]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns_gamma.cpp
implemented operator-> for the iterators
[ginac.git] / ginac / inifcns_gamma.cpp
index 928a6b52e75753dee2ce6f09d2283455a003ccf0..6bf85621d8e6f8f216edcb182b44fa4b7d2ddeb0 100644 (file)
@@ -4,7 +4,7 @@
  *  some related stuff. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -30,6 +30,7 @@
 #include "numeric.h"
 #include "power.h"
 #include "relational.h"
+#include "operators.h"
 #include "symbol.h"
 #include "symmetry.h"
 #include "utils.h"
@@ -64,7 +65,7 @@ static ex lgamma_eval(const ex & x)
                if (x.info(info_flags::integer)) {
                        // lgamma(n) -> log((n-1)!) for postitive n
                        if (x.info(info_flags::posint))
-                               return log(factorial(x + _ex_1()));
+                               return log(factorial(x + _ex_1));
                        else
                                throw (pole_error("lgamma_eval(): logarithmic pole",0));
                }
@@ -97,7 +98,7 @@ static ex lgamma_series(const ex & arg,
        // from which follows
        //   series(lgamma(x),x==-m,order) ==
        //   series(lgamma(x+m+1)-log(x)...-log(x+m)),x==-m,order);
-       const ex arg_pt = arg.subs(rel);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
        if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a simple pole of tgamma(-m):
@@ -105,7 +106,7 @@ static ex lgamma_series(const ex & arg,
        ex recur;
        for (numeric p = 0; p<=m; ++p)
                recur += log(arg+p);
-       return (lgamma(arg+m+_ex1())-recur).series(rel, order, options);
+       return (lgamma(arg+m+_ex1)-recur).series(rel, order, options);
 }
 
 
@@ -141,11 +142,11 @@ static ex tgamma_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
                // trap integer arguments:
-               const numeric two_x = _num2()*ex_to<numeric>(x);
+               const numeric two_x = _num2*ex_to<numeric>(x);
                if (two_x.is_even()) {
                        // tgamma(n) -> (n-1)! for postitive n
                        if (two_x.is_positive()) {
-                               return factorial(ex_to<numeric>(x).sub(_num1()));
+                               return factorial(ex_to<numeric>(x).sub(_num1));
                        } else {
                                throw (pole_error("tgamma_eval(): simple pole",1));
                        }
@@ -155,13 +156,13 @@ static ex tgamma_eval(const ex & x)
                        // trap positive x==(n+1/2)
                        // tgamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n)
                        if (two_x.is_positive()) {
-                               const numeric n = ex_to<numeric>(x).sub(_num1_2());
-                               return (doublefactorial(n.mul(_num2()).sub(_num1())).div(pow(_num2(),n))) * pow(Pi,_ex1_2());
+                               const numeric n = ex_to<numeric>(x).sub(_num1_2);
+                               return (doublefactorial(n.mul(_num2).sub(_num1)).div(pow(_num2,n))) * sqrt(Pi);
                        } else {
                                // trap negative x==(-n+1/2)
                                // tgamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1))
-                               const numeric n = abs(ex_to<numeric>(x).sub(_num1_2()));
-                               return (pow(_num_2(), n).div(doublefactorial(n.mul(_num2()).sub(_num1()))))*power(Pi,_ex1_2());
+                               const numeric n = abs(ex_to<numeric>(x).sub(_num1_2));
+                               return (pow(_num_2, n).div(doublefactorial(n.mul(_num2).sub(_num1))))*sqrt(Pi);
                        }
                }
                //  tgamma_evalf should be called here once it becomes available
@@ -193,15 +194,15 @@ static ex tgamma_series(const ex & arg,
        // from which follows
        //   series(tgamma(x),x==-m,order) ==
        //   series(tgamma(x+m+1)/(x*(x+1)*...*(x+m)),x==-m,order+1);
-       const ex arg_pt = arg.subs(rel);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
        if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a simple pole at -m:
        const numeric m = -ex_to<numeric>(arg_pt);
-       ex ser_denom = _ex1();
+       ex ser_denom = _ex1;
        for (numeric p; p<=m; ++p)
                ser_denom *= arg+p;
-       return (tgamma(arg+m+_ex1())/ser_denom).series(rel, order+1, options);
+       return (tgamma(arg+m+_ex1)/ser_denom).series(rel, order+1, options);
 }
 
 
@@ -230,23 +231,27 @@ static ex beta_evalf(const ex & x, const ex & y)
 
 static ex beta_eval(const ex & x, const ex & y)
 {
+       if (x.is_equal(_ex1))
+               return 1/y;
+       if (y.is_equal(_ex1))
+               return 1/x;
        if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) {
                // treat all problematic x and y that may not be passed into tgamma,
                // because they would throw there although beta(x,y) is well-defined
                // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y)
-               const numeric nx = ex_to<numeric>(x);
-               const numeric ny = ex_to<numeric>(y);
+               const numeric &nx = ex_to<numeric>(x);
+               const numeric &ny = ex_to<numeric>(y);
                if (nx.is_real() && nx.is_integer() &&
                        ny.is_real() && ny.is_integer()) {
                        if (nx.is_negative()) {
                                if (nx<=-ny)
-                                       return pow(_num_1(), ny)*beta(1-x-y, y);
+                                       return pow(_num_1, ny)*beta(1-x-y, y);
                                else
                                        throw (pole_error("beta_eval(): simple pole",1));
                        }
                        if (ny.is_negative()) {
                                if (ny<=-nx)
-                                       return pow(_num_1(), nx)*beta(1-y-x, x);
+                                       return pow(_num_1, nx)*beta(1-y-x, x);
                                else
                                        throw (pole_error("beta_eval(): simple pole",1));
                        }
@@ -256,7 +261,7 @@ static ex beta_eval(const ex & x, const ex & y)
                if ((nx+ny).is_real() &&
                    (nx+ny).is_integer() &&
                   !(nx+ny).is_positive())
-                        return _ex0();
+                        return _ex0;
                // beta_evalf should be called here once it becomes available
        }
        
@@ -289,9 +294,9 @@ static ex beta_series(const ex & arg1,
        // Taylor series where there is no pole of one of the tgamma functions
        // falls back to beta function evaluation.  Otherwise, fall back to
        // tgamma series directly.
-       const ex arg1_pt = arg1.subs(rel);
-       const ex arg2_pt = arg2.subs(rel);
-       GINAC_ASSERT(is_exactly_a<symbol>(rel.lhs()));
+       const ex arg1_pt = arg1.subs(rel, subs_options::no_pattern);
+       const ex arg2_pt = arg2.subs(rel, subs_options::no_pattern);
+       GINAC_ASSERT(is_a<symbol>(rel.lhs()));
        const symbol &s = ex_to<symbol>(rel.lhs());
        ex arg1_ser, arg2_ser, arg1arg2_ser;
        if ((!arg1_pt.info(info_flags::integer) || arg1_pt.info(info_flags::positive)) &&
@@ -345,13 +350,13 @@ static ex psi1_evalf(const ex & x)
 static ex psi1_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
-               const numeric nx = ex_to<numeric>(x);
+               const numeric &nx = ex_to<numeric>(x);
                if (nx.is_integer()) {
                        // integer case 
                        if (nx.is_positive()) {
                                // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - Euler
                                numeric rat = 0;
-                               for (numeric i(nx+_num_1()); i>0; --i)
+                               for (numeric i(nx+_num_1); i>0; --i)
                                        rat += i.inverse();
                                return rat-Euler;
                        } else {
@@ -359,14 +364,14 @@ static ex psi1_eval(const ex & x)
                                throw (pole_error("psi_eval(): simple pole",1));
                        }
                }
-               if ((_num2()*nx).is_integer()) {
+               if ((_num2*nx).is_integer()) {
                        // half integer case
                        if (nx.is_positive()) {
                                // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - Euler - 2log(2)
                                numeric rat = 0;
-                               for (numeric i = (nx+_num_1())*_num2(); i>0; i-=_num2())
-                                       rat += _num2()*i.inverse();
-                               return rat-Euler-_ex2()*log(_ex2());
+                               for (numeric i = (nx+_num_1)*_num2; i>0; i-=_num2)
+                                       rat += _num2*i.inverse();
+                               return rat-Euler-_ex2*log(_ex2);
                        } else {
                                // use the recurrence relation
                                //   psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2)
@@ -375,8 +380,8 @@ static ex psi1_eval(const ex & x)
                                // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1))
                                numeric recur = 0;
                                for (numeric p = nx; p<0; ++p)
-                                       recur -= pow(p, _num_1());
-                               return recur+psi(_ex1_2());
+                                       recur -= pow(p, _num_1);
+                               return recur+psi(_ex1_2);
                        }
                }
                //  psi1_evalf should be called here once it becomes available
@@ -390,7 +395,7 @@ static ex psi1_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx psi(x) -> psi(1,x)
-       return psi(_ex1(), x);
+       return psi(_ex1, x);
 }
 
 static ex psi1_series(const ex & arg,
@@ -406,18 +411,18 @@ static ex psi1_series(const ex & arg,
        // from which follows
        //   series(psi(x),x==-m,order) ==
        //   series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x==-m,order);
-       const ex arg_pt = arg.subs(rel);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
        if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a simple pole at -m:
        const numeric m = -ex_to<numeric>(arg_pt);
        ex recur;
        for (numeric p; p<=m; ++p)
-               recur += power(arg+p,_ex_1());
-       return (psi(arg+m+_ex1())-recur).series(rel, order, options);
+               recur += power(arg+p,_ex_1);
+       return (psi(arg+m+_ex1)-recur).series(rel, order, options);
 }
 
-const unsigned function_index_psi1 =
+unsigned psi1_SERIAL::serial =
        function::register_new(function_options("psi").
                               eval_func(psi1_eval).
                               evalf_func(psi1_evalf).
@@ -449,17 +454,17 @@ static ex psi2_eval(const ex & n, const ex & x)
        if (n.is_zero())
                return psi(x);
        // psi(-1,x) -> log(tgamma(x))
-       if (n.is_equal(_ex_1()))
+       if (n.is_equal(_ex_1))
                return log(tgamma(x));
        if (n.info(info_flags::numeric) && n.info(info_flags::posint) &&
                x.info(info_flags::numeric)) {
-               const numeric nn = ex_to<numeric>(n);
-               const numeric nx = ex_to<numeric>(x);
+               const numeric &nn = ex_to<numeric>(n);
+               const numeric &nx = ex_to<numeric>(x);
                if (nx.is_integer()) {
                        // integer case 
-                       if (nx.is_equal(_num1()))
+                       if (nx.is_equal(_num1))
                                // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1)
-                               return pow(_num_1(),nn+_num1())*factorial(nn)*zeta(ex(nn+_num1()));
+                               return pow(_num_1,nn+_num1)*factorial(nn)*zeta(ex(nn+_num1));
                        if (nx.is_positive()) {
                                // use the recurrence relation
                                //   psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1)
@@ -468,25 +473,25 @@ static ex psi2_eval(const ex & n, const ex & x)
                                // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1))
                                numeric recur = 0;
                                for (numeric p = 1; p<nx; ++p)
-                                       recur += pow(p, -nn+_num_1());
-                               recur *= factorial(nn)*pow(_num_1(), nn);
-                               return recur+psi(n,_ex1());
+                                       recur += pow(p, -nn+_num_1);
+                               recur *= factorial(nn)*pow(_num_1, nn);
+                               return recur+psi(n,_ex1);
                        } else {
                                // for non-positive integers there is a pole:
                                throw (pole_error("psi2_eval(): pole",1));
                        }
                }
-               if ((_num2()*nx).is_integer()) {
+               if ((_num2*nx).is_integer()) {
                        // half integer case
-                       if (nx.is_equal(_num1_2()))
+                       if (nx.is_equal(_num1_2))
                                // use psi(n,1/2) == (-)^(n+1) * n! * (2^(n+1)-1) * zeta(n+1)
-                               return pow(_num_1(),nn+_num1())*factorial(nn)*(pow(_num2(),nn+_num1()) + _num_1())*zeta(ex(nn+_num1()));
+                               return pow(_num_1,nn+_num1)*factorial(nn)*(pow(_num2,nn+_num1) + _num_1)*zeta(ex(nn+_num1));
                        if (nx.is_positive()) {
-                               const numeric m = nx - _num1_2();
+                               const numeric m = nx - _num1_2;
                                // use the multiplication formula
                                //   psi(n,2*m) == (psi(n,m) + psi(n,m+1/2)) / 2^(n+1)
                                // to revert to positive integer case
-                               return psi(n,_num2()*m)*pow(_num2(),nn+_num1())-psi(n,m);
+                               return psi(n,_num2*m)*pow(_num2,nn+_num1)-psi(n,m);
                        } else {
                                // use the recurrence relation
                                //   psi(n,-m-1/2) == psi(n,-m-1/2+1) - (-)^n * n! / (-m-1/2)^(n+1)
@@ -495,9 +500,9 @@ static ex psi2_eval(const ex & n, const ex & x)
                                // where r == (-)^(n+1) * n! * ((-1/2)^(-n-1) + ... + (-m-1/2)^(-n-1))
                                numeric recur = 0;
                                for (numeric p = nx; p<0; ++p)
-                                       recur += pow(p, -nn+_num_1());
-                               recur *= factorial(nn)*pow(_num_1(), nn+_num_1());
-                               return recur+psi(n,_ex1_2());
+                                       recur += pow(p, -nn+_num_1);
+                               recur *= factorial(nn)*pow(_num_1, nn+_num_1);
+                               return recur+psi(n,_ex1_2);
                        }
                }
                //  psi2_evalf should be called here once it becomes available
@@ -515,7 +520,7 @@ static ex psi2_deriv(const ex & n, const ex & x, unsigned deriv_param)
                throw(std::logic_error("cannot diff psi(n,x) with respect to n"));
        }
        // d/dx psi(n,x) -> psi(n+1,x)
-       return psi(n+_ex1(), x);
+       return psi(n+_ex1, x);
 }
 
 static ex psi2_series(const ex & n,
@@ -533,19 +538,19 @@ static ex psi2_series(const ex & n,
        //   series(psi(x),x==-m,order) == 
        //   series(psi(x+m+1) - (-1)^n * n! * ((x)^(-n-1) + (x+1)^(-n-1) + ...
        //                                      ... + (x+m)^(-n-1))),x==-m,order);
-       const ex arg_pt = arg.subs(rel);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
        if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a pole of order n+1 at -m:
        const numeric m = -ex_to<numeric>(arg_pt);
        ex recur;
        for (numeric p; p<=m; ++p)
-               recur += power(arg+p,-n+_ex_1());
-       recur *= factorial(n)*power(_ex_1(),n);
-       return (psi(n, arg+m+_ex1())-recur).series(rel, order, options);
+               recur += power(arg+p,-n+_ex_1);
+       recur *= factorial(n)*power(_ex_1,n);
+       return (psi(n, arg+m+_ex1)-recur).series(rel, order, options);
 }
 
-const unsigned function_index_psi2 =
+unsigned psi2_SERIAL::serial =
        function::register_new(function_options("psi").
                               eval_func(psi2_eval).
                               evalf_func(psi2_evalf).