]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns_gamma.cpp
Synced to HEAD
[ginac.git] / ginac / inifcns_gamma.cpp
index 8ed385150e8175d15df02931ecd5c8fd8796c5cc..8d01127b9fc53490ab1d633e45342839b4739733 100644 (file)
@@ -4,7 +4,7 @@
  *  some related stuff. */
 
 /*
- *  GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
 #include <stdexcept>
 
 #include "inifcns.h"
-#include "ex.h"
 #include "constant.h"
-#include "series.h"
+#include "pseries.h"
 #include "numeric.h"
 #include "power.h"
 #include "relational.h"
+#include "operators.h"
 #include "symbol.h"
+#include "symmetry.h"
 #include "utils.h"
 
-#ifndef NO_GINAC_NAMESPACE
 namespace GiNaC {
-#endif // ndef NO_GINAC_NAMESPACE
 
 //////////
-// Gamma-function
+// Logarithm of Gamma function
 //////////
 
-static ex gamma_evalf(const ex & x)
+static ex lgamma_evalf(const ex & x)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(x,numeric)
-    END_TYPECHECK(gamma(x))
-    
-    return gamma(ex_to_numeric(x));
+       if (is_exactly_a<numeric>(x)) {
+               try {
+                       return lgamma(ex_to<numeric>(x));
+               } catch (const dunno &e) { }
+       }
+       
+       return lgamma(x).hold();
 }
 
-/** Evaluation of gamma(x). Knows about integer arguments, half-integer
- *  arguments and that's it. Somebody ought to provide some good numerical
- *  evaluation some day...
+
+/** Evaluation of lgamma(x), the natural logarithm of the Gamma function.
+ *  Knows about integer arguments and that's it.  Somebody ought to provide
+ *  some good numerical evaluation some day...
  *
- *  @exception std::domain_error("gamma_eval(): simple pole") */
-static ex gamma_eval(const ex & x)
+ *  @exception GiNaC::pole_error("lgamma_eval(): logarithmic pole",0) */
+static ex lgamma_eval(const ex & x)
 {
-    if (x.info(info_flags::numeric)) {
-        // trap integer arguments:
-        if (x.info(info_flags::integer)) {
-            // gamma(n+1) -> n! for postitive n
-            if (x.info(info_flags::posint)) {
-                return factorial(ex_to_numeric(x).sub(_num1()));
-            } else {
-                throw (std::domain_error("gamma_eval(): simple pole"));
-            }
-        }
-        // trap half integer arguments:
-        if ((x*2).info(info_flags::integer)) {
-            // trap positive x==(n+1/2)
-            // gamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n)
-            if ((x*_ex2()).info(info_flags::posint)) {
-                numeric n = ex_to_numeric(x).sub(_num1_2());
-                numeric coefficient = doublefactorial(n.mul(_num2()).sub(_num1()));
-                coefficient = coefficient.div(pow(_num2(),n));
-                return coefficient * pow(Pi,_ex1_2());
-            } else {
-                // trap negative x==(-n+1/2)
-                // gamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1))
-                numeric n = abs(ex_to_numeric(x).sub(_num1_2()));
-                numeric coefficient = pow(_num_2(), n);
-                coefficient = coefficient.div(doublefactorial(n.mul(_num2()).sub(_num1())));;
-                return coefficient*power(Pi,_ex1_2());
-            }
-        }
-        //  gamma_evalf should be called here once it becomes available
-    }
-    
-    return gamma(x).hold();
-}    
+       if (x.info(info_flags::numeric)) {
+               // trap integer arguments:
+               if (x.info(info_flags::integer)) {
+                       // lgamma(n) -> log((n-1)!) for postitive n
+                       if (x.info(info_flags::posint))
+                               return log(factorial(x + _ex_1));
+                       else
+                               throw (pole_error("lgamma_eval(): logarithmic pole",0));
+               }
+               //  lgamma_evalf should be called here once it becomes available
+       }
+       
+       return lgamma(x).hold();
+}
 
-static ex gamma_diff(const ex & x, unsigned diff_param)
+
+static ex lgamma_deriv(const ex & x, unsigned deriv_param)
 {
-    GINAC_ASSERT(diff_param==0);
-    
-    // d/dx  log(gamma(x)) -> psi(x)
-    // d/dx  gamma(x) -> psi(x)*gamma(x)
-    return psi(x)*gamma(x);
+       GINAC_ASSERT(deriv_param==0);
+       
+       // d/dx  lgamma(x) -> psi(x)
+       return psi(x);
 }
 
-static ex gamma_series(const ex & x, const symbol & s, const ex & pt, int order)
+
+static ex lgamma_series(const ex & arg,
+                        const relational & rel,
+                        int order,
+                        unsigned options)
 {
-    // method:
-    // Taylor series where there is no pole falls back to psi function
-    // evaluation.
-    // On a pole at -m use the recurrence relation
-    //   gamma(x) == gamma(x+1) / x
-    // from which follows
-    //   series(gamma(x),x,-m,order) ==
-    //   series(gamma(x+m+1)/(x*(x+1)*...*(x+m)),x,-m,order+1);
-    const ex x_pt = x.subs(s==pt);
-    if (!x_pt.info(info_flags::integer) || x_pt.info(info_flags::positive))
-        throw do_taylor();  // caught by function::series()
-    // if we got here we have to care for a simple pole at -m:
-    numeric m = -ex_to_numeric(x_pt);
-    ex ser_numer = gamma(x+m+_ex1());
-    ex ser_denom = _ex1();
-    for (numeric p; p<=m; ++p)
-        ser_denom *= x+p;
-    return (ser_numer/ser_denom).series(s, pt, order+1);
+       // method:
+       // Taylor series where there is no pole falls back to psi function
+       // evaluation.
+       // On a pole at -m we could use the recurrence relation
+       //   lgamma(x) == lgamma(x+1)-log(x)
+       // from which follows
+       //   series(lgamma(x),x==-m,order) ==
+       //   series(lgamma(x+m+1)-log(x)...-log(x+m)),x==-m,order);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
+               throw do_taylor();  // caught by function::series()
+       // if we got here we have to care for a simple pole of tgamma(-m):
+       numeric m = -ex_to<numeric>(arg_pt);
+       ex recur;
+       for (numeric p = 0; p<=m; ++p)
+               recur += log(arg+p);
+       return (lgamma(arg+m+_ex1)-recur).series(rel, order, options);
 }
 
-REGISTER_FUNCTION(gamma, gamma_eval, gamma_evalf, gamma_diff, gamma_series);
+
+REGISTER_FUNCTION(lgamma, eval_func(lgamma_eval).
+                          evalf_func(lgamma_evalf).
+                          derivative_func(lgamma_deriv).
+                          series_func(lgamma_series).
+                          latex_name("\\log \\Gamma"));
+
 
 //////////
-// Beta-function
+// true Gamma function
+//////////
+
+static ex tgamma_evalf(const ex & x)
+{
+       if (is_exactly_a<numeric>(x)) {
+               try {
+                       return tgamma(ex_to<numeric>(x));
+               } catch (const dunno &e) { }
+       }
+       
+       return tgamma(x).hold();
+}
+
+
+/** Evaluation of tgamma(x), the true Gamma function.  Knows about integer
+ *  arguments, half-integer arguments and that's it. Somebody ought to provide
+ *  some good numerical evaluation some day...
+ *
+ *  @exception pole_error("tgamma_eval(): simple pole",0) */
+static ex tgamma_eval(const ex & x)
+{
+       if (x.info(info_flags::numeric)) {
+               // trap integer arguments:
+               const numeric two_x = _num2*ex_to<numeric>(x);
+               if (two_x.is_even()) {
+                       // tgamma(n) -> (n-1)! for postitive n
+                       if (two_x.is_positive()) {
+                               return factorial(ex_to<numeric>(x).sub(_num1));
+                       } else {
+                               throw (pole_error("tgamma_eval(): simple pole",1));
+                       }
+               }
+               // trap half integer arguments:
+               if (two_x.is_integer()) {
+                       // trap positive x==(n+1/2)
+                       // tgamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n)
+                       if (two_x.is_positive()) {
+                               const numeric n = ex_to<numeric>(x).sub(_num1_2);
+                               return (doublefactorial(n.mul(_num2).sub(_num1)).div(pow(_num2,n))) * sqrt(Pi);
+                       } else {
+                               // trap negative x==(-n+1/2)
+                               // tgamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1))
+                               const numeric n = abs(ex_to<numeric>(x).sub(_num1_2));
+                               return (pow(_num_2, n).div(doublefactorial(n.mul(_num2).sub(_num1))))*sqrt(Pi);
+                       }
+               }
+               //  tgamma_evalf should be called here once it becomes available
+       }
+       
+       return tgamma(x).hold();
+}
+
+
+static ex tgamma_deriv(const ex & x, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param==0);
+       
+       // d/dx  tgamma(x) -> psi(x)*tgamma(x)
+       return psi(x)*tgamma(x);
+}
+
+
+static ex tgamma_series(const ex & arg,
+                        const relational & rel,
+                        int order,
+                        unsigned options)
+{
+       // method:
+       // Taylor series where there is no pole falls back to psi function
+       // evaluation.
+       // On a pole at -m use the recurrence relation
+       //   tgamma(x) == tgamma(x+1) / x
+       // from which follows
+       //   series(tgamma(x),x==-m,order) ==
+       //   series(tgamma(x+m+1)/(x*(x+1)*...*(x+m)),x==-m,order);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
+               throw do_taylor();  // caught by function::series()
+       // if we got here we have to care for a simple pole at -m:
+       const numeric m = -ex_to<numeric>(arg_pt);
+       ex ser_denom = _ex1;
+       for (numeric p; p<=m; ++p)
+               ser_denom *= arg+p;
+       return (tgamma(arg+m+_ex1)/ser_denom).series(rel, order, options);
+}
+
+
+REGISTER_FUNCTION(tgamma, eval_func(tgamma_eval).
+                          evalf_func(tgamma_evalf).
+                          derivative_func(tgamma_deriv).
+                          series_func(tgamma_series).
+                          latex_name("\\Gamma"));
+
+
+//////////
+// beta-function
 //////////
 
 static ex beta_evalf(const ex & x, const ex & y)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(x,numeric)
-        TYPECHECK(y,numeric)
-    END_TYPECHECK(beta(x,y))
-    
-    return gamma(ex_to_numeric(x))*gamma(ex_to_numeric(y))
-        / gamma(ex_to_numeric(x+y));
+       if (is_exactly_a<numeric>(x) && is_exactly_a<numeric>(y)) {
+               try {
+                       return tgamma(ex_to<numeric>(x))*tgamma(ex_to<numeric>(y))/tgamma(ex_to<numeric>(x+y));
+               } catch (const dunno &e) { }
+       }
+       
+       return beta(x,y).hold();
 }
 
+
 static ex beta_eval(const ex & x, const ex & y)
 {
-    if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) {
-        // treat all problematic x and y that may not be passed into gamma,
-        // because they would throw there although beta(x,y) is well-defined
-        // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y)
-        numeric nx(ex_to_numeric(x));
-        numeric ny(ex_to_numeric(y));
-        if (nx.is_real() && nx.is_integer() &&
-            ny.is_real() && ny.is_integer()) {
-            if (nx.is_negative()) {
-                if (nx<=-ny)
-                    return pow(_num_1(), ny)*beta(1-x-y, y);
-                else
-                    throw (std::domain_error("beta_eval(): simple pole"));
-            }
-            if (ny.is_negative()) {
-                if (ny<=-nx)
-                    return pow(_num_1(), nx)*beta(1-y-x, x);
-                else
-                    throw (std::domain_error("beta_eval(): simple pole"));
-            }
-            return gamma(x)*gamma(y)/gamma(x+y);
-        }
-        // no problem in numerator, but denominator has pole:
-        if ((nx+ny).is_real() &&
-            (nx+ny).is_integer() &&
-            !(nx+ny).is_positive())
-             return _ex0();
-        // everything is ok:
-        return gamma(x)*gamma(y)/gamma(x+y);
-    }
-    
-    return beta(x,y).hold();
+       if (x.is_equal(_ex1))
+               return 1/y;
+       if (y.is_equal(_ex1))
+               return 1/x;
+       if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) {
+               // treat all problematic x and y that may not be passed into tgamma,
+               // because they would throw there although beta(x,y) is well-defined
+               // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y)
+               const numeric &nx = ex_to<numeric>(x);
+               const numeric &ny = ex_to<numeric>(y);
+               if (nx.is_real() && nx.is_integer() &&
+                       ny.is_real() && ny.is_integer()) {
+                       if (nx.is_negative()) {
+                               if (nx<=-ny)
+                                       return pow(_num_1, ny)*beta(1-x-y, y);
+                               else
+                                       throw (pole_error("beta_eval(): simple pole",1));
+                       }
+                       if (ny.is_negative()) {
+                               if (ny<=-nx)
+                                       return pow(_num_1, nx)*beta(1-y-x, x);
+                               else
+                                       throw (pole_error("beta_eval(): simple pole",1));
+                       }
+                       return tgamma(x)*tgamma(y)/tgamma(x+y);
+               }
+               // no problem in numerator, but denominator has pole:
+               if ((nx+ny).is_real() &&
+                   (nx+ny).is_integer() &&
+                  !(nx+ny).is_positive())
+                        return _ex0;
+               // beta_evalf should be called here once it becomes available
+       }
+       
+       return beta(x,y).hold();
 }
 
-static ex beta_diff(const ex & x, const ex & y, unsigned diff_param)
+
+static ex beta_deriv(const ex & x, const ex & y, unsigned deriv_param)
 {
-    GINAC_ASSERT(diff_param<2);
-    ex retval;
-    
-    // d/dx beta(x,y) -> (psi(x)-psi(x+y)) * beta(x,y)
-    if (diff_param==0)
-        retval = (psi(x)-psi(x+y))*beta(x,y);
-    // d/dy beta(x,y) -> (psi(y)-psi(x+y)) * beta(x,y)
-    if (diff_param==1)
-        retval = (psi(y)-psi(x+y))*beta(x,y);
-    return retval;
+       GINAC_ASSERT(deriv_param<2);
+       ex retval;
+       
+       // d/dx beta(x,y) -> (psi(x)-psi(x+y)) * beta(x,y)
+       if (deriv_param==0)
+               retval = (psi(x)-psi(x+y))*beta(x,y);
+       // d/dy beta(x,y) -> (psi(y)-psi(x+y)) * beta(x,y)
+       if (deriv_param==1)
+               retval = (psi(y)-psi(x+y))*beta(x,y);
+       return retval;
 }
 
-static ex beta_series(const ex & x, const ex & y, const symbol & s, const ex & pt, int order)
+
+static ex beta_series(const ex & arg1,
+                      const ex & arg2,
+                      const relational & rel,
+                      int order,
+                      unsigned options)
 {
-    // method:
-    // Taylor series where there is no pole of one of the gamma functions
-    // falls back to beta function evaluation.  Otherwise, fall back to
-    // gamma series directly.
-    // FIXME: this could need some testing, maybe it's wrong in some cases?
-    const ex x_pt = x.subs(s==pt);
-    const ex y_pt = y.subs(s==pt);
-    ex x_ser, y_ser, xy_ser;
-    if ((!x_pt.info(info_flags::integer) || x_pt.info(info_flags::positive)) &&
-        (!y_pt.info(info_flags::integer) || y_pt.info(info_flags::positive)))
-        throw do_taylor();  // caught by function::series()
-    // trap the case where x is on a pole directly:
-    if (x.info(info_flags::integer) && !x.info(info_flags::positive))
-        x_ser = gamma(x+s).series(s,pt,order);
-    else
-        x_ser = gamma(x).series(s,pt,order);
-    // trap the case where y is on a pole directly:
-    if (y.info(info_flags::integer) && !y.info(info_flags::positive))
-        y_ser = gamma(y+s).series(s,pt,order);
-    else
-        y_ser = gamma(y).series(s,pt,order);
-    // trap the case where y is on a pole directly:
-    if ((x+y).info(info_flags::integer) && !(x+y).info(info_flags::positive))
-        xy_ser = gamma(y+x+s).series(s,pt,order);
-    else
-        xy_ser = gamma(y+x).series(s,pt,order);
-    // compose the result:
-    return (x_ser*y_ser/xy_ser).series(s,pt,order);
+       // method:
+       // Taylor series where there is no pole of one of the tgamma functions
+       // falls back to beta function evaluation.  Otherwise, fall back to
+       // tgamma series directly.
+       const ex arg1_pt = arg1.subs(rel, subs_options::no_pattern);
+       const ex arg2_pt = arg2.subs(rel, subs_options::no_pattern);
+       GINAC_ASSERT(is_a<symbol>(rel.lhs()));
+       const symbol &s = ex_to<symbol>(rel.lhs());
+       ex arg1_ser, arg2_ser, arg1arg2_ser;
+       if ((!arg1_pt.info(info_flags::integer) || arg1_pt.info(info_flags::positive)) &&
+           (!arg2_pt.info(info_flags::integer) || arg2_pt.info(info_flags::positive)))
+               throw do_taylor();  // caught by function::series()
+       // trap the case where arg1 is on a pole:
+       if (arg1.info(info_flags::integer) && !arg1.info(info_flags::positive))
+               arg1_ser = tgamma(arg1+s);
+       else
+               arg1_ser = tgamma(arg1);
+       // trap the case where arg2 is on a pole:
+       if (arg2.info(info_flags::integer) && !arg2.info(info_flags::positive))
+               arg2_ser = tgamma(arg2+s);
+       else
+               arg2_ser = tgamma(arg2);
+       // trap the case where arg1+arg2 is on a pole:
+       if ((arg1+arg2).info(info_flags::integer) && !(arg1+arg2).info(info_flags::positive))
+               arg1arg2_ser = tgamma(arg2+arg1+s);
+       else
+               arg1arg2_ser = tgamma(arg2+arg1);
+       // compose the result (expanding all the terms):
+       return (arg1_ser*arg2_ser/arg1arg2_ser).series(rel, order, options).expand();
 }
 
-REGISTER_FUNCTION(beta, beta_eval, beta_evalf, beta_diff, beta_series);
+
+REGISTER_FUNCTION(beta, eval_func(beta_eval).
+                        evalf_func(beta_evalf).
+                        derivative_func(beta_deriv).
+                        series_func(beta_series).
+                        latex_name("\\mbox{B}").
+                                               set_symmetry(sy_symm(0, 1)));
+
 
 //////////
 // Psi-function (aka digamma-function)
@@ -230,88 +336,100 @@ REGISTER_FUNCTION(beta, beta_eval, beta_evalf, beta_diff, beta_series);
 
 static ex psi1_evalf(const ex & x)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(x,numeric)
-    END_TYPECHECK(psi(x))
-    
-    return psi(ex_to_numeric(x));
+       if (is_exactly_a<numeric>(x)) {
+               try {
+                       return psi(ex_to<numeric>(x));
+               } catch (const dunno &e) { }
+       }
+       
+       return psi(x).hold();
 }
 
 /** Evaluation of digamma-function psi(x).
  *  Somebody ought to provide some good numerical evaluation some day... */
 static ex psi1_eval(const ex & x)
 {
-    if (x.info(info_flags::numeric)) {
-        numeric nx = ex_to_numeric(x);
-        if (nx.is_integer()) {
-            // integer case 
-            if (nx.is_positive()) {
-                // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - EulerGamma
-                numeric rat(0);
-                for (numeric i(nx+_num_1()); i.is_positive(); --i)
-                    rat += i.inverse();
-                return rat-EulerGamma;
-            } else {
-                // for non-positive integers there is a pole:
-                throw (std::domain_error("psi_eval(): simple pole"));
-            }
-        }
-        if ((_num2()*nx).is_integer()) {
-            // half integer case
-            if (nx.is_positive()) {
-                // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - EulerGamma - 2log(2)
-                numeric rat(0);
-                for (numeric i((nx+_num_1())*_num2()); i.is_positive(); i-=_num2())
-                                      rat += _num2()*i.inverse();
-                                      return rat-EulerGamma-_ex2()*log(_ex2());
-            } else {
-                // use the recurrence relation
-                //   psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2)
-                // to relate psi(-m-1/2) to psi(1/2):
-                //   psi(-m-1/2) == psi(1/2) + r
-                // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1))
-                numeric recur(0);
-                for (numeric p(nx); p<0; ++p)
-                    recur -= pow(p, _num_1());
-                return recur+psi(_ex1_2());
-            }
-        }
-        //  psi1_evalf should be called here once it becomes available
-    }
-    
-    return psi(x).hold();
+       if (x.info(info_flags::numeric)) {
+               const numeric &nx = ex_to<numeric>(x);
+               if (nx.is_integer()) {
+                       // integer case 
+                       if (nx.is_positive()) {
+                               // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - Euler
+                               numeric rat = 0;
+                               for (numeric i(nx+_num_1); i>0; --i)
+                                       rat += i.inverse();
+                               return rat-Euler;
+                       } else {
+                               // for non-positive integers there is a pole:
+                               throw (pole_error("psi_eval(): simple pole",1));
+                       }
+               }
+               if ((_num2*nx).is_integer()) {
+                       // half integer case
+                       if (nx.is_positive()) {
+                               // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - Euler - 2log(2)
+                               numeric rat = 0;
+                               for (numeric i = (nx+_num_1)*_num2; i>0; i-=_num2)
+                                       rat += _num2*i.inverse();
+                               return rat-Euler-_ex2*log(_ex2);
+                       } else {
+                               // use the recurrence relation
+                               //   psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2)
+                               // to relate psi(-m-1/2) to psi(1/2):
+                               //   psi(-m-1/2) == psi(1/2) + r
+                               // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1))
+                               numeric recur = 0;
+                               for (numeric p = nx; p<0; ++p)
+                                       recur -= pow(p, _num_1);
+                               return recur+psi(_ex1_2);
+                       }
+               }
+               //  psi1_evalf should be called here once it becomes available
+       }
+       
+       return psi(x).hold();
 }
 
-static ex psi1_diff(const ex & x, unsigned diff_param)
+static ex psi1_deriv(const ex & x, unsigned deriv_param)
 {
-    GINAC_ASSERT(diff_param==0);
-    
-    // d/dx psi(x) -> psi(1,x)
-    return psi(_ex1(), x);
+       GINAC_ASSERT(deriv_param==0);
+       
+       // d/dx psi(x) -> psi(1,x)
+       return psi(_ex1, x);
 }
 
-static ex psi1_series(const ex & x, const symbol & s, const ex & pt, int order)
+static ex psi1_series(const ex & arg,
+                      const relational & rel,
+                      int order,
+                      unsigned options)
 {
-    // method:
-    // Taylor series where there is no pole falls back to polygamma function
-    // evaluation.
-    // On a pole at -m use the recurrence relation
-    //   psi(x) == psi(x+1) - 1/z
-    // from which follows
-    //   series(psi(x),x,-m,order) ==
-    //   series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x,-m,order);
-    const ex x_pt = x.subs(s==pt);
-    if (!x_pt.info(info_flags::integer) || x_pt.info(info_flags::positive))
-        throw do_taylor();  // caught by function::series()
-    // if we got here we have to care for a simple pole at -m:
-    numeric m = -ex_to_numeric(x_pt);
-    ex recur;
-    for (numeric p; p<=m; ++p)
-        recur += power(x+p,_ex_1());
-    return (psi(x+m+_ex1())-recur).series(s, pt, order);
+       // method:
+       // Taylor series where there is no pole falls back to polygamma function
+       // evaluation.
+       // On a pole at -m use the recurrence relation
+       //   psi(x) == psi(x+1) - 1/z
+       // from which follows
+       //   series(psi(x),x==-m,order) ==
+       //   series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x==-m,order);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
+               throw do_taylor();  // caught by function::series()
+       // if we got here we have to care for a simple pole at -m:
+       const numeric m = -ex_to<numeric>(arg_pt);
+       ex recur;
+       for (numeric p; p<=m; ++p)
+               recur += power(arg+p,_ex_1);
+       return (psi(arg+m+_ex1)-recur).series(rel, order, options);
 }
 
-const unsigned function_index_psi1 = function::register_new("psi", psi1_eval, psi1_evalf, psi1_diff, psi1_series);
+unsigned psi1_SERIAL::serial =
+       function::register_new(function_options("psi", 1).
+                              eval_func(psi1_eval).
+                              evalf_func(psi1_evalf).
+                              derivative_func(psi1_deriv).
+                              series_func(psi1_series).
+                              latex_name("\\psi").
+                              overloaded(2));
 
 //////////
 // Psi-functions (aka polygamma-functions)  psi(0,x)==psi(x)
@@ -319,116 +437,127 @@ const unsigned function_index_psi1 = function::register_new("psi", psi1_eval, ps
 
 static ex psi2_evalf(const ex & n, const ex & x)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(n,numeric)
-        TYPECHECK(x,numeric)
-    END_TYPECHECK(psi(n,x))
-    
-    return psi(ex_to_numeric(n), ex_to_numeric(x));
+       if (is_exactly_a<numeric>(n) && is_exactly_a<numeric>(x)) {
+               try {
+                       return psi(ex_to<numeric>(n),ex_to<numeric>(x));
+               } catch (const dunno &e) { }
+       }
+       
+       return psi(n,x).hold();
 }
 
 /** Evaluation of polygamma-function psi(n,x). 
  *  Somebody ought to provide some good numerical evaluation some day... */
 static ex psi2_eval(const ex & n, const ex & x)
 {
-    // psi(0,x) -> psi(x)
-    if (n.is_zero())
-        return psi(x);
-    // psi(-1,x) -> log(gamma(x))
-    if (n.is_equal(_ex_1()))
-        return log(gamma(x));
-    if (n.info(info_flags::numeric) && n.info(info_flags::posint) &&
-        x.info(info_flags::numeric)) {
-        numeric nn = ex_to_numeric(n);
-        numeric nx = ex_to_numeric(x);
-        if (nx.is_integer()) {
-            // integer case 
-            if (nx.is_equal(_num1()))
-                // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1)
-                return pow(_num_1(),nn+_num1())*factorial(nn)*zeta(ex(nn+_num1()));
-            if (nx.is_positive()) {
-                // use the recurrence relation
-                //   psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1)
-                // to relate psi(n,m) to psi(n,1):
-                //   psi(n,m) == psi(n,1) + r
-                // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1))
-                numeric recur(0);
-                for (numeric p(1); p<nx; ++p)
-                    recur += pow(p, -nn+_num_1());
-                recur *= factorial(nn)*pow(_num_1(), nn);
-                return recur+psi(n,_ex1());
-            } else {
-                // for non-positive integers there is a pole:
-                throw (std::domain_error("psi2_eval(): pole"));
-            }
-        }
-        if ((_num2()*nx).is_integer()) {
-            // half integer case
-            if (nx.is_equal(_num1_2()))
-                // use psi(n,1/2) == (-)^(n+1) * n! * (2^(n+1)-1) * zeta(n+1)
-                return pow(_num_1(),nn+_num1())*factorial(nn)*(pow(_num2(),nn+_num1()) + _num_1())*zeta(ex(nn+_num1()));
-            if (nx.is_positive()) {
-                numeric m = nx - _num1_2();
-                // use the multiplication formula
-                //   psi(n,2*m) == (psi(n,m) + psi(n,m+1/2)) / 2^(n+1)
-                // to revert to positive integer case
-                return psi(n,_num2()*m)*pow(_num2(),nn+_num1())-psi(n,m);
-            } else {
-                // use the recurrence relation
-                //   psi(n,-m-1/2) == psi(n,-m-1/2+1) - (-)^n * n! / (-m-1/2)^(n+1)
-                // to relate psi(n,-m-1/2) to psi(n,1/2):
-                //   psi(n,-m-1/2) == psi(n,1/2) + r
-                // where r == (-)^(n+1) * n! * ((-1/2)^(-n-1) + ... + (-m-1/2)^(-n-1))
-                numeric recur(0);
-                for (numeric p(nx); p<0; ++p)
-                    recur += pow(p, -nn+_num_1());
-                recur *= factorial(nn)*pow(_num_1(), nn+_num_1());
-                return recur+psi(n,_ex1_2());
-            }
-        }
-        //  psi2_evalf should be called here once it becomes available
-    }
-    
-    return psi(n, x).hold();
+       // psi(0,x) -> psi(x)
+       if (n.is_zero())
+               return psi(x);
+       // psi(-1,x) -> log(tgamma(x))
+       if (n.is_equal(_ex_1))
+               return log(tgamma(x));
+       if (n.info(info_flags::numeric) && n.info(info_flags::posint) &&
+               x.info(info_flags::numeric)) {
+               const numeric &nn = ex_to<numeric>(n);
+               const numeric &nx = ex_to<numeric>(x);
+               if (nx.is_integer()) {
+                       // integer case 
+                       if (nx.is_equal(_num1))
+                               // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1)
+                               return pow(_num_1,nn+_num1)*factorial(nn)*zeta(ex(nn+_num1));
+                       if (nx.is_positive()) {
+                               // use the recurrence relation
+                               //   psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1)
+                               // to relate psi(n,m) to psi(n,1):
+                               //   psi(n,m) == psi(n,1) + r
+                               // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1))
+                               numeric recur = 0;
+                               for (numeric p = 1; p<nx; ++p)
+                                       recur += pow(p, -nn+_num_1);
+                               recur *= factorial(nn)*pow(_num_1, nn);
+                               return recur+psi(n,_ex1);
+                       } else {
+                               // for non-positive integers there is a pole:
+                               throw (pole_error("psi2_eval(): pole",1));
+                       }
+               }
+               if ((_num2*nx).is_integer()) {
+                       // half integer case
+                       if (nx.is_equal(_num1_2))
+                               // use psi(n,1/2) == (-)^(n+1) * n! * (2^(n+1)-1) * zeta(n+1)
+                               return pow(_num_1,nn+_num1)*factorial(nn)*(pow(_num2,nn+_num1) + _num_1)*zeta(ex(nn+_num1));
+                       if (nx.is_positive()) {
+                               const numeric m = nx - _num1_2;
+                               // use the multiplication formula
+                               //   psi(n,2*m) == (psi(n,m) + psi(n,m+1/2)) / 2^(n+1)
+                               // to revert to positive integer case
+                               return psi(n,_num2*m)*pow(_num2,nn+_num1)-psi(n,m);
+                       } else {
+                               // use the recurrence relation
+                               //   psi(n,-m-1/2) == psi(n,-m-1/2+1) - (-)^n * n! / (-m-1/2)^(n+1)
+                               // to relate psi(n,-m-1/2) to psi(n,1/2):
+                               //   psi(n,-m-1/2) == psi(n,1/2) + r
+                               // where r == (-)^(n+1) * n! * ((-1/2)^(-n-1) + ... + (-m-1/2)^(-n-1))
+                               numeric recur = 0;
+                               for (numeric p = nx; p<0; ++p)
+                                       recur += pow(p, -nn+_num_1);
+                               recur *= factorial(nn)*pow(_num_1, nn+_num_1);
+                               return recur+psi(n,_ex1_2);
+                       }
+               }
+               //  psi2_evalf should be called here once it becomes available
+       }
+       
+       return psi(n, x).hold();
 }    
 
-static ex psi2_diff(const ex & n, const ex & x, unsigned diff_param)
+static ex psi2_deriv(const ex & n, const ex & x, unsigned deriv_param)
 {
-    GINAC_ASSERT(diff_param<2);
-    
-    if (diff_param==0) {
-        // d/dn psi(n,x)
-        throw(std::logic_error("cannot diff psi(n,x) with respect to n"));
-    }
-    // d/dx psi(n,x) -> psi(n+1,x)
-    return psi(n+_ex1(), x);
+       GINAC_ASSERT(deriv_param<2);
+       
+       if (deriv_param==0) {
+               // d/dn psi(n,x)
+               throw(std::logic_error("cannot diff psi(n,x) with respect to n"));
+       }
+       // d/dx psi(n,x) -> psi(n+1,x)
+       return psi(n+_ex1, x);
 }
 
-static ex psi2_series(const ex & n, const ex & x, const symbol & s, const ex & pt, int order)
+static ex psi2_series(const ex & n,
+                      const ex & arg,
+                      const relational & rel,
+                      int order,
+                      unsigned options)
 {
-    // method:
-    // Taylor series where there is no pole falls back to polygamma function
-    // evaluation.
-    // On a pole at -m use the recurrence relation
-    //   psi(n,x) == psi(n,x+1) - (-)^n * n! / x^(n+1)
-    // from which follows
-    //   series(psi(x),x,-m,order) == 
-    //   series(psi(x+m+1) - (-1)^n * n! * ((x)^(-n-1) + (x+1)^(-n-1) + ...
-    //                                      ... + (x+m)^(-n-1))),x,-m,order);
-    const ex x_pt = x.subs(s==pt);
-    if (!x_pt.info(info_flags::integer) || x_pt.info(info_flags::positive))
-        throw do_taylor();  // caught by function::series()
-    // if we got here we have to care for a pole of order n+1 at -m:
-    numeric m = -ex_to_numeric(x_pt);
-    ex recur;
-    for (numeric p; p<=m; ++p)
-        recur += power(x+p,-n+_ex_1());
-    recur *= factorial(n)*power(_ex_1(),n);
-    return (psi(n, x+m+_ex1())-recur).series(s, pt, order);
+       // method:
+       // Taylor series where there is no pole falls back to polygamma function
+       // evaluation.
+       // On a pole at -m use the recurrence relation
+       //   psi(n,x) == psi(n,x+1) - (-)^n * n! / x^(n+1)
+       // from which follows
+       //   series(psi(x),x==-m,order) == 
+       //   series(psi(x+m+1) - (-1)^n * n! * ((x)^(-n-1) + (x+1)^(-n-1) + ...
+       //                                      ... + (x+m)^(-n-1))),x==-m,order);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
+               throw do_taylor();  // caught by function::series()
+       // if we got here we have to care for a pole of order n+1 at -m:
+       const numeric m = -ex_to<numeric>(arg_pt);
+       ex recur;
+       for (numeric p; p<=m; ++p)
+               recur += power(arg+p,-n+_ex_1);
+       recur *= factorial(n)*power(_ex_1,n);
+       return (psi(n, arg+m+_ex1)-recur).series(rel, order, options);
 }
 
-const unsigned function_index_psi2 = function::register_new("psi", psi2_eval, psi2_evalf, psi2_diff, psi2_series);
+unsigned psi2_SERIAL::serial =
+       function::register_new(function_options("psi", 2).
+                              eval_func(psi2_eval).
+                              evalf_func(psi2_evalf).
+                              derivative_func(psi2_deriv).
+                              series_func(psi2_series).
+                              latex_name("\\psi").
+                              overloaded(2));
+
 
-#ifndef NO_GINAC_NAMESPACE
 } // namespace GiNaC
-#endif // ndef NO_GINAC_NAMESPACE