]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns.cpp
- added registry for print_context classes (use print_context_class_info::dump_hierar...
[ginac.git] / ginac / inifcns.cpp
index 3bf0b2f7e9b93554c9344d357e848be1c9ba4aa3..e9c93938cfebfe0a4405e79e5a2dad5eced2cacd 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's initially known functions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
 #include "lst.h"
 #include "matrix.h"
 #include "mul.h"
-#include "ncmul.h"
-#include "numeric.h"
 #include "power.h"
+#include "operators.h"
 #include "relational.h"
 #include "pseries.h"
 #include "symbol.h"
+#include "symmetry.h"
 #include "utils.h"
 
 namespace GiNaC {
@@ -45,23 +45,35 @@ namespace GiNaC {
 
 static ex abs_evalf(const ex & arg)
 {
-       BEGIN_TYPECHECK
-               TYPECHECK(arg,numeric)
-       END_TYPECHECK(abs(arg))
+       if (is_exactly_a<numeric>(arg))
+               return abs(ex_to<numeric>(arg));
        
-       return abs(ex_to_numeric(arg));
+       return abs(arg).hold();
 }
 
 static ex abs_eval(const ex & arg)
 {
-       if (is_ex_exactly_of_type(arg, numeric))
-               return abs(ex_to_numeric(arg));
+       if (is_exactly_a<numeric>(arg))
+               return abs(ex_to<numeric>(arg));
        else
                return abs(arg).hold();
 }
 
+static void abs_print_latex(const ex & arg, const print_context & c)
+{
+       c.s << "{|"; arg.print(c); c.s << "|}";
+}
+
+static void abs_print_csrc_float(const ex & arg, const print_context & c)
+{
+       c.s << "fabs("; arg.print(c); c.s << ")";
+}
+
 REGISTER_FUNCTION(abs, eval_func(abs_eval).
-                       evalf_func(abs_evalf));
+                       evalf_func(abs_evalf).
+                       print_func<print_latex>(abs_print_latex).
+                       print_func<print_csrc_float>(abs_print_csrc_float).
+                       print_func<print_csrc_double>(abs_print_csrc_float));
 
 
 //////////
@@ -70,21 +82,20 @@ REGISTER_FUNCTION(abs, eval_func(abs_eval).
 
 static ex csgn_evalf(const ex & arg)
 {
-       BEGIN_TYPECHECK
-               TYPECHECK(arg,numeric)
-       END_TYPECHECK(csgn(arg))
+       if (is_exactly_a<numeric>(arg))
+               return csgn(ex_to<numeric>(arg));
        
-       return csgn(ex_to_numeric(arg));
+       return csgn(arg).hold();
 }
 
 static ex csgn_eval(const ex & arg)
 {
-       if (is_ex_exactly_of_type(arg, numeric))
-               return csgn(ex_to_numeric(arg));
+       if (is_exactly_a<numeric>(arg))
+               return csgn(ex_to<numeric>(arg));
        
-       else if (is_ex_of_type(arg, mul) &&
-                is_ex_of_type(arg.op(arg.nops()-1),numeric)) {
-               numeric oc = ex_to_numeric(arg.op(arg.nops()-1));
+       else if (is_exactly_a<mul>(arg) &&
+                is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
+               numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
                if (oc.is_real()) {
                        if (oc > 0)
                                // csgn(42*x) -> csgn(x)
@@ -111,14 +122,14 @@ static ex csgn_series(const ex & arg,
                       int order,
                       unsigned options)
 {
-       const ex arg_pt = arg.subs(rel);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
        if (arg_pt.info(info_flags::numeric)
-           && ex_to_numeric(arg_pt).real().is_zero()
+           && ex_to<numeric>(arg_pt).real().is_zero()
            && !(options & series_options::suppress_branchcut))
                throw (std::domain_error("csgn_series(): on imaginary axis"));
        
        epvector seq;
-       seq.push_back(expair(csgn(arg_pt), _ex0()));
+       seq.push_back(expair(csgn(arg_pt), _ex0));
        return pseries(rel,seq);
 }
 
@@ -128,58 +139,82 @@ REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
 
 
 //////////
-// Eta function: log(x*y) == log(x) + log(y) + eta(x,y).
+// Eta function: eta(x,y) == log(x*y) - log(x) - log(y).
+// This function is closely related to the unwinding number K, sometimes found
+// in modern literature: K(z) == (z-log(exp(z)))/(2*Pi*I).
 //////////
 
-static ex eta_evalf(const ex & x, const ex & y)
+static ex eta_evalf(const ex &x, const ex &y)
 {
-       BEGIN_TYPECHECK
-               TYPECHECK(x,numeric)
-               TYPECHECK(y,numeric)
-       END_TYPECHECK(eta(x,y))
-               
-       numeric xim = imag(ex_to_numeric(x));
-       numeric yim = imag(ex_to_numeric(y));
-       numeric xyim = imag(ex_to_numeric(x*y));
-       return evalf(I/4*Pi)*((csgn(-xim)+1)*(csgn(-yim)+1)*(csgn(xyim)+1)-(csgn(xim)+1)*(csgn(yim)+1)*(csgn(-xyim)+1));
+       // It seems like we basically have to replicate the eval function here,
+       // since the expression might not be fully evaluated yet.
+       if (x.info(info_flags::positive) || y.info(info_flags::positive))
+               return _ex0;
+
+       if (x.info(info_flags::numeric) &&      y.info(info_flags::numeric)) {
+               const numeric nx = ex_to<numeric>(x);
+               const numeric ny = ex_to<numeric>(y);
+               const numeric nxy = ex_to<numeric>(x*y);
+               int cut = 0;
+               if (nx.is_real() && nx.is_negative())
+                       cut -= 4;
+               if (ny.is_real() && ny.is_negative())
+                       cut -= 4;
+               if (nxy.is_real() && nxy.is_negative())
+                       cut += 4;
+               return evalf(I/4*Pi)*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
+                                     (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
+       }
+
+       return eta(x,y).hold();
 }
 
-static ex eta_eval(const ex & x, const ex & y)
+static ex eta_eval(const ex &x, const ex &y)
 {
-       if (is_ex_exactly_of_type(x, numeric) &&
-               is_ex_exactly_of_type(y, numeric)) {
+       // trivial:  eta(x,c) -> 0  if c is real and positive
+       if (x.info(info_flags::positive) || y.info(info_flags::positive))
+               return _ex0;
+
+       if (x.info(info_flags::numeric) &&      y.info(info_flags::numeric)) {
                // don't call eta_evalf here because it would call Pi.evalf()!
-               numeric xim = imag(ex_to_numeric(x));
-               numeric yim = imag(ex_to_numeric(y));
-               numeric xyim = imag(ex_to_numeric(x*y));
-               return (I/4)*Pi*((csgn(-xim)+1)*(csgn(-yim)+1)*(csgn(xyim)+1)-(csgn(xim)+1)*(csgn(yim)+1)*(csgn(-xyim)+1));
+               const numeric nx = ex_to<numeric>(x);
+               const numeric ny = ex_to<numeric>(y);
+               const numeric nxy = ex_to<numeric>(x*y);
+               int cut = 0;
+               if (nx.is_real() && nx.is_negative())
+                       cut -= 4;
+               if (ny.is_real() && ny.is_negative())
+                       cut -= 4;
+               if (nxy.is_real() && nxy.is_negative())
+                       cut += 4;
+               return (I/4)*Pi*((csgn(-imag(nx))+1)*(csgn(-imag(ny))+1)*(csgn(imag(nxy))+1)-
+                                (csgn(imag(nx))+1)*(csgn(imag(ny))+1)*(csgn(-imag(nxy))+1)+cut);
        }
        
        return eta(x,y).hold();
 }
 
-static ex eta_series(const ex & arg1,
-                     const ex & arg2,
+static ex eta_series(const ex & x, const ex & y,
                      const relational & rel,
                      int order,
                      unsigned options)
 {
-       const ex arg1_pt = arg1.subs(rel);
-       const ex arg2_pt = arg2.subs(rel);
-       if (ex_to_numeric(arg1_pt).imag().is_zero() ||
-               ex_to_numeric(arg2_pt).imag().is_zero() ||
-               ex_to_numeric(arg1_pt*arg2_pt).imag().is_zero()) {
-               throw (std::domain_error("eta_series(): on discontinuity"));
-       }
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
+       const ex y_pt = y.subs(rel, subs_options::no_pattern);
+       if ((x_pt.info(info_flags::numeric) && x_pt.info(info_flags::negative)) ||
+           (y_pt.info(info_flags::numeric) && y_pt.info(info_flags::negative)) ||
+           ((x_pt*y_pt).info(info_flags::numeric) && (x_pt*y_pt).info(info_flags::negative)))
+                       throw (std::domain_error("eta_series(): on discontinuity"));
        epvector seq;
-       seq.push_back(expair(eta(arg1_pt,arg2_pt), _ex0()));
+       seq.push_back(expair(eta(x_pt,y_pt), _ex0));
        return pseries(rel,seq);
 }
 
 REGISTER_FUNCTION(eta, eval_func(eta_eval).
                        evalf_func(eta_evalf).
                        series_func(eta_series).
-                       latex_name("\\eta"));
+                       latex_name("\\eta").
+                       set_symmetry(sy_symm(0, 1)));
 
 
 //////////
@@ -188,11 +223,10 @@ REGISTER_FUNCTION(eta, eval_func(eta_eval).
 
 static ex Li2_evalf(const ex & x)
 {
-       BEGIN_TYPECHECK
-               TYPECHECK(x,numeric)
-       END_TYPECHECK(Li2(x))
+       if (is_exactly_a<numeric>(x))
+               return Li2(ex_to<numeric>(x));
        
-       return Li2(ex_to_numeric(x));  // -> numeric Li2(numeric)
+       return Li2(x).hold();
 }
 
 static ex Li2_eval(const ex & x)
@@ -200,25 +234,25 @@ static ex Li2_eval(const ex & x)
        if (x.info(info_flags::numeric)) {
                // Li2(0) -> 0
                if (x.is_zero())
-                       return _ex0();
+                       return _ex0;
                // Li2(1) -> Pi^2/6
-               if (x.is_equal(_ex1()))
-                       return power(Pi,_ex2())/_ex6();
+               if (x.is_equal(_ex1))
+                       return power(Pi,_ex2)/_ex6;
                // Li2(1/2) -> Pi^2/12 - log(2)^2/2
-               if (x.is_equal(_ex1_2()))
-                       return power(Pi,_ex2())/_ex12() + power(log(_ex2()),_ex2())*_ex_1_2();
+               if (x.is_equal(_ex1_2))
+                       return power(Pi,_ex2)/_ex12 + power(log(_ex2),_ex2)*_ex_1_2;
                // Li2(-1) -> -Pi^2/12
-               if (x.is_equal(_ex_1()))
-                       return -power(Pi,_ex2())/_ex12();
+               if (x.is_equal(_ex_1))
+                       return -power(Pi,_ex2)/_ex12;
                // Li2(I) -> -Pi^2/48+Catalan*I
                if (x.is_equal(I))
-                       return power(Pi,_ex2())/_ex_48() + Catalan*I;
+                       return power(Pi,_ex2)/_ex_48 + Catalan*I;
                // Li2(-I) -> -Pi^2/48-Catalan*I
                if (x.is_equal(-I))
-                       return power(Pi,_ex2())/_ex_48() - Catalan*I;
+                       return power(Pi,_ex2)/_ex_48 - Catalan*I;
                // Li2(float)
                if (!x.info(info_flags::crational))
-                       return Li2_evalf(x);
+                       return Li2(ex_to<numeric>(x));
        }
        
        return Li2(x).hold();
@@ -229,12 +263,12 @@ static ex Li2_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx Li2(x) -> -log(1-x)/x
-       return -log(1-x)/x;
+       return -log(_ex1-x)/x;
 }
 
 static ex Li2_series(const ex &x, const relational &rel, int order, unsigned options)
 {
-       const ex x_pt = x.subs(rel);
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
        if (x_pt.info(info_flags::numeric)) {
                // First special case: x==0 (derivatives have poles)
                if (x_pt.is_zero()) {
@@ -254,12 +288,12 @@ static ex Li2_series(const ex &x, const relational &rel, int order, unsigned opt
                        ex ser;
                        // manually construct the primitive expansion
                        for (int i=1; i<order; ++i)
-                               ser += pow(s,i) / pow(numeric(i), _num2());
+                               ser += pow(s,i) / pow(numeric(i), _num2);
                        // substitute the argument's series expansion
-                       ser = ser.subs(s==x.series(rel, order));
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
                        // maybe that was terminating, so add a proper order term
                        epvector nseq;
-                       nseq.push_back(expair(Order(_ex1()), order));
+                       nseq.push_back(expair(Order(_ex1), order));
                        ser += pseries(rel, nseq);
                        // reexpanding it will collapse the series again
                        return ser.series(rel, order);
@@ -272,41 +306,41 @@ static ex Li2_series(const ex &x, const relational &rel, int order, unsigned opt
                        // obsolete!
                }
                // second special case: x==1 (branch point)
-               if (x_pt == _ex1()) {
+               if (x_pt.is_equal(_ex1)) {
                        // method:
                        // construct series manually in a dummy symbol s
                        const symbol s;
-                       ex ser = zeta(2);
+                       ex ser = zeta(_ex2);
                        // manually construct the primitive expansion
                        for (int i=1; i<order; ++i)
                                ser += pow(1-s,i) * (numeric(1,i)*(I*Pi+log(s-1)) - numeric(1,i*i));
                        // substitute the argument's series expansion
-                       ser = ser.subs(s==x.series(rel, order));
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
                        // maybe that was terminating, so add a proper order term
                        epvector nseq;
-                       nseq.push_back(expair(Order(_ex1()), order));
+                       nseq.push_back(expair(Order(_ex1), order));
                        ser += pseries(rel, nseq);
                        // reexpanding it will collapse the series again
                        return ser.series(rel, order);
                }
                // third special case: x real, >=1 (branch cut)
                if (!(options & series_options::suppress_branchcut) &&
-                       ex_to_numeric(x_pt).is_real() && ex_to_numeric(x_pt)>1) {
+                       ex_to<numeric>(x_pt).is_real() && ex_to<numeric>(x_pt)>1) {
                        // method:
                        // This is the branch cut: assemble the primitive series manually
                        // and then add the corresponding complex step function.
-                       const symbol *s = static_cast<symbol *>(rel.lhs().bp);
+                       const symbol &s = ex_to<symbol>(rel.lhs());
                        const ex point = rel.rhs();
                        const symbol foo;
                        epvector seq;
                        // zeroth order term:
-                       seq.push_back(expair(Li2(x_pt), _ex0()));
+                       seq.push_back(expair(Li2(x_pt), _ex0));
                        // compute the intermediate terms:
-                       ex replarg = series(Li2(x), *s==foo, order);
-                       for (unsigned i=1; i<replarg.nops()-1; ++i)
-                               seq.push_back(expair((replarg.op(i)/power(*s-foo,i)).series(foo==point,1,options).op(0).subs(foo==*s),i));
+                       ex replarg = series(Li2(x), s==foo, order);
+                       for (size_t i=1; i<replarg.nops()-1; ++i)
+                               seq.push_back(expair((replarg.op(i)/power(s-foo,i)).series(foo==point,1,options).op(0).subs(foo==s, subs_options::no_pattern),i));
                        // append an order term:
-                       seq.push_back(expair(Order(_ex1()), replarg.nops()-1));
+                       seq.push_back(expair(Order(_ex1), replarg.nops()-1));
                        return pseries(rel, seq);
                }
        }
@@ -345,8 +379,8 @@ static ex factorial_evalf(const ex & x)
 
 static ex factorial_eval(const ex & x)
 {
-       if (is_ex_exactly_of_type(x, numeric))
-               return factorial(ex_to_numeric(x));
+       if (is_exactly_a<numeric>(x))
+               return factorial(ex_to<numeric>(x));
        else
                return factorial(x).hold();
 }
@@ -365,8 +399,8 @@ static ex binomial_evalf(const ex & x, const ex & y)
 
 static ex binomial_eval(const ex & x, const ex &y)
 {
-       if (is_ex_exactly_of_type(x, numeric) && is_ex_exactly_of_type(y, numeric))
-               return binomial(ex_to_numeric(x), ex_to_numeric(y));
+       if (is_exactly_a<numeric>(x) && is_exactly_a<numeric>(y))
+               return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
        else
                return binomial(x, y).hold();
 }
@@ -380,17 +414,17 @@ REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
 
 static ex Order_eval(const ex & x)
 {
-       if (is_ex_exactly_of_type(x, numeric)) {
+       if (is_exactly_a<numeric>(x)) {
                // O(c) -> O(1) or 0
                if (!x.is_zero())
-                       return Order(_ex1()).hold();
+                       return Order(_ex1).hold();
                else
-                       return _ex0();
-       } else if (is_ex_exactly_of_type(x, mul)) {
-               mul *m = static_cast<mul *>(x.bp);
+                       return _ex0;
+       } else if (is_exactly_a<mul>(x)) {
+               const mul &m = ex_to<mul>(x);
                // O(c*expr) -> O(expr)
-               if (is_ex_exactly_of_type(m->op(m->nops() - 1), numeric))
-                       return Order(x / m->op(m->nops() - 1)).hold();
+               if (is_exactly_a<numeric>(m.op(m.nops() - 1)))
+                       return Order(x / m.op(m.nops() - 1)).hold();
        }
        return Order(x).hold();
 }
@@ -399,9 +433,9 @@ static ex Order_series(const ex & x, const relational & r, int order, unsigned o
 {
        // Just wrap the function into a pseries object
        epvector new_seq;
-       GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
-       const symbol *s = static_cast<symbol *>(r.lhs().bp);
-       new_seq.push_back(expair(Order(_ex1()), numeric(std::min(x.ldegree(*s), order))));
+       GINAC_ASSERT(is_a<symbol>(r.lhs()));
+       const symbol &s = ex_to<symbol>(r.lhs());
+       new_seq.push_back(expair(Order(_ex1), numeric(std::min(x.ldegree(s), order))));
        return pseries(r, new_seq);
 }
 
@@ -411,37 +445,20 @@ REGISTER_FUNCTION(Order, eval_func(Order_eval).
                          series_func(Order_series).
                          latex_name("\\mathcal{O}"));
 
-//////////
-// Inert partial differentiation operator
-//////////
-
-static ex Derivative_eval(const ex & f, const ex & l)
-{
-       if (!is_ex_exactly_of_type(f, function)) {
-               throw(std::invalid_argument("Derivative(): 1st argument must be a function"));
-       }
-       if (!is_ex_exactly_of_type(l, lst)) {
-               throw(std::invalid_argument("Derivative(): 2nd argument must be a list"));
-       }
-       return Derivative(f, l).hold();
-}
-
-REGISTER_FUNCTION(Derivative, eval_func(Derivative_eval));
-
 //////////
 // Solve linear system
 //////////
 
-ex lsolve(const ex &eqns, const ex &symbols)
+ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
 {
        // solve a system of linear equations
        if (eqns.info(info_flags::relation_equal)) {
                if (!symbols.info(info_flags::symbol))
                        throw(std::invalid_argument("lsolve(): 2nd argument must be a symbol"));
-               ex sol=lsolve(lst(eqns),lst(symbols));
+               const ex sol = lsolve(lst(eqns),lst(symbols));
                
                GINAC_ASSERT(sol.nops()==1);
-               GINAC_ASSERT(is_ex_exactly_of_type(sol.op(0),relational));
+               GINAC_ASSERT(is_exactly_a<relational>(sol.op(0)));
                
                return sol.op(0).op(1); // return rhs of first solution
        }
@@ -450,7 +467,7 @@ ex lsolve(const ex &eqns, const ex &symbols)
        if (!eqns.info(info_flags::list)) {
                throw(std::invalid_argument("lsolve(): 1st argument must be a list"));
        }
-       for (unsigned i=0; i<eqns.nops(); i++) {
+       for (size_t i=0; i<eqns.nops(); i++) {
                if (!eqns.op(i).info(info_flags::relation_equal)) {
                        throw(std::invalid_argument("lsolve(): 1st argument must be a list of equations"));
                }
@@ -458,7 +475,7 @@ ex lsolve(const ex &eqns, const ex &symbols)
        if (!symbols.info(info_flags::list)) {
                throw(std::invalid_argument("lsolve(): 2nd argument must be a list"));
        }
-       for (unsigned i=0; i<symbols.nops(); i++) {
+       for (size_t i=0; i<symbols.nops(); i++) {
                if (!symbols.op(i).info(info_flags::symbol)) {
                        throw(std::invalid_argument("lsolve(): 2nd argument must be a list of symbols"));
                }
@@ -469,21 +486,21 @@ ex lsolve(const ex &eqns, const ex &symbols)
        matrix rhs(eqns.nops(),1);
        matrix vars(symbols.nops(),1);
        
-       for (unsigned r=0; r<eqns.nops(); r++) {
-               ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
+       for (size_t r=0; r<eqns.nops(); r++) {
+               const ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
                ex linpart = eq;
-               for (unsigned c=0; c<symbols.nops(); c++) {
-                       ex co = eq.coeff(ex_to_symbol(symbols.op(c)),1);
+               for (size_t c=0; c<symbols.nops(); c++) {
+                       const ex co = eq.coeff(ex_to<symbol>(symbols.op(c)),1);
                        linpart -= co*symbols.op(c);
-                       sys.set(r,c,co);
+                       sys(r,c) = co;
                }
                linpart = linpart.expand();
-               rhs.set(r,0,-linpart);
+               rhs(r,0) = -linpart;
        }
        
        // test if system is linear and fill vars matrix
-       for (unsigned i=0; i<symbols.nops(); i++) {
-               vars.set(i,0,symbols.op(i));
+       for (size_t i=0; i<symbols.nops(); i++) {
+               vars(i,0) = symbols.op(i);
                if (sys.has(symbols.op(i)))
                        throw(std::logic_error("lsolve: system is not linear"));
                if (rhs.has(symbols.op(i)))
@@ -492,42 +509,26 @@ ex lsolve(const ex &eqns, const ex &symbols)
        
        matrix solution;
        try {
-               solution = sys.solve(vars,rhs);
+               solution = sys.solve(vars,rhs,options);
        } catch (const std::runtime_error & e) {
                // Probably singular matrix or otherwise overdetermined system:
                // It is consistent to return an empty list
                return lst();
-       }    
+       }
        GINAC_ASSERT(solution.cols()==1);
        GINAC_ASSERT(solution.rows()==symbols.nops());
        
        // return list of equations of the form lst(var1==sol1,var2==sol2,...)
        lst sollist;
-       for (unsigned i=0; i<symbols.nops(); i++)
+       for (size_t i=0; i<symbols.nops(); i++)
                sollist.append(symbols.op(i)==solution(i,0));
        
        return sollist;
 }
 
-/** non-commutative power. */
-ex ncpower(const ex &basis, unsigned exponent)
-{
-       if (exponent==0) {
-               return _ex1();
-       }
-
-       exvector v;
-       v.reserve(exponent);
-       for (unsigned i=0; i<exponent; ++i) {
-               v.push_back(basis);
-       }
-
-       return ncmul(v,1);
-}
-
-/** Force inclusion of functions from initcns_gamma and inifcns_zeta
- *  for static lib (so ginsh will see them). */
-unsigned force_include_tgamma = function_index_tgamma;
-unsigned force_include_zeta1 = function_index_zeta1;
+/* Force inclusion of functions from inifcns_gamma and inifcns_zeta
+ * for static lib (so ginsh will see them). */
+unsigned force_include_tgamma = tgamma_SERIAL::serial;
+unsigned force_include_zeta1 = zeta1_SERIAL::serial;
 
 } // namespace GiNaC