]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns.cpp
- added registry for print_context classes (use print_context_class_info::dump_hierar...
[ginac.git] / ginac / inifcns.cpp
index 677d92f61925a47a10599375a72ae16e0f7be817..e9c93938cfebfe0a4405e79e5a2dad5eced2cacd 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's initially known functions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
 #include "lst.h"
 #include "matrix.h"
 #include "mul.h"
-#include "ncmul.h"
-#include "numeric.h"
 #include "power.h"
+#include "operators.h"
 #include "relational.h"
 #include "pseries.h"
 #include "symbol.h"
+#include "symmetry.h"
 #include "utils.h"
 
-#ifndef NO_NAMESPACE_GINAC
 namespace GiNaC {
-#endif // ndef NO_NAMESPACE_GINAC
 
 //////////
 // absolute value
@@ -47,23 +45,35 @@ namespace GiNaC {
 
 static ex abs_evalf(const ex & arg)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(arg,numeric)
-    END_TYPECHECK(abs(arg))
-    
-    return abs(ex_to_numeric(arg));
+       if (is_exactly_a<numeric>(arg))
+               return abs(ex_to<numeric>(arg));
+       
+       return abs(arg).hold();
 }
 
 static ex abs_eval(const ex & arg)
 {
-    if (is_ex_exactly_of_type(arg, numeric))
-        return abs(ex_to_numeric(arg));
-    else
-        return abs(arg).hold();
+       if (is_exactly_a<numeric>(arg))
+               return abs(ex_to<numeric>(arg));
+       else
+               return abs(arg).hold();
+}
+
+static void abs_print_latex(const ex & arg, const print_context & c)
+{
+       c.s << "{|"; arg.print(c); c.s << "|}";
+}
+
+static void abs_print_csrc_float(const ex & arg, const print_context & c)
+{
+       c.s << "fabs("; arg.print(c); c.s << ")";
 }
 
 REGISTER_FUNCTION(abs, eval_func(abs_eval).
-                       evalf_func(abs_evalf));
+                       evalf_func(abs_evalf).
+                       print_func<print_latex>(abs_print_latex).
+                       print_func<print_csrc_float>(abs_print_csrc_float).
+                       print_func<print_csrc_double>(abs_print_csrc_float));
 
 
 //////////
@@ -72,39 +82,39 @@ REGISTER_FUNCTION(abs, eval_func(abs_eval).
 
 static ex csgn_evalf(const ex & arg)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(arg,numeric)
-    END_TYPECHECK(csgn(arg))
-    
-    return csgn(ex_to_numeric(arg));
+       if (is_exactly_a<numeric>(arg))
+               return csgn(ex_to<numeric>(arg));
+       
+       return csgn(arg).hold();
 }
 
 static ex csgn_eval(const ex & arg)
 {
-    if (is_ex_exactly_of_type(arg, numeric))
-        return csgn(ex_to_numeric(arg));
-    
-    else if (is_ex_exactly_of_type(arg, mul)) {
-        numeric oc = ex_to_numeric(arg.op(arg.nops()-1));
-        if (oc.is_real()) {
-            if (oc > 0)
-                // csgn(42*x) -> csgn(x)
-                return csgn(arg/oc).hold();
-            else
-                // csgn(-42*x) -> -csgn(x)
-                return -csgn(arg/oc).hold();
-        }
-        if (oc.real().is_zero()) {
-            if (oc.imag() > 0)
-                // csgn(42*I*x) -> csgn(I*x)
-                return csgn(I*arg/oc).hold();
-            else
-                // csgn(-42*I*x) -> -csgn(I*x)
-                return -csgn(I*arg/oc).hold();
-        }
+       if (is_exactly_a<numeric>(arg))
+               return csgn(ex_to<numeric>(arg));
+       
+       else if (is_exactly_a<mul>(arg) &&
+                is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
+               numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
+               if (oc.is_real()) {
+                       if (oc > 0)
+                               // csgn(42*x) -> csgn(x)
+                               return csgn(arg/oc).hold();
+                       else
+                               // csgn(-42*x) -> -csgn(x)
+                               return -csgn(arg/oc).hold();
+               }
+               if (oc.real().is_zero()) {
+                       if (oc.imag() > 0)
+                               // csgn(42*I*x) -> csgn(I*x)
+                               return csgn(I*arg/oc).hold();
+                       else
+                               // csgn(-42*I*x) -> -csgn(I*x)
+                               return -csgn(I*arg/oc).hold();
+               }
        }
-   
-    return csgn(arg).hold();
+       
+       return csgn(arg).hold();
 }
 
 static ex csgn_series(const ex & arg,
@@ -112,14 +122,15 @@ static ex csgn_series(const ex & arg,
                       int order,
                       unsigned options)
 {
-    const ex arg_pt = arg.subs(rel);
-    if (arg_pt.info(info_flags::numeric) &&
-        ex_to_numeric(arg_pt).real().is_zero())
-        throw (std::domain_error("csgn_series(): on imaginary axis"));
-    
-    epvector seq;
-    seq.push_back(expair(csgn(arg_pt), _ex0()));
-    return pseries(rel,seq);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (arg_pt.info(info_flags::numeric)
+           && ex_to<numeric>(arg_pt).real().is_zero()
+           && !(options & series_options::suppress_branchcut))
+               throw (std::domain_error("csgn_series(): on imaginary axis"));
+       
+       epvector seq;
+       seq.push_back(expair(csgn(arg_pt), _ex0));
+       return pseries(rel,seq);
 }
 
 REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
@@ -128,57 +139,82 @@ REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
 
 
 //////////
-// Eta function: log(x*y) == log(x) + log(y) + eta(x,y).
+// Eta function: eta(x,y) == log(x*y) - log(x) - log(y).
+// This function is closely related to the unwinding number K, sometimes found
+// in modern literature: K(z) == (z-log(exp(z)))/(2*Pi*I).
 //////////
 
-static ex eta_evalf(const ex & x, const ex & y)
+static ex eta_evalf(const ex &x, const ex &y)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(x,numeric)
-        TYPECHECK(y,numeric)
-    END_TYPECHECK(eta(x,y))
-        
-    numeric xim = imag(ex_to_numeric(x));
-    numeric yim = imag(ex_to_numeric(y));
-    numeric xyim = imag(ex_to_numeric(x*y));
-    return evalf(I/4*Pi)*((csgn(-xim)+1)*(csgn(-yim)+1)*(csgn(xyim)+1)-(csgn(xim)+1)*(csgn(yim)+1)*(csgn(-xyim)+1));
+       // It seems like we basically have to replicate the eval function here,
+       // since the expression might not be fully evaluated yet.
+       if (x.info(info_flags::positive) || y.info(info_flags::positive))
+               return _ex0;
+
+       if (x.info(info_flags::numeric) &&      y.info(info_flags::numeric)) {
+               const numeric nx = ex_to<numeric>(x);
+               const numeric ny = ex_to<numeric>(y);
+               const numeric nxy = ex_to<numeric>(x*y);
+               int cut = 0;
+               if (nx.is_real() && nx.is_negative())
+                       cut -= 4;
+               if (ny.is_real() && ny.is_negative())
+                       cut -= 4;
+               if (nxy.is_real() && nxy.is_negative())
+                       cut += 4;
+               return evalf(I/4*Pi)*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
+                                     (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
+       }
+
+       return eta(x,y).hold();
 }
 
-static ex eta_eval(const ex & x, const ex & y)
+static ex eta_eval(const ex &x, const ex &y)
 {
-    if (is_ex_exactly_of_type(x, numeric) &&
-        is_ex_exactly_of_type(y, numeric)) {
-        // don't call eta_evalf here because it would call Pi.evalf()!
-        numeric xim = imag(ex_to_numeric(x));
-        numeric yim = imag(ex_to_numeric(y));
-        numeric xyim = imag(ex_to_numeric(x*y));
-        return (I/4)*Pi*((csgn(-xim)+1)*(csgn(-yim)+1)*(csgn(xyim)+1)-(csgn(xim)+1)*(csgn(yim)+1)*(csgn(-xyim)+1));
-    }
-    
-    return eta(x,y).hold();
+       // trivial:  eta(x,c) -> 0  if c is real and positive
+       if (x.info(info_flags::positive) || y.info(info_flags::positive))
+               return _ex0;
+
+       if (x.info(info_flags::numeric) &&      y.info(info_flags::numeric)) {
+               // don't call eta_evalf here because it would call Pi.evalf()!
+               const numeric nx = ex_to<numeric>(x);
+               const numeric ny = ex_to<numeric>(y);
+               const numeric nxy = ex_to<numeric>(x*y);
+               int cut = 0;
+               if (nx.is_real() && nx.is_negative())
+                       cut -= 4;
+               if (ny.is_real() && ny.is_negative())
+                       cut -= 4;
+               if (nxy.is_real() && nxy.is_negative())
+                       cut += 4;
+               return (I/4)*Pi*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
+                                (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
+       }
+       
+       return eta(x,y).hold();
 }
 
-static ex eta_series(const ex & arg1,
-                     const ex & arg2,
+static ex eta_series(const ex & x, const ex & y,
                      const relational & rel,
                      int order,
                      unsigned options)
 {
-    const ex arg1_pt = arg1.subs(rel);
-    const ex arg2_pt = arg2.subs(rel);
-    if (ex_to_numeric(arg1_pt).imag().is_zero() ||
-        ex_to_numeric(arg2_pt).imag().is_zero() ||
-        ex_to_numeric(arg1_pt*arg2_pt).imag().is_zero()) {
-        throw (std::domain_error("eta_series(): on discontinuity"));
-    }
-    epvector seq;
-    seq.push_back(expair(eta(arg1_pt,arg2_pt), _ex0()));
-    return pseries(rel,seq);
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
+       const ex y_pt = y.subs(rel, subs_options::no_pattern);
+       if ((x_pt.info(info_flags::numeric) && x_pt.info(info_flags::negative)) ||
+           (y_pt.info(info_flags::numeric) && y_pt.info(info_flags::negative)) ||
+           ((x_pt*y_pt).info(info_flags::numeric) && (x_pt*y_pt).info(info_flags::negative)))
+                       throw (std::domain_error("eta_series(): on discontinuity"));
+       epvector seq;
+       seq.push_back(expair(eta(x_pt,y_pt), _ex0));
+       return pseries(rel,seq);
 }
 
 REGISTER_FUNCTION(eta, eval_func(eta_eval).
                        evalf_func(eta_evalf).
-                       series_func(eta_series));
+                       series_func(eta_series).
+                       latex_name("\\eta").
+                       set_symmetry(sy_symm(0, 1)));
 
 
 //////////
@@ -187,136 +223,136 @@ REGISTER_FUNCTION(eta, eval_func(eta_eval).
 
 static ex Li2_evalf(const ex & x)
 {
-    BEGIN_TYPECHECK
-        TYPECHECK(x,numeric)
-    END_TYPECHECK(Li2(x))
-    
-    return Li2(ex_to_numeric(x));  // -> numeric Li2(numeric)
+       if (is_exactly_a<numeric>(x))
+               return Li2(ex_to<numeric>(x));
+       
+       return Li2(x).hold();
 }
 
 static ex Li2_eval(const ex & x)
 {
-    if (x.info(info_flags::numeric)) {
-        // Li2(0) -> 0
-        if (x.is_zero())
-            return _ex0();
-        // Li2(1) -> Pi^2/6
-        if (x.is_equal(_ex1()))
-            return power(Pi,_ex2())/_ex6();
-        // Li2(1/2) -> Pi^2/12 - log(2)^2/2
-        if (x.is_equal(_ex1_2()))
-            return power(Pi,_ex2())/_ex12() + power(log(_ex2()),_ex2())*_ex_1_2();
-        // Li2(-1) -> -Pi^2/12
-        if (x.is_equal(_ex_1()))
-            return -power(Pi,_ex2())/_ex12();
-        // Li2(I) -> -Pi^2/48+Catalan*I
-        if (x.is_equal(I))
-            return power(Pi,_ex2())/_ex_48() + Catalan*I;
-        // Li2(-I) -> -Pi^2/48-Catalan*I
-        if (x.is_equal(-I))
-            return power(Pi,_ex2())/_ex_48() - Catalan*I;
-        // Li2(float)
-        if (!x.info(info_flags::crational))
-            return Li2_evalf(x);
-    }
-    
-    return Li2(x).hold();
+       if (x.info(info_flags::numeric)) {
+               // Li2(0) -> 0
+               if (x.is_zero())
+                       return _ex0;
+               // Li2(1) -> Pi^2/6
+               if (x.is_equal(_ex1))
+                       return power(Pi,_ex2)/_ex6;
+               // Li2(1/2) -> Pi^2/12 - log(2)^2/2
+               if (x.is_equal(_ex1_2))
+                       return power(Pi,_ex2)/_ex12 + power(log(_ex2),_ex2)*_ex_1_2;
+               // Li2(-1) -> -Pi^2/12
+               if (x.is_equal(_ex_1))
+                       return -power(Pi,_ex2)/_ex12;
+               // Li2(I) -> -Pi^2/48+Catalan*I
+               if (x.is_equal(I))
+                       return power(Pi,_ex2)/_ex_48 + Catalan*I;
+               // Li2(-I) -> -Pi^2/48-Catalan*I
+               if (x.is_equal(-I))
+                       return power(Pi,_ex2)/_ex_48 - Catalan*I;
+               // Li2(float)
+               if (!x.info(info_flags::crational))
+                       return Li2(ex_to<numeric>(x));
+       }
+       
+       return Li2(x).hold();
 }
 
 static ex Li2_deriv(const ex & x, unsigned deriv_param)
 {
-    GINAC_ASSERT(deriv_param==0);
-    
-    // d/dx Li2(x) -> -log(1-x)/x
-    return -log(1-x)/x;
+       GINAC_ASSERT(deriv_param==0);
+       
+       // d/dx Li2(x) -> -log(1-x)/x
+       return -log(_ex1-x)/x;
 }
 
 static ex Li2_series(const ex &x, const relational &rel, int order, unsigned options)
 {
-    const ex x_pt = x.subs(rel);
-    if (x_pt.info(info_flags::numeric)) {
-        // First special case: x==0 (derivatives have poles)
-        if (x_pt.is_zero()) {
-            // method:
-            // The problem is that in d/dx Li2(x==0) == -log(1-x)/x we cannot 
-            // simply substitute x==0.  The limit, however, exists: it is 1.
-            // We also know all higher derivatives' limits:
-            // (d/dx)^n Li2(x) == n!/n^2.
-            // So the primitive series expansion is
-            // Li2(x==0) == x + x^2/4 + x^3/9 + ...
-            // and so on.
-            // We first construct such a primitive series expansion manually in
-            // a dummy symbol s and then insert the argument's series expansion
-            // for s.  Reexpanding the resulting series returns the desired
-            // result.
-            const symbol s;
-            ex ser;
-            // manually construct the primitive expansion
-            for (int i=1; i<order; ++i)
-                ser += pow(s,i) / pow(numeric(i), _num2());
-            // substitute the argument's series expansion
-            ser = ser.subs(s==x.series(rel, order));
-            // maybe that was terminating, so add a proper order term
-            epvector nseq;
-            nseq.push_back(expair(Order(_ex1()), order));
-            ser += pseries(rel, nseq);
-            // reexpanding it will collapse the series again
-            return ser.series(rel, order);
-            // NB: Of course, this still does not allow us to compute anything
-            // like sin(Li2(x)).series(x==0,2), since then this code here is
-            // not reached and the derivative of sin(Li2(x)) doesn't allow the
-            // substitution x==0.  Probably limits *are* needed for the general
-            // cases.  In case L'Hospital's rule is implemented for limits and
-            // basic::series() takes care of this, this whole block is probably
-            // obsolete!
-        }
-        // second special case: x==1 (branch point)
-        if (x_pt == _ex1()) {
-            // method:
-            // construct series manually in a dummy symbol s
-            const symbol s;
-            ex ser = zeta(2);
-            // manually construct the primitive expansion
-            for (int i=1; i<order; ++i)
-                ser += pow(1-s,i) * (numeric(1,i)*(I*Pi+log(s-1)) - numeric(1,i*i));
-            // substitute the argument's series expansion
-            ser = ser.subs(s==x.series(rel, order));
-            // maybe that was terminating, so add a proper order term
-            epvector nseq;
-            nseq.push_back(expair(Order(_ex1()), order));
-            ser += pseries(rel, nseq);
-            // reexpanding it will collapse the series again
-            return ser.series(rel, order);
-        }
-        // third special case: x real, >=1 (branch cut)
-        if (!(options & series_options::suppress_branchcut) &&
-            ex_to_numeric(x_pt).is_real() && ex_to_numeric(x_pt)>1) {
-            // method:
-            // This is the branch cut: assemble the primitive series manually
-            // and then add the corresponding complex step function.
-            const symbol *s = static_cast<symbol *>(rel.lhs().bp);
-            const ex point = rel.rhs();
-            const symbol foo;
-            epvector seq;
-            // zeroth order term:
-            seq.push_back(expair(Li2(x_pt), _ex0()));
-            // compute the intermediate terms:
-            ex replarg = series(Li2(x), *s==foo, order);
-            for (unsigned i=1; i<replarg.nops()-1; ++i)
-                seq.push_back(expair((replarg.op(i)/power(*s-foo,i)).series(foo==point,1,options).op(0).subs(foo==*s),i));
-            // append an order term:
-            seq.push_back(expair(Order(_ex1()), replarg.nops()-1));
-            return pseries(rel, seq);
-        }
-    }
-    // all other cases should be safe, by now:
-    throw do_taylor();  // caught by function::series()
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
+       if (x_pt.info(info_flags::numeric)) {
+               // First special case: x==0 (derivatives have poles)
+               if (x_pt.is_zero()) {
+                       // method:
+                       // The problem is that in d/dx Li2(x==0) == -log(1-x)/x we cannot 
+                       // simply substitute x==0.  The limit, however, exists: it is 1.
+                       // We also know all higher derivatives' limits:
+                       // (d/dx)^n Li2(x) == n!/n^2.
+                       // So the primitive series expansion is
+                       // Li2(x==0) == x + x^2/4 + x^3/9 + ...
+                       // and so on.
+                       // We first construct such a primitive series expansion manually in
+                       // a dummy symbol s and then insert the argument's series expansion
+                       // for s.  Reexpanding the resulting series returns the desired
+                       // result.
+                       const symbol s;
+                       ex ser;
+                       // manually construct the primitive expansion
+                       for (int i=1; i<order; ++i)
+                               ser += pow(s,i) / pow(numeric(i), _num2);
+                       // substitute the argument's series expansion
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
+                       // maybe that was terminating, so add a proper order term
+                       epvector nseq;
+                       nseq.push_back(expair(Order(_ex1), order));
+                       ser += pseries(rel, nseq);
+                       // reexpanding it will collapse the series again
+                       return ser.series(rel, order);
+                       // NB: Of course, this still does not allow us to compute anything
+                       // like sin(Li2(x)).series(x==0,2), since then this code here is
+                       // not reached and the derivative of sin(Li2(x)) doesn't allow the
+                       // substitution x==0.  Probably limits *are* needed for the general
+                       // cases.  In case L'Hospital's rule is implemented for limits and
+                       // basic::series() takes care of this, this whole block is probably
+                       // obsolete!
+               }
+               // second special case: x==1 (branch point)
+               if (x_pt.is_equal(_ex1)) {
+                       // method:
+                       // construct series manually in a dummy symbol s
+                       const symbol s;
+                       ex ser = zeta(_ex2);
+                       // manually construct the primitive expansion
+                       for (int i=1; i<order; ++i)
+                               ser += pow(1-s,i) * (numeric(1,i)*(I*Pi+log(s-1)) - numeric(1,i*i));
+                       // substitute the argument's series expansion
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
+                       // maybe that was terminating, so add a proper order term
+                       epvector nseq;
+                       nseq.push_back(expair(Order(_ex1), order));
+                       ser += pseries(rel, nseq);
+                       // reexpanding it will collapse the series again
+                       return ser.series(rel, order);
+               }
+               // third special case: x real, >=1 (branch cut)
+               if (!(options & series_options::suppress_branchcut) &&
+                       ex_to<numeric>(x_pt).is_real() && ex_to<numeric>(x_pt)>1) {
+                       // method:
+                       // This is the branch cut: assemble the primitive series manually
+                       // and then add the corresponding complex step function.
+                       const symbol &s = ex_to<symbol>(rel.lhs());
+                       const ex point = rel.rhs();
+                       const symbol foo;
+                       epvector seq;
+                       // zeroth order term:
+                       seq.push_back(expair(Li2(x_pt), _ex0));
+                       // compute the intermediate terms:
+                       ex replarg = series(Li2(x), s==foo, order);
+                       for (size_t i=1; i<replarg.nops()-1; ++i)
+                               seq.push_back(expair((replarg.op(i)/power(s-foo,i)).series(foo==point,1,options).op(0).subs(foo==s, subs_options::no_pattern),i));
+                       // append an order term:
+                       seq.push_back(expair(Order(_ex1), replarg.nops()-1));
+                       return pseries(rel, seq);
+               }
+       }
+       // all other cases should be safe, by now:
+       throw do_taylor();  // caught by function::series()
 }
 
 REGISTER_FUNCTION(Li2, eval_func(Li2_eval).
                        evalf_func(Li2_evalf).
                        derivative_func(Li2_deriv).
-                       series_func(Li2_series));
+                       series_func(Li2_series).
+                       latex_name("\\mbox{Li}_2"));
 
 //////////
 // trilogarithm
@@ -324,12 +360,13 @@ REGISTER_FUNCTION(Li2, eval_func(Li2_eval).
 
 static ex Li3_eval(const ex & x)
 {
-    if (x.is_zero())
-        return x;
-    return Li3(x).hold();
+       if (x.is_zero())
+               return x;
+       return Li3(x).hold();
 }
 
-REGISTER_FUNCTION(Li3, eval_func(Li3_eval));
+REGISTER_FUNCTION(Li3, eval_func(Li3_eval).
+                       latex_name("\\mbox{Li}_3"));
 
 //////////
 // factorial
@@ -337,15 +374,15 @@ REGISTER_FUNCTION(Li3, eval_func(Li3_eval));
 
 static ex factorial_evalf(const ex & x)
 {
-    return factorial(x).hold();
+       return factorial(x).hold();
 }
 
 static ex factorial_eval(const ex & x)
 {
-    if (is_ex_exactly_of_type(x, numeric))
-        return factorial(ex_to_numeric(x));
-    else
-        return factorial(x).hold();
+       if (is_exactly_a<numeric>(x))
+               return factorial(ex_to<numeric>(x));
+       else
+               return factorial(x).hold();
 }
 
 REGISTER_FUNCTION(factorial, eval_func(factorial_eval).
@@ -357,15 +394,15 @@ REGISTER_FUNCTION(factorial, eval_func(factorial_eval).
 
 static ex binomial_evalf(const ex & x, const ex & y)
 {
-    return binomial(x, y).hold();
+       return binomial(x, y).hold();
 }
 
 static ex binomial_eval(const ex & x, const ex &y)
 {
-    if (is_ex_exactly_of_type(x, numeric) && is_ex_exactly_of_type(y, numeric))
-        return binomial(ex_to_numeric(x), ex_to_numeric(y));
-    else
-        return binomial(x, y).hold();
+       if (is_exactly_a<numeric>(x) && is_exactly_a<numeric>(y))
+               return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
+       else
+               return binomial(x, y).hold();
 }
 
 REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
@@ -377,155 +414,121 @@ REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
 
 static ex Order_eval(const ex & x)
 {
-    if (is_ex_exactly_of_type(x, numeric)) {
-        // O(c) -> O(1) or 0
-        if (!x.is_zero())
-            return Order(_ex1()).hold();
-        else
-            return _ex0();
-    } else if (is_ex_exactly_of_type(x, mul)) {
-        mul *m = static_cast<mul *>(x.bp);
-        // O(c*expr) -> O(expr)
-        if (is_ex_exactly_of_type(m->op(m->nops() - 1), numeric))
-            return Order(x / m->op(m->nops() - 1)).hold();
-    }
-    return Order(x).hold();
+       if (is_exactly_a<numeric>(x)) {
+               // O(c) -> O(1) or 0
+               if (!x.is_zero())
+                       return Order(_ex1).hold();
+               else
+                       return _ex0;
+       } else if (is_exactly_a<mul>(x)) {
+               const mul &m = ex_to<mul>(x);
+               // O(c*expr) -> O(expr)
+               if (is_exactly_a<numeric>(m.op(m.nops() - 1)))
+                       return Order(x / m.op(m.nops() - 1)).hold();
+       }
+       return Order(x).hold();
 }
 
 static ex Order_series(const ex & x, const relational & r, int order, unsigned options)
 {
        // Just wrap the function into a pseries object
        epvector new_seq;
-    GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
-    const symbol *s = static_cast<symbol *>(r.lhs().bp);
-       new_seq.push_back(expair(Order(_ex1()), numeric(std::min(x.ldegree(*s), order))));
+       GINAC_ASSERT(is_a<symbol>(r.lhs()));
+       const symbol &s = ex_to<symbol>(r.lhs());
+       new_seq.push_back(expair(Order(_ex1), numeric(std::min(x.ldegree(s), order))));
        return pseries(r, new_seq);
 }
 
 // Differentiation is handled in function::derivative because of its special requirements
 
 REGISTER_FUNCTION(Order, eval_func(Order_eval).
-                         series_func(Order_series));
-
-//////////
-// Inert partial differentiation operator
-//////////
-
-static ex Derivative_eval(const ex & f, const ex & l)
-{
-       if (!is_ex_exactly_of_type(f, function)) {
-        throw(std::invalid_argument("Derivative(): 1st argument must be a function"));
-       }
-    if (!is_ex_exactly_of_type(l, lst)) {
-        throw(std::invalid_argument("Derivative(): 2nd argument must be a list"));
-    }
-       return Derivative(f, l).hold();
-}
-
-REGISTER_FUNCTION(Derivative, eval_func(Derivative_eval));
+                         series_func(Order_series).
+                         latex_name("\\mathcal{O}"));
 
 //////////
 // Solve linear system
 //////////
 
-ex lsolve(const ex &eqns, const ex &symbols)
-{
-    // solve a system of linear equations
-    if (eqns.info(info_flags::relation_equal)) {
-        if (!symbols.info(info_flags::symbol))
-            throw(std::invalid_argument("lsolve(): 2nd argument must be a symbol"));
-        ex sol=lsolve(lst(eqns),lst(symbols));
-        
-        GINAC_ASSERT(sol.nops()==1);
-        GINAC_ASSERT(is_ex_exactly_of_type(sol.op(0),relational));
-        
-        return sol.op(0).op(1); // return rhs of first solution
-    }
-    
-    // syntax checks
-    if (!eqns.info(info_flags::list)) {
-        throw(std::invalid_argument("lsolve(): 1st argument must be a list"));
-    }
-    for (unsigned i=0; i<eqns.nops(); i++) {
-        if (!eqns.op(i).info(info_flags::relation_equal)) {
-            throw(std::invalid_argument("lsolve(): 1st argument must be a list of equations"));
-        }
-    }
-    if (!symbols.info(info_flags::list)) {
-        throw(std::invalid_argument("lsolve(): 2nd argument must be a list"));
-    }
-    for (unsigned i=0; i<symbols.nops(); i++) {
-        if (!symbols.op(i).info(info_flags::symbol)) {
-            throw(std::invalid_argument("lsolve(): 2nd argument must be a list of symbols"));
-        }
-    }
-    
-    // build matrix from equation system
-    matrix sys(eqns.nops(),symbols.nops());
-    matrix rhs(eqns.nops(),1);
-    matrix vars(symbols.nops(),1);
-    
-    for (unsigned r=0; r<eqns.nops(); r++) {
-        ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
-        ex linpart = eq;
-        for (unsigned c=0; c<symbols.nops(); c++) {
-            ex co = eq.coeff(ex_to_symbol(symbols.op(c)),1);
-            linpart -= co*symbols.op(c);
-            sys.set(r,c,co);
-        }
-        linpart = linpart.expand();
-        rhs.set(r,0,-linpart);
-    }
-    
-    // test if system is linear and fill vars matrix
-    for (unsigned i=0; i<symbols.nops(); i++) {
-        vars.set(i,0,symbols.op(i));
-        if (sys.has(symbols.op(i)))
-            throw(std::logic_error("lsolve: system is not linear"));
-        if (rhs.has(symbols.op(i)))
-            throw(std::logic_error("lsolve: system is not linear"));
-    }
-    
-    matrix solution;
-    try {
-        solution = sys.solve(vars,rhs);
-    } catch (const runtime_error & e) {
-        // Probably singular matrix or otherwise overdetermined system:
-        // It is consistent to return an empty list
-        return lst();
-    }    
-    GINAC_ASSERT(solution.cols()==1);
-    GINAC_ASSERT(solution.rows()==symbols.nops());
-    
-    // return list of equations of the form lst(var1==sol1,var2==sol2,...)
-    lst sollist;
-    for (unsigned i=0; i<symbols.nops(); i++)
-        sollist.append(symbols.op(i)==solution(i,0));
-    
-    return sollist;
-}
-
-/** non-commutative power. */
-ex ncpower(const ex &basis, unsigned exponent)
+ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
 {
-    if (exponent==0) {
-        return _ex1();
-    }
-
-    exvector v;
-    v.reserve(exponent);
-    for (unsigned i=0; i<exponent; ++i) {
-        v.push_back(basis);
-    }
-
-    return ncmul(v,1);
+       // solve a system of linear equations
+       if (eqns.info(info_flags::relation_equal)) {
+               if (!symbols.info(info_flags::symbol))
+                       throw(std::invalid_argument("lsolve(): 2nd argument must be a symbol"));
+               const ex sol = lsolve(lst(eqns),lst(symbols));
+               
+               GINAC_ASSERT(sol.nops()==1);
+               GINAC_ASSERT(is_exactly_a<relational>(sol.op(0)));
+               
+               return sol.op(0).op(1); // return rhs of first solution
+       }
+       
+       // syntax checks
+       if (!eqns.info(info_flags::list)) {
+               throw(std::invalid_argument("lsolve(): 1st argument must be a list"));
+       }
+       for (size_t i=0; i<eqns.nops(); i++) {
+               if (!eqns.op(i).info(info_flags::relation_equal)) {
+                       throw(std::invalid_argument("lsolve(): 1st argument must be a list of equations"));
+               }
+       }
+       if (!symbols.info(info_flags::list)) {
+               throw(std::invalid_argument("lsolve(): 2nd argument must be a list"));
+       }
+       for (size_t i=0; i<symbols.nops(); i++) {
+               if (!symbols.op(i).info(info_flags::symbol)) {
+                       throw(std::invalid_argument("lsolve(): 2nd argument must be a list of symbols"));
+               }
+       }
+       
+       // build matrix from equation system
+       matrix sys(eqns.nops(),symbols.nops());
+       matrix rhs(eqns.nops(),1);
+       matrix vars(symbols.nops(),1);
+       
+       for (size_t r=0; r<eqns.nops(); r++) {
+               const ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
+               ex linpart = eq;
+               for (size_t c=0; c<symbols.nops(); c++) {
+                       const ex co = eq.coeff(ex_to<symbol>(symbols.op(c)),1);
+                       linpart -= co*symbols.op(c);
+                       sys(r,c) = co;
+               }
+               linpart = linpart.expand();
+               rhs(r,0) = -linpart;
+       }
+       
+       // test if system is linear and fill vars matrix
+       for (size_t i=0; i<symbols.nops(); i++) {
+               vars(i,0) = symbols.op(i);
+               if (sys.has(symbols.op(i)))
+                       throw(std::logic_error("lsolve: system is not linear"));
+               if (rhs.has(symbols.op(i)))
+                       throw(std::logic_error("lsolve: system is not linear"));
+       }
+       
+       matrix solution;
+       try {
+               solution = sys.solve(vars,rhs,options);
+       } catch (const std::runtime_error & e) {
+               // Probably singular matrix or otherwise overdetermined system:
+               // It is consistent to return an empty list
+               return lst();
+       }
+       GINAC_ASSERT(solution.cols()==1);
+       GINAC_ASSERT(solution.rows()==symbols.nops());
+       
+       // return list of equations of the form lst(var1==sol1,var2==sol2,...)
+       lst sollist;
+       for (size_t i=0; i<symbols.nops(); i++)
+               sollist.append(symbols.op(i)==solution(i,0));
+       
+       return sollist;
 }
 
-/** Force inclusion of functions from initcns_gamma and inifcns_zeta
- *  for static lib (so ginsh will see them). */
-unsigned force_include_tgamma = function_index_tgamma;
-unsigned force_include_zeta1 = function_index_zeta1;
+/* Force inclusion of functions from inifcns_gamma and inifcns_zeta
+ * for static lib (so ginsh will see them). */
+unsigned force_include_tgamma = tgamma_SERIAL::serial;
+unsigned force_include_zeta1 = zeta1_SERIAL::serial;
 
-#ifndef NO_NAMESPACE_GINAC
 } // namespace GiNaC
-#endif // ndef NO_NAMESPACE_GINAC