]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns.cpp
Vlamirs patch for automatically simplifying e.g., csgn(x)^3 -> csgn(x).
[ginac.git] / ginac / inifcns.cpp
index 745223062a70a0f0ba9332942bdeece970f7a05f..a8f82d8ea0413efaa02e63ea29d9a9919759f793 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's initially known functions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -17,7 +17,7 @@
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
 #include <vector>
@@ -30,6 +30,7 @@
 #include "matrix.h"
 #include "mul.h"
 #include "power.h"
+#include "operators.h"
 #include "relational.h"
 #include "pseries.h"
 #include "symbol.h"
 
 namespace GiNaC {
 
+//////////
+// complex conjugate
+//////////
+
+static ex conjugate_evalf(const ex & arg)
+{
+       if (is_exactly_a<numeric>(arg)) {
+               return ex_to<numeric>(arg).conjugate();
+       }
+       return conjugate_function(arg).hold();
+}
+
+static ex conjugate_eval(const ex & arg)
+{
+       return arg.conjugate();
+}
+
+static void conjugate_print_latex(const ex & arg, const print_context & c)
+{
+       c.s << "\\bar{"; arg.print(c); c.s << "}";
+}
+
+static ex conjugate_conjugate(const ex & arg)
+{
+       return arg;
+}
+
+REGISTER_FUNCTION(conjugate_function, eval_func(conjugate_eval).
+                                      evalf_func(conjugate_evalf).
+                                      print_func<print_latex>(conjugate_print_latex).
+                                      conjugate_func(conjugate_conjugate).
+                                      set_name("conjugate","conjugate"));
+
 //////////
 // absolute value
 //////////
@@ -52,15 +86,109 @@ static ex abs_evalf(const ex & arg)
 
 static ex abs_eval(const ex & arg)
 {
-       if (is_ex_exactly_of_type(arg, numeric))
+       if (is_exactly_a<numeric>(arg))
                return abs(ex_to<numeric>(arg));
        else
                return abs(arg).hold();
 }
 
+static void abs_print_latex(const ex & arg, const print_context & c)
+{
+       c.s << "{|"; arg.print(c); c.s << "|}";
+}
+
+static void abs_print_csrc_float(const ex & arg, const print_context & c)
+{
+       c.s << "fabs("; arg.print(c); c.s << ")";
+}
+
+static ex abs_conjugate(const ex & arg)
+{
+       return abs(arg);
+}
+
+static ex abs_power(const ex & arg, const ex & exp)
+{
+       if (arg.is_equal(arg.conjugate()) && is_a<numeric>(exp) && ex_to<numeric>(exp).is_even())
+               return power(arg, exp);
+       else
+               return power(abs(arg), exp).hold();
+}
+
 REGISTER_FUNCTION(abs, eval_func(abs_eval).
-                       evalf_func(abs_evalf));
+                       evalf_func(abs_evalf).
+                       print_func<print_latex>(abs_print_latex).
+                       print_func<print_csrc_float>(abs_print_csrc_float).
+                       print_func<print_csrc_double>(abs_print_csrc_float).
+                       conjugate_func(abs_conjugate).
+                       power_func(abs_power));
+
+//////////
+// Step function
+//////////
 
+static ex step_evalf(const ex & arg)
+{
+       if (is_exactly_a<numeric>(arg))
+               return step(ex_to<numeric>(arg));
+       
+       return step(arg).hold();
+}
+
+static ex step_eval(const ex & arg)
+{
+       if (is_exactly_a<numeric>(arg))
+               return step(ex_to<numeric>(arg));
+       
+       else if (is_exactly_a<mul>(arg) &&
+                is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
+               numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
+               if (oc.is_real()) {
+                       if (oc > 0)
+                               // step(42*x) -> step(x)
+                               return step(arg/oc).hold();
+                       else
+                               // step(-42*x) -> step(-x)
+                               return step(-arg/oc).hold();
+               }
+               if (oc.real().is_zero()) {
+                       if (oc.imag() > 0)
+                               // step(42*I*x) -> step(I*x)
+                               return step(I*arg/oc).hold();
+                       else
+                               // step(-42*I*x) -> step(-I*x)
+                               return step(-I*arg/oc).hold();
+               }
+       }
+       
+       return step(arg).hold();
+}
+
+static ex step_series(const ex & arg,
+                      const relational & rel,
+                      int order,
+                      unsigned options)
+{
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (arg_pt.info(info_flags::numeric)
+           && ex_to<numeric>(arg_pt).real().is_zero()
+           && !(options & series_options::suppress_branchcut))
+               throw (std::domain_error("step_series(): on imaginary axis"));
+       
+       epvector seq;
+       seq.push_back(expair(step(arg_pt), _ex0));
+       return pseries(rel,seq);
+}
+
+static ex step_conjugate(const ex& arg)
+{
+       return step(arg);
+}
+
+REGISTER_FUNCTION(step, eval_func(step_eval).
+                        evalf_func(step_evalf).
+                        series_func(step_series).
+                        conjugate_func(step_conjugate));
 
 //////////
 // Complex sign
@@ -76,11 +204,11 @@ static ex csgn_evalf(const ex & arg)
 
 static ex csgn_eval(const ex & arg)
 {
-       if (is_ex_exactly_of_type(arg, numeric))
+       if (is_exactly_a<numeric>(arg))
                return csgn(ex_to<numeric>(arg));
        
-       else if (is_ex_exactly_of_type(arg, mul) &&
-                is_ex_of_type(arg.op(arg.nops()-1),numeric)) {
+       else if (is_exactly_a<mul>(arg) &&
+                is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
                numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
                if (oc.is_real()) {
                        if (oc > 0)
@@ -108,7 +236,7 @@ static ex csgn_series(const ex & arg,
                       int order,
                       unsigned options)
 {
-       const ex arg_pt = arg.subs(rel);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
        if (arg_pt.info(info_flags::numeric)
            && ex_to<numeric>(arg_pt).real().is_zero()
            && !(options & series_options::suppress_branchcut))
@@ -119,9 +247,28 @@ static ex csgn_series(const ex & arg,
        return pseries(rel,seq);
 }
 
+static ex csgn_conjugate(const ex& arg)
+{
+       return csgn(arg);
+}
+
+static ex csgn_power(const ex & arg, const ex & exp)
+{
+       if (is_a<numeric>(exp) && exp.info(info_flags::positive) && ex_to<numeric>(exp).is_integer()) {
+               if (ex_to<numeric>(exp).is_odd())
+                       return csgn(arg);
+               else
+                       return power(csgn(arg), _ex2).hold();
+       } else
+               return power(csgn(arg), exp).hold();
+}
+
+
 REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
                         evalf_func(csgn_evalf).
-                        series_func(csgn_series));
+                        series_func(csgn_series).
+                        conjugate_func(csgn_conjugate).
+                        power_func(csgn_power));
 
 
 //////////
@@ -185,8 +332,8 @@ static ex eta_series(const ex & x, const ex & y,
                      int order,
                      unsigned options)
 {
-       const ex x_pt = x.subs(rel);
-       const ex y_pt = y.subs(rel);
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
+       const ex y_pt = y.subs(rel, subs_options::no_pattern);
        if ((x_pt.info(info_flags::numeric) && x_pt.info(info_flags::negative)) ||
            (y_pt.info(info_flags::numeric) && y_pt.info(info_flags::negative)) ||
            ((x_pt*y_pt).info(info_flags::numeric) && (x_pt*y_pt).info(info_flags::negative)))
@@ -196,11 +343,17 @@ static ex eta_series(const ex & x, const ex & y,
        return pseries(rel,seq);
 }
 
+static ex eta_conjugate(const ex & x, const ex & y)
+{
+       return -eta(x,y);
+}
+
 REGISTER_FUNCTION(eta, eval_func(eta_eval).
                        evalf_func(eta_evalf).
                        series_func(eta_series).
                        latex_name("\\eta").
-                       set_symmetry(sy_symm(0, 1)));
+                       set_symmetry(sy_symm(0, 1)).
+                       conjugate_func(eta_conjugate));
 
 
 //////////
@@ -254,7 +407,7 @@ static ex Li2_deriv(const ex & x, unsigned deriv_param)
 
 static ex Li2_series(const ex &x, const relational &rel, int order, unsigned options)
 {
-       const ex x_pt = x.subs(rel);
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
        if (x_pt.info(info_flags::numeric)) {
                // First special case: x==0 (derivatives have poles)
                if (x_pt.is_zero()) {
@@ -274,9 +427,9 @@ static ex Li2_series(const ex &x, const relational &rel, int order, unsigned opt
                        ex ser;
                        // manually construct the primitive expansion
                        for (int i=1; i<order; ++i)
-                               ser += pow(s,i) / pow(numeric(i), _num2);
+                               ser += pow(s,i) / pow(numeric(i), *_num2_p);
                        // substitute the argument's series expansion
-                       ser = ser.subs(s==x.series(rel, order));
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
                        // maybe that was terminating, so add a proper order term
                        epvector nseq;
                        nseq.push_back(expair(Order(_ex1), order));
@@ -301,7 +454,7 @@ static ex Li2_series(const ex &x, const relational &rel, int order, unsigned opt
                        for (int i=1; i<order; ++i)
                                ser += pow(1-s,i) * (numeric(1,i)*(I*Pi+log(s-1)) - numeric(1,i*i));
                        // substitute the argument's series expansion
-                       ser = ser.subs(s==x.series(rel, order));
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
                        // maybe that was terminating, so add a proper order term
                        epvector nseq;
                        nseq.push_back(expair(Order(_ex1), order));
@@ -323,8 +476,8 @@ static ex Li2_series(const ex &x, const relational &rel, int order, unsigned opt
                        seq.push_back(expair(Li2(x_pt), _ex0));
                        // compute the intermediate terms:
                        ex replarg = series(Li2(x), s==foo, order);
-                       for (unsigned i=1; i<replarg.nops()-1; ++i)
-                               seq.push_back(expair((replarg.op(i)/power(s-foo,i)).series(foo==point,1,options).op(0).subs(foo==s),i));
+                       for (size_t i=1; i<replarg.nops()-1; ++i)
+                               seq.push_back(expair((replarg.op(i)/power(s-foo,i)).series(foo==point,1,options).op(0).subs(foo==s, subs_options::no_pattern),i));
                        // append an order term:
                        seq.push_back(expair(Order(_ex1), replarg.nops()-1));
                        return pseries(rel, seq);
@@ -354,6 +507,37 @@ static ex Li3_eval(const ex & x)
 REGISTER_FUNCTION(Li3, eval_func(Li3_eval).
                        latex_name("\\mbox{Li}_3"));
 
+//////////
+// Derivatives of Riemann's Zeta-function  zetaderiv(0,x)==zeta(x)
+//////////
+
+static ex zetaderiv_eval(const ex & n, const ex & x)
+{
+       if (n.info(info_flags::numeric)) {
+               // zetaderiv(0,x) -> zeta(x)
+               if (n.is_zero())
+                       return zeta(x);
+       }
+       
+       return zetaderiv(n, x).hold();
+}
+
+static ex zetaderiv_deriv(const ex & n, const ex & x, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param<2);
+       
+       if (deriv_param==0) {
+               // d/dn zeta(n,x)
+               throw(std::logic_error("cannot diff zetaderiv(n,x) with respect to n"));
+       }
+       // d/dx psi(n,x)
+       return zetaderiv(n+1,x);
+}
+
+REGISTER_FUNCTION(zetaderiv, eval_func(zetaderiv_eval).
+                                derivative_func(zetaderiv_deriv).
+                                latex_name("\\zeta^\\prime"));
+
 //////////
 // factorial
 //////////
@@ -365,14 +549,33 @@ static ex factorial_evalf(const ex & x)
 
 static ex factorial_eval(const ex & x)
 {
-       if (is_ex_exactly_of_type(x, numeric))
+       if (is_exactly_a<numeric>(x))
                return factorial(ex_to<numeric>(x));
        else
                return factorial(x).hold();
 }
 
+static void factorial_print_dflt_latex(const ex & x, const print_context & c)
+{
+       if (is_exactly_a<symbol>(x) ||
+           is_exactly_a<constant>(x) ||
+               is_exactly_a<function>(x)) {
+               x.print(c); c.s << "!";
+       } else {
+               c.s << "("; x.print(c); c.s << ")!";
+       }
+}
+
+static ex factorial_conjugate(const ex & x)
+{
+       return factorial(x);
+}
+
 REGISTER_FUNCTION(factorial, eval_func(factorial_eval).
-                             evalf_func(factorial_evalf));
+                             evalf_func(factorial_evalf).
+                             print_func<print_dflt>(factorial_print_dflt_latex).
+                             print_func<print_latex>(factorial_print_dflt_latex).
+                             conjugate_func(factorial_conjugate));
 
 //////////
 // binomial
@@ -383,16 +586,46 @@ static ex binomial_evalf(const ex & x, const ex & y)
        return binomial(x, y).hold();
 }
 
+static ex binomial_sym(const ex & x, const numeric & y)
+{
+       if (y.is_integer()) {
+               if (y.is_nonneg_integer()) {
+                       const unsigned N = y.to_int();
+                       if (N == 0) return _ex0;
+                       if (N == 1) return x;
+                       ex t = x.expand();
+                       for (unsigned i = 2; i <= N; ++i)
+                               t = (t * (x + i - y - 1)).expand() / i;
+                       return t;
+               } else
+                       return _ex0;
+       }
+
+       return binomial(x, y).hold();
+}
+
 static ex binomial_eval(const ex & x, const ex &y)
 {
-       if (is_ex_exactly_of_type(x, numeric) && is_ex_exactly_of_type(y, numeric))
-               return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
-       else
+       if (is_exactly_a<numeric>(y)) {
+               if (is_exactly_a<numeric>(x) && ex_to<numeric>(x).is_integer())
+                       return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
+               else
+                       return binomial_sym(x, ex_to<numeric>(y));
+       } else
                return binomial(x, y).hold();
 }
 
+// At the moment the numeric evaluation of a binomail function always
+// gives a real number, but if this would be implemented using the gamma
+// function, also complex conjugation should be changed (or rather, deleted).
+static ex binomial_conjugate(const ex & x, const ex & y)
+{
+       return binomial(x,y);
+}
+
 REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
-                            evalf_func(binomial_evalf));
+                            evalf_func(binomial_evalf).
+                            conjugate_func(binomial_conjugate));
 
 //////////
 // Order term function (for truncated power series)
@@ -400,16 +633,16 @@ REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
 
 static ex Order_eval(const ex & x)
 {
-       if (is_ex_exactly_of_type(x, numeric)) {
+       if (is_exactly_a<numeric>(x)) {
                // O(c) -> O(1) or 0
                if (!x.is_zero())
                        return Order(_ex1).hold();
                else
                        return _ex0;
-       } else if (is_ex_exactly_of_type(x, mul)) {
+       } else if (is_exactly_a<mul>(x)) {
                const mul &m = ex_to<mul>(x);
                // O(c*expr) -> O(expr)
-               if (is_ex_exactly_of_type(m.op(m.nops() - 1), numeric))
+               if (is_exactly_a<numeric>(m.op(m.nops() - 1)))
                        return Order(x / m.op(m.nops() - 1)).hold();
        }
        return Order(x).hold();
@@ -425,11 +658,17 @@ static ex Order_series(const ex & x, const relational & r, int order, unsigned o
        return pseries(r, new_seq);
 }
 
+static ex Order_conjugate(const ex & x)
+{
+       return Order(x);
+}
+
 // Differentiation is handled in function::derivative because of its special requirements
 
 REGISTER_FUNCTION(Order, eval_func(Order_eval).
                          series_func(Order_series).
-                         latex_name("\\mathcal{O}"));
+                         latex_name("\\mathcal{O}").
+                         conjugate_func(Order_conjugate));
 
 //////////
 // Solve linear system
@@ -453,7 +692,7 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        if (!eqns.info(info_flags::list)) {
                throw(std::invalid_argument("lsolve(): 1st argument must be a list"));
        }
-       for (unsigned i=0; i<eqns.nops(); i++) {
+       for (size_t i=0; i<eqns.nops(); i++) {
                if (!eqns.op(i).info(info_flags::relation_equal)) {
                        throw(std::invalid_argument("lsolve(): 1st argument must be a list of equations"));
                }
@@ -461,7 +700,7 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        if (!symbols.info(info_flags::list)) {
                throw(std::invalid_argument("lsolve(): 2nd argument must be a list"));
        }
-       for (unsigned i=0; i<symbols.nops(); i++) {
+       for (size_t i=0; i<symbols.nops(); i++) {
                if (!symbols.op(i).info(info_flags::symbol)) {
                        throw(std::invalid_argument("lsolve(): 2nd argument must be a list of symbols"));
                }
@@ -472,10 +711,10 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        matrix rhs(eqns.nops(),1);
        matrix vars(symbols.nops(),1);
        
-       for (unsigned r=0; r<eqns.nops(); r++) {
+       for (size_t r=0; r<eqns.nops(); r++) {
                const ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
                ex linpart = eq;
-               for (unsigned c=0; c<symbols.nops(); c++) {
+               for (size_t c=0; c<symbols.nops(); c++) {
                        const ex co = eq.coeff(ex_to<symbol>(symbols.op(c)),1);
                        linpart -= co*symbols.op(c);
                        sys(r,c) = co;
@@ -485,7 +724,7 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        }
        
        // test if system is linear and fill vars matrix
-       for (unsigned i=0; i<symbols.nops(); i++) {
+       for (size_t i=0; i<symbols.nops(); i++) {
                vars(i,0) = symbols.op(i);
                if (sys.has(symbols.op(i)))
                        throw(std::logic_error("lsolve: system is not linear"));
@@ -506,15 +745,115 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        
        // return list of equations of the form lst(var1==sol1,var2==sol2,...)
        lst sollist;
-       for (unsigned i=0; i<symbols.nops(); i++)
+       for (size_t i=0; i<symbols.nops(); i++)
                sollist.append(symbols.op(i)==solution(i,0));
        
        return sollist;
 }
 
+//////////
+// Find real root of f(x) numerically
+//////////
+
+const numeric
+fsolve(const ex& f_in, const symbol& x, const numeric& x1, const numeric& x2)
+{
+       if (!x1.is_real() || !x2.is_real()) {
+               throw std::runtime_error("fsolve(): interval not bounded by real numbers");
+       }
+       if (x1==x2) {
+               throw std::runtime_error("fsolve(): vanishing interval");
+       }
+       // xx[0] == left interval limit, xx[1] == right interval limit.
+       // fx[0] == f(xx[0]), fx[1] == f(xx[1]).
+       // We keep the root bracketed: xx[0]<xx[1] and fx[0]*fx[1]<0.
+       numeric xx[2] = { x1<x2 ? x1 : x2,
+                         x1<x2 ? x2 : x1 };
+       ex f;
+       if (is_a<relational>(f_in)) {
+               f = f_in.lhs()-f_in.rhs();
+       } else {
+               f = f_in;
+       }
+       const ex fx_[2] = { f.subs(x==xx[0]).evalf(),
+                           f.subs(x==xx[1]).evalf() };
+       if (!is_a<numeric>(fx_[0]) || !is_a<numeric>(fx_[1])) {
+               throw std::runtime_error("fsolve(): function does not evaluate numerically");
+       }
+       numeric fx[2] = { ex_to<numeric>(fx_[0]),
+                         ex_to<numeric>(fx_[1]) };
+       if (!fx[0].is_real() || !fx[1].is_real()) {
+               throw std::runtime_error("fsolve(): function evaluates to complex values at interval boundaries");
+       }
+       if (fx[0]*fx[1]>=0) {
+               throw std::runtime_error("fsolve(): function does not change sign at interval boundaries");
+       }
+
+       // The Newton-Raphson method has quadratic convergence!  Simply put, it
+       // replaces x with x-f(x)/f'(x) at each step.  -f/f' is the delta:
+       const ex ff = normal(-f/f.diff(x));
+       int side = 0;  // Start at left interval limit.
+       numeric xxprev;
+       numeric fxprev;
+       do {
+               xxprev = xx[side];
+               fxprev = fx[side];
+               xx[side] += ex_to<numeric>(ff.subs(x==xx[side]).evalf());
+               fx[side] = ex_to<numeric>(f.subs(x==xx[side]).evalf());
+               if ((side==0 && xx[0]<xxprev) || (side==1 && xx[1]>xxprev) || xx[0]>xx[1]) {
+                       // Oops, Newton-Raphson method shot out of the interval.
+                       // Restore, and try again with the other side instead!
+                       xx[side] = xxprev;
+                       fx[side] = fxprev;
+                       side = !side;
+                       xxprev = xx[side];
+                       fxprev = fx[side];
+                       xx[side] += ex_to<numeric>(ff.subs(x==xx[side]).evalf());
+                       fx[side] = ex_to<numeric>(f.subs(x==xx[side]).evalf());
+               }
+               if ((fx[side]<0 && fx[!side]<0) || (fx[side]>0 && fx[!side]>0)) {
+                       // Oops, the root isn't bracketed any more.
+                       // Restore, and perform a bisection!
+                       xx[side] = xxprev;
+                       fx[side] = fxprev;
+
+                       // Ah, the bisection! Bisections converge linearly. Unfortunately,
+                       // they occur pretty often when Newton-Raphson arrives at an x too
+                       // close to the result on one side of the interval and
+                       // f(x-f(x)/f'(x)) turns out to have the same sign as f(x) due to
+                       // precision errors! Recall that this function does not have a
+                       // precision goal as one of its arguments but instead relies on
+                       // x converging to a fixed point. We speed up the (safe but slow)
+                       // bisection method by mixing in a dash of the (unsafer but faster)
+                       // secant method: Instead of splitting the interval at the
+                       // arithmetic mean (bisection), we split it nearer to the root as
+                       // determined by the secant between the values xx[0] and xx[1].
+                       // Don't set the secant_weight to one because that could disturb
+                       // the convergence in some corner cases!
+                       static const double secant_weight = 0.984375;  // == 63/64 < 1
+                       numeric xxmid = (1-secant_weight)*0.5*(xx[0]+xx[1])
+                           + secant_weight*(xx[0]+fx[0]*(xx[0]-xx[1])/(fx[1]-fx[0]));
+                       numeric fxmid = ex_to<numeric>(f.subs(x==xxmid).evalf());
+                       if (fxmid.is_zero()) {
+                               // Luck strikes...
+                               return xxmid;
+                       }
+                       if ((fxmid<0 && fx[side]>0) || (fxmid>0 && fx[side]<0)) {
+                               side = !side;
+                       }
+                       xxprev = xx[side];
+                       fxprev = fx[side];
+                       xx[side] = xxmid;
+                       fx[side] = fxmid;
+               }
+       } while (xxprev!=xx[side]);
+       return xxprev;
+}
+
+
 /* Force inclusion of functions from inifcns_gamma and inifcns_zeta
  * for static lib (so ginsh will see them). */
-unsigned force_include_tgamma = function_index_tgamma;
-unsigned force_include_zeta1 = function_index_zeta1;
+unsigned force_include_tgamma = tgamma_SERIAL::serial;
+unsigned force_include_zeta1 = zeta1_SERIAL::serial;
 
 } // namespace GiNaC