]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns_gamma.cpp
- added fderivative class to archive exam
[ginac.git] / ginac / inifcns_gamma.cpp
index dfc5ee175b41f015198b2091daf1f9eff35321df..4377efdefa73c0c2d17c87746e0a57c3220854a5 100644 (file)
@@ -46,7 +46,7 @@ static ex lgamma_evalf(const ex & x)
                TYPECHECK(x,numeric)
        END_TYPECHECK(lgamma(x))
        
-       return lgamma(ex_to_numeric(x));
+       return lgamma(ex_to<numeric>(x));
 }
 
 
@@ -99,9 +99,9 @@ static ex lgamma_series(const ex & arg,
        if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a simple pole of tgamma(-m):
-       numeric m = -ex_to_numeric(arg_pt);
+       numeric m = -ex_to<numeric>(arg_pt);
        ex recur;
-       for (numeric p; p<=m; ++p)
+       for (numeric p = 0; p<=m; ++p)
                recur += log(arg+p);
        return (lgamma(arg+m+_ex1())-recur).series(rel, order, options);
 }
@@ -124,7 +124,7 @@ static ex tgamma_evalf(const ex & x)
                TYPECHECK(x,numeric)
        END_TYPECHECK(tgamma(x))
        
-       return tgamma(ex_to_numeric(x));
+       return tgamma(ex_to<numeric>(x));
 }
 
 
@@ -137,30 +137,27 @@ static ex tgamma_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
                // trap integer arguments:
-               if (x.info(info_flags::integer)) {
+               const numeric two_x = _num2()*ex_to<numeric>(x);
+               if (two_x.is_even()) {
                        // tgamma(n) -> (n-1)! for postitive n
-                       if (x.info(info_flags::posint)) {
-                               return factorial(ex_to_numeric(x).sub(_num1()));
+                       if (two_x.is_positive()) {
+                               return factorial(ex_to<numeric>(x).sub(_num1()));
                        } else {
                                throw (pole_error("tgamma_eval(): simple pole",1));
                        }
                }
                // trap half integer arguments:
-               if ((x*2).info(info_flags::integer)) {
+               if (two_x.is_integer()) {
                        // trap positive x==(n+1/2)
                        // tgamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n)
-                       if ((x*_ex2()).info(info_flags::posint)) {
-                               numeric n = ex_to_numeric(x).sub(_num1_2());
-                               numeric coefficient = doublefactorial(n.mul(_num2()).sub(_num1()));
-                               coefficient = coefficient.div(pow(_num2(),n));
-                               return coefficient * pow(Pi,_ex1_2());
+                       if (two_x.is_positive()) {
+                               const numeric n = ex_to<numeric>(x).sub(_num1_2());
+                               return (doublefactorial(n.mul(_num2()).sub(_num1())).div(pow(_num2(),n))) * pow(Pi,_ex1_2());
                        } else {
                                // trap negative x==(-n+1/2)
                                // tgamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1))
-                               numeric n = abs(ex_to_numeric(x).sub(_num1_2()));
-                               numeric coefficient = pow(_num_2(), n);
-                               coefficient = coefficient.div(doublefactorial(n.mul(_num2()).sub(_num1())));;
-                               return coefficient*power(Pi,_ex1_2());
+                               const numeric n = abs(ex_to<numeric>(x).sub(_num1_2()));
+                               return (pow(_num_2(), n).div(doublefactorial(n.mul(_num2()).sub(_num1()))))*power(Pi,_ex1_2());
                        }
                }
                //  tgamma_evalf should be called here once it becomes available
@@ -196,7 +193,7 @@ static ex tgamma_series(const ex & arg,
        if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a simple pole at -m:
-       numeric m = -ex_to_numeric(arg_pt);
+       const numeric m = -ex_to<numeric>(arg_pt);
        ex ser_denom = _ex1();
        for (numeric p; p<=m; ++p)
                ser_denom *= arg+p;
@@ -222,7 +219,7 @@ static ex beta_evalf(const ex & x, const ex & y)
                TYPECHECK(y,numeric)
        END_TYPECHECK(beta(x,y))
        
-       return tgamma(ex_to_numeric(x))*tgamma(ex_to_numeric(y))/tgamma(ex_to_numeric(x+y));
+       return tgamma(ex_to<numeric>(x))*tgamma(ex_to<numeric>(y))/tgamma(ex_to<numeric>(x+y));
 }
 
 
@@ -232,8 +229,8 @@ static ex beta_eval(const ex & x, const ex & y)
                // treat all problematic x and y that may not be passed into tgamma,
                // because they would throw there although beta(x,y) is well-defined
                // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y)
-               numeric nx(ex_to_numeric(x));
-               numeric ny(ex_to_numeric(y));
+               const numeric nx = ex_to<numeric>(x);
+               const numeric ny = ex_to<numeric>(y);
                if (nx.is_real() && nx.is_integer() &&
                        ny.is_real() && ny.is_integer()) {
                        if (nx.is_negative()) {
@@ -334,7 +331,7 @@ static ex psi1_evalf(const ex & x)
                TYPECHECK(x,numeric)
        END_TYPECHECK(psi(x))
        
-       return psi(ex_to_numeric(x));
+       return psi(ex_to<numeric>(x));
 }
 
 /** Evaluation of digamma-function psi(x).
@@ -342,13 +339,13 @@ static ex psi1_evalf(const ex & x)
 static ex psi1_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
-               numeric nx = ex_to_numeric(x);
+               const numeric nx = ex_to<numeric>(x);
                if (nx.is_integer()) {
                        // integer case 
                        if (nx.is_positive()) {
                                // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - Euler
-                               numeric rat(0);
-                               for (numeric i(nx+_num_1()); i.is_positive(); --i)
+                               numeric rat = 0;
+                               for (numeric i(nx+_num_1()); i>0; --i)
                                        rat += i.inverse();
                                return rat-Euler;
                        } else {
@@ -360,18 +357,18 @@ static ex psi1_eval(const ex & x)
                        // half integer case
                        if (nx.is_positive()) {
                                // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - Euler - 2log(2)
-                               numeric rat(0);
-                               for (numeric i((nx+_num_1())*_num2()); i.is_positive(); i-=_num2())
-                                                                         rat += _num2()*i.inverse();
-                                                                         return rat-Euler-_ex2()*log(_ex2());
+                               numeric rat = 0;
+                               for (numeric i = (nx+_num_1())*_num2(); i>0; i-=_num2())
+                                       rat += _num2()*i.inverse();
+                               return rat-Euler-_ex2()*log(_ex2());
                        } else {
                                // use the recurrence relation
                                //   psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2)
                                // to relate psi(-m-1/2) to psi(1/2):
                                //   psi(-m-1/2) == psi(1/2) + r
                                // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1))
-                               numeric recur(0);
-                               for (numeric p(nx); p<0; ++p)
+                               numeric recur = 0;
+                               for (numeric p = nx; p<0; ++p)
                                        recur -= pow(p, _num_1());
                                return recur+psi(_ex1_2());
                        }
@@ -407,7 +404,7 @@ static ex psi1_series(const ex & arg,
        if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a simple pole at -m:
-       numeric m = -ex_to_numeric(arg_pt);
+       const numeric m = -ex_to<numeric>(arg_pt);
        ex recur;
        for (numeric p; p<=m; ++p)
                recur += power(arg+p,_ex_1());
@@ -434,7 +431,7 @@ static ex psi2_evalf(const ex & n, const ex & x)
                TYPECHECK(x,numeric)
        END_TYPECHECK(psi(n,x))
        
-       return psi(ex_to_numeric(n), ex_to_numeric(x));
+       return psi(ex_to<numeric>(n), ex_to<numeric>(x));
 }
 
 /** Evaluation of polygamma-function psi(n,x). 
@@ -449,8 +446,8 @@ static ex psi2_eval(const ex & n, const ex & x)
                return log(tgamma(x));
        if (n.info(info_flags::numeric) && n.info(info_flags::posint) &&
                x.info(info_flags::numeric)) {
-               numeric nn = ex_to_numeric(n);
-               numeric nx = ex_to_numeric(x);
+               const numeric nn = ex_to<numeric>(n);
+               const numeric nx = ex_to<numeric>(x);
                if (nx.is_integer()) {
                        // integer case 
                        if (nx.is_equal(_num1()))
@@ -462,8 +459,8 @@ static ex psi2_eval(const ex & n, const ex & x)
                                // to relate psi(n,m) to psi(n,1):
                                //   psi(n,m) == psi(n,1) + r
                                // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1))
-                               numeric recur(0);
-                               for (numeric p(1); p<nx; ++p)
+                               numeric recur = 0;
+                               for (numeric p = 1; p<nx; ++p)
                                        recur += pow(p, -nn+_num_1());
                                recur *= factorial(nn)*pow(_num_1(), nn);
                                return recur+psi(n,_ex1());
@@ -478,7 +475,7 @@ static ex psi2_eval(const ex & n, const ex & x)
                                // use psi(n,1/2) == (-)^(n+1) * n! * (2^(n+1)-1) * zeta(n+1)
                                return pow(_num_1(),nn+_num1())*factorial(nn)*(pow(_num2(),nn+_num1()) + _num_1())*zeta(ex(nn+_num1()));
                        if (nx.is_positive()) {
-                               numeric m = nx - _num1_2();
+                               const numeric m = nx - _num1_2();
                                // use the multiplication formula
                                //   psi(n,2*m) == (psi(n,m) + psi(n,m+1/2)) / 2^(n+1)
                                // to revert to positive integer case
@@ -489,8 +486,8 @@ static ex psi2_eval(const ex & n, const ex & x)
                                // to relate psi(n,-m-1/2) to psi(n,1/2):
                                //   psi(n,-m-1/2) == psi(n,1/2) + r
                                // where r == (-)^(n+1) * n! * ((-1/2)^(-n-1) + ... + (-m-1/2)^(-n-1))
-                               numeric recur(0);
-                               for (numeric p(nx); p<0; ++p)
+                               numeric recur = 0;
+                               for (numeric p = nx; p<0; ++p)
                                        recur += pow(p, -nn+_num_1());
                                recur *= factorial(nn)*pow(_num_1(), nn+_num_1());
                                return recur+psi(n,_ex1_2());
@@ -533,7 +530,7 @@ static ex psi2_series(const ex & n,
        if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a pole of order n+1 at -m:
-       numeric m = -ex_to_numeric(arg_pt);
+       const numeric m = -ex_to<numeric>(arg_pt);
        ex recur;
        for (numeric p; p<=m; ++p)
                recur += power(arg+p,-n+_ex_1());