_symm(0, 1)));
+
+
+//////////
+// Psi-function (aka digamma-function)
+//////////
+
+static ex psi1_evalf(const ex & x)
+{
+       if (is_exactly_a<numeric>(x)) {
+               try {
+                       return psi(ex_to<numeric>(x));
+               } catch (const dunno &e) { }
+       }
+       
+       return psi(x).hold();
+}
+
+/** Evaluation of digamma-function psi(x).
  *  Somebody ought to provide some good numerical evaluation some day... */
-static ex psi_eval(ex const & n, ex const & x)
+static ex psi1_eval(const ex & x)
 {
-    if (n.info(info_flags::numeric) && x.info(info_flags::numeric)) {
-        // do some stuff...
-    }
-    return psi(n, x).hold();
-}    
-    
-static ex psi_evalf(ex const & n, ex const & x)
+       if (x.info(info_flags::numeric)) {
+               const numeric &nx = ex_to<numeric>(x);
+               if (nx.is_integer()) {
+                       // integer case 
+                       if (nx.is_positive()) {
+                               // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - Euler
+                               numeric rat = 0;
+                               for (numeric i(nx+(*_num_1_p)); i>0; --i)
+                                       rat += i.inverse();
+                               return rat-Euler;
+                       } else {
+                               // for non-positive integers there is a pole:
+                               throw (pole_error("psi_eval(): simple pole",1));
+                       }
+               }
+               if (((*_num2_p)*nx).is_integer()) {
+                       // half integer case
+                       if (nx.is_positive()) {
+                               // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - Euler - 2log(2)
+                               numeric rat = 0;
+                               for (numeric i = (nx+(*_num_1_p))*(*_num2_p); i>0; i-=(*_num2_p))
+                                       rat += (*_num2_p)*i.inverse();
+                               return rat-Euler-_ex2*log(_ex2);
+                       } else {
+                               // use the recurrence relation
+                               //   psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2)
+                               // to relate psi(-m-1/2) to psi(1/2):
+                               //   psi(-m-1/2) == psi(1/2) + r
+                               // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1))
+                               numeric recur = 0;
+                               for (numeric p = nx; p<0; ++p)
+                                       recur -= pow(p, *_num_1_p);
+                               return recur+psi(_ex1_2);
+                       }
+               }
+               //  psi1_evalf should be called here once it becomes available
+       }
+       
+       return psi(x).hold();
+}
+
+static ex psi1_deriv(const ex & x, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param==0);
+       
+       // d/dx psi(x) -> psi(1,x)
+       return psi(_ex1, x);
+}
+
+static ex psi1_series(const ex & arg,
+                      const relational & rel,
+                      int order,
+                      unsigned options)
+{
+       // method:
+       // Taylor series where there is no pole falls back to polygamma function
+       // evaluation.
+       // On a pole at -m use the recurrence relation
+       //   psi(x) == psi(x+1) - 1/z
+       // from which follows
+       //   series(psi(x),x==-m,order) ==
+       //   series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x==-m,order);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
+               throw do_taylor();  // caught by function::series()
+       // if we got here we have to care for a simple pole at -m:
+       const numeric m = -ex_to<numeric>(arg_pt);
+       ex recur;
+       for (numeric p; p<=m; ++p)
+               recur += power(arg+p,_ex_1);
+       return (psi(arg+m+_ex1)-recur).series(rel, order, options);
+}
+
+unsigned psi1_SERIAL::serial =
+       function::register_new(function_options("psi", 1).
+                              eval_func(psi1_eval).
+                              evalf_func(psi1_evalf).
+                              derivative_func(psi1_deriv).
+                              series_func(psi1_series).
+                              latex_name("\\psi").
+                              overloaded(2));
+
+//////////
+// Psi-functions (aka polygamma-functions)  psi(0,x)==psi(x)
+//////////
+
+static ex psi2_evalf(const ex & n, const ex & x)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(n,numeric)
-        TYPECHECK(x,numeric)
-    END_TYPECHECK(psi(n,x))
-    
-    return psi(ex_to_numeric(n), ex_to_numeric(x));
+       if (is_exactly_a<numeric>(n) && is_exactly_a<numeric>(x)) {
+               try {
+                       return psi(ex_to<numeric>(n),ex_to<numeric>(x));
+               } catch (const dunno &e) { }
+       }
+       
+       return psi(n,x).hold();
 }
 
-static ex psi_diff(ex const & n, ex const & x, unsigned diff_param)
+/** Evaluation of polygamma-function psi(n,x). 
+ *  Somebody ought to provide some good numerical evaluation some day... */
+static ex psi2_eval(const ex & n, const ex & x)
 {
-    ASSERT(diff_param==0);
-    
-    return psi(n+1, x);
+       // psi(0,x) -> psi(x)
+       if (n.is_zero())
+               return psi(x);
+       // psi(-1,x) -> log(tgamma(x))
+       if (n.is_equal(_ex_1))
+               return log(tgamma(x));
+       if (n.info(info_flags::numeric) && n.info(info_flags::posint) &&
+               x.info(info_flags::numeric)) {
+               const numeric &nn = ex_to<numeric>(n);
+               const numeric &nx = ex_to<numeric>(x);
+               if (nx.is_integer()) {
+                       // integer case 
+                       if (nx.is_equal(*_num1_p))
+                               // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1)
+                               return pow(*_num_1_p,nn+(*_num1_p))*factorial(nn)*zeta(ex(nn+(*_num1_p)));
+                       if (nx.is_positive()) {
+                               // use the recurrence relation
+                               //   psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1)
+                               // to relate psi(n,m) to psi(n,1):
+                               //   psi(n,m) == psi(n,1) + r
+                               // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1))
+                               numeric recur = 0;
+                               for (numeric p = 1; p<nx; ++p)
+                                       recur += pow(p, -nn+(*_num_1_p));
+                               recur *= factorial(nn)*pow((*_num_1_p), nn);
+                               return recur+psi(n,_ex1);
+                       } else {
+                               // for non-positive integers there is a pole:
+                               throw (pole_error("psi2_eval(): pole",1));
+                       }
+               }
+               if (((*_num2_p)*nx).is_integer()) {
+                       // half integer case
+                       if (nx.is_equal(*_num1_2_p))
+                               // use psi(n,1/2) == (-)^(n+1) * n! * (2^(n+1)-1) * zeta(n+1)
+                               return pow(*_num_1_p,nn+(*_num1_p))*factorial(nn)*(pow(*_num2_p,nn+(*_num1_p)) + (*_num_1_p))*zeta(ex(nn+(*_num1_p)));
+                       if (nx.is_positive()) {
+                               const numeric m = nx - (*_num1_2_p);
+                               // use the multiplication formula
+                               //   psi(n,2*m) == (psi(n,m) + psi(n,m+1/2)) / 2^(n+1)
+                               // to revert to positive integer case
+                               return psi(n,(*_num2_p)*m)*pow((*_num2_p),nn+(*_num1_p))-psi(n,m);
+                       } else {
+                               // use the recurrence relation
+                               //   psi(n,-m-1/2) == psi(n,-m-1/2+1) - (-)^n * n! / (-m-1/2)^(n+1)
+                               // to relate psi(n,-m-1/2) to psi(n,1/2):
+                               //   psi(n,-m-1/2) == psi(n,1/2) + r
+                               // where r == (-)^(n+1) * n! * ((-1/2)^(-n-1) + ... + (-m-1/2)^(-n-1))
+                               numeric recur = 0;
+                               for (numeric p = nx; p<0; ++p)
+                                       recur += pow(p, -nn+(*_num_1_p));
+                               recur *= factorial(nn)*pow(*_num_1_p, nn+(*_num_1_p));
+                               return recur+psi(n,_ex1_2);
+                       }
+               }
+               //  psi2_evalf should be called here once it becomes available
+       }
+       
+       return psi(n, x).hold();
+}    
+
+static ex psi2_deriv(const ex & n, const ex & x, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param<2);
+       
+       if (deriv_param==0) {
+               // d/dn psi(n,x)
+               throw(std::logic_error("cannot diff psi(n,x) with respect to n"));
+       }
+       // d/dx psi(n,x) -> psi(n+1,x)
+       return psi(n+_ex1, x);
 }
 
-static ex psi_series(ex const & n, ex const & x, symbol const & s, ex const & point, int order)
+static ex psi2_series(const ex & n,
+                      const ex & arg,
+                      const relational & rel,
+                      int order,
+                      unsigned options)
 {
-    throw(std::logic_error("Nobody told me how to series expand the psi function. :-("));
+       // method:
+       // Taylor series where there is no pole falls back to polygamma function
+       // evaluation.
+       // On a pole at -m use the recurrence relation
+       //   psi(n,x) == psi(n,x+1) - (-)^n * n! / x^(n+1)
+       // from which follows
+       //   series(psi(x),x==-m,order) == 
+       //   series(psi(x+m+1) - (-1)^n * n! * ((x)^(-n-1) + (x+1)^(-n-1) + ...
+       //                                      ... + (x+m)^(-n-1))),x==-m,order);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
+               throw do_taylor();  // caught by function::series()
+       // if we got here we have to care for a pole of order n+1 at -m:
+       const numeric m = -ex_to<numeric>(arg_pt);
+       ex recur;
+       for (numeric p; p<=m; ++p)
+               recur += power(arg+p,-n+_ex_1);
+       recur *= factorial(n)*power(_ex_1,n);
+       return (psi(n, arg+m+_ex1)-recur).series(rel, order, options);
 }
 
-REGISTER_FUNCTION(psi, psi_eval, psi_evalf, psi_diff, psi_series);
+unsigned psi2_SERIAL::serial =
+       function::register_new(function_options("psi", 2).
+                              eval_func(psi2_eval).
+                              evalf_func(psi2_evalf).
+                              derivative_func(psi2_deriv).
+                              series_func(psi2_series).
+                              latex_name("\\psi").
+                              overloaded(2));
+
 
 } // namespace GiNaC