]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns.cpp
* Added fsolve() numerical univariate real-valued function solver.
[ginac.git] / ginac / inifcns.cpp
index ebb384656ef9c7b7ab673e668f69f6fea072b39e..a9ad5ce5223ec84c2e0b0d4e55813d01a8d3a07a 100644 (file)
@@ -663,6 +663,100 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        return sollist;
 }
 
+//////////
+// Find real root of f(x) numerically
+//////////
+
+const numeric
+fsolve(const ex& f, const symbol& x, const numeric& x1, const numeric& x2)
+{
+       if (!x1.is_real() || !x2.is_real()) {
+               throw std::runtime_error("fsolve(): interval not bounded by real numbers");
+       }
+       if (x1==x2) {
+               throw std::runtime_error("fsolve(): vanishing interval");
+       }
+       // xx[0] == left interval limit, xx[1] == right interval limit.
+       // fx[0] == f(xx[0]), fx[1] == f(xx[1]).
+       // We keep the root bracketed: xx[0]<xx[1] and fx[0]*fx[1]<0.
+       numeric xx[2] = { x1<x2 ? x1 : x2,
+                         x1<x2 ? x2 : x1 };
+       const ex fx_[2] = { f.subs(x==xx[0]).evalf(),
+                           f.subs(x==xx[1]).evalf() };
+       if (!is_a<numeric>(fx_[0]) || !is_a<numeric>(fx_[1])) {
+               throw std::runtime_error("fsolve(): function does not evaluate numerically");
+       }
+       numeric fx[2] = { ex_to<numeric>(fx_[0]),
+                         ex_to<numeric>(fx_[1]) };
+       if (!fx[0].is_real() || !fx[1].is_real()) {
+               throw std::runtime_error("fsolve(): function evaluates to complex values at interval boundaries");
+       }
+       if (fx[0]*fx[1]>=0) {
+               throw std::runtime_error("fsolve(): function does not change sign at interval boundaries");
+       }
+
+       // The Newton-Raphson method has quadratic convergence!  Simply put, it
+       // replaces x with x-f(x)/f'(x) at each step.  -f/f' is the delta:
+       const ex ff = normal(-f/f.diff(x));
+       int side = 0;  // Start at left interval limit.
+       numeric xxprev;
+       numeric fxprev;
+       do {
+               xxprev = xx[side];
+               fxprev = fx[side];
+               xx[side] += ex_to<numeric>(ff.subs(x==xx[side]).evalf());
+               fx[side] = ex_to<numeric>(f.subs(x==xx[side]).evalf());
+               if ((side==0 && xx[0]<xxprev) || (side==1 && xx[1]>xxprev) || xx[0]>xx[1]) {
+                       // Oops, Newton-Raphson method shot out of the interval.
+                       // Restore, and try again with the other side instead!
+                       xx[side] = xxprev;
+                       fx[side] = fxprev;
+                       side = !side;
+                       xxprev = xx[side];
+                       fxprev = fx[side];
+                       xx[side] += ex_to<numeric>(ff.subs(x==xx[side]).evalf());
+                       fx[side] = ex_to<numeric>(f.subs(x==xx[side]).evalf());
+               }
+               if ((fx[side]<0 && fx[!side]<0) || (fx[side]>0 && fx[!side]>0)) {
+                       // Oops, the root isn't bracketed any more.
+                       // Restore, and perform a bisection!
+                       xx[side] = xxprev;
+                       fx[side] = fxprev;
+
+                       // Ah, the bisection! Bisections converge linearly. Unfortunately,
+                       // they occur pretty often when Newton-Raphson arrives at an x too
+                       // close to the result on one side of the interval and
+                       // f(x-f(x)/f'(x)) turns out to have the same sign as f(x) due to
+                       // precision errors! Recall that this function does not have a
+                       // precision goal as one of its arguments but instead relies on
+                       // x converging to a fixed point. We speed up the (safe but slow)
+                       // bisection method by mixing in a dash of the (unsafer but faster)
+                       // secant method: Instead of splitting the interval at the
+                       // arithmetic mean (bisection), we split it nearer to the root as
+                       // determined by the secant between the values xx[0] and xx[1].
+                       // Don't set the secant_weight to one because that could disturb
+                       // the convergence in some corner cases!
+                       static const double secant_weight = 0.96875;  // == 31/32 < 1
+                       numeric xxmid = (1-secant_weight)*0.5*(xx[0]+xx[1])
+                           + secant_weight*(xx[0]+fx[0]*(xx[0]-xx[1])/(fx[1]-fx[0]));
+                       numeric fxmid = ex_to<numeric>(f.subs(x==xxmid).evalf());
+                       if (fxmid.is_zero()) {
+                               // Luck strikes...
+                               return xxmid;
+                       }
+                       if ((fxmid<0 && fx[side]>0) || (fxmid>0 && fx[side]<0)) {
+                               side = !side;
+                       }
+                       xxprev = xx[side];
+                       fxprev = fx[side];
+                       xx[side] = xxmid;
+                       fx[side] = fxmid;
+               }
+       } while (xxprev!=xx[side]);
+       return xxprev;
+}
+
+
 /* Force inclusion of functions from inifcns_gamma and inifcns_zeta
  * for static lib (so ginsh will see them). */
 unsigned force_include_tgamma = tgamma_SERIAL::serial;