]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns.cpp
Vlamirs patch for automatically simplifying e.g., csgn(x)^3 -> csgn(x).
[ginac.git] / ginac / inifcns.cpp
index 33582acb1f3c2672371cdba1742d5dfb19161559..a8f82d8ea0413efaa02e63ea29d9a9919759f793 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's initially known functions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -17,7 +17,7 @@
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
 #include <vector>
@@ -48,7 +48,7 @@ static ex conjugate_evalf(const ex & arg)
        if (is_exactly_a<numeric>(arg)) {
                return ex_to<numeric>(arg).conjugate();
        }
-       return conjugate(arg).hold();
+       return conjugate_function(arg).hold();
 }
 
 static ex conjugate_eval(const ex & arg)
@@ -58,7 +58,7 @@ static ex conjugate_eval(const ex & arg)
 
 static void conjugate_print_latex(const ex & arg, const print_context & c)
 {
-       c.s << "\bar{"; arg.print(c); c.s << "}";
+       c.s << "\\bar{"; arg.print(c); c.s << "}";
 }
 
 static ex conjugate_conjugate(const ex & arg)
@@ -66,10 +66,11 @@ static ex conjugate_conjugate(const ex & arg)
        return arg;
 }
 
-REGISTER_FUNCTION(conjugate, eval_func(conjugate_eval).
-                       evalf_func(conjugate_evalf).
-                       print_func<print_latex>(conjugate_print_latex).
-                       conjugate_func(conjugate_conjugate));
+REGISTER_FUNCTION(conjugate_function, eval_func(conjugate_eval).
+                                      evalf_func(conjugate_evalf).
+                                      print_func<print_latex>(conjugate_print_latex).
+                                      conjugate_func(conjugate_conjugate).
+                                      set_name("conjugate","conjugate"));
 
 //////////
 // absolute value
@@ -106,13 +107,88 @@ static ex abs_conjugate(const ex & arg)
        return abs(arg);
 }
 
+static ex abs_power(const ex & arg, const ex & exp)
+{
+       if (arg.is_equal(arg.conjugate()) && is_a<numeric>(exp) && ex_to<numeric>(exp).is_even())
+               return power(arg, exp);
+       else
+               return power(abs(arg), exp).hold();
+}
+
 REGISTER_FUNCTION(abs, eval_func(abs_eval).
                        evalf_func(abs_evalf).
                        print_func<print_latex>(abs_print_latex).
                        print_func<print_csrc_float>(abs_print_csrc_float).
                        print_func<print_csrc_double>(abs_print_csrc_float).
-                       conjugate_func(abs_conjugate));
+                       conjugate_func(abs_conjugate).
+                       power_func(abs_power));
+
+//////////
+// Step function
+//////////
+
+static ex step_evalf(const ex & arg)
+{
+       if (is_exactly_a<numeric>(arg))
+               return step(ex_to<numeric>(arg));
+       
+       return step(arg).hold();
+}
+
+static ex step_eval(const ex & arg)
+{
+       if (is_exactly_a<numeric>(arg))
+               return step(ex_to<numeric>(arg));
+       
+       else if (is_exactly_a<mul>(arg) &&
+                is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
+               numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
+               if (oc.is_real()) {
+                       if (oc > 0)
+                               // step(42*x) -> step(x)
+                               return step(arg/oc).hold();
+                       else
+                               // step(-42*x) -> step(-x)
+                               return step(-arg/oc).hold();
+               }
+               if (oc.real().is_zero()) {
+                       if (oc.imag() > 0)
+                               // step(42*I*x) -> step(I*x)
+                               return step(I*arg/oc).hold();
+                       else
+                               // step(-42*I*x) -> step(-I*x)
+                               return step(-I*arg/oc).hold();
+               }
+       }
+       
+       return step(arg).hold();
+}
+
+static ex step_series(const ex & arg,
+                      const relational & rel,
+                      int order,
+                      unsigned options)
+{
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
+       if (arg_pt.info(info_flags::numeric)
+           && ex_to<numeric>(arg_pt).real().is_zero()
+           && !(options & series_options::suppress_branchcut))
+               throw (std::domain_error("step_series(): on imaginary axis"));
+       
+       epvector seq;
+       seq.push_back(expair(step(arg_pt), _ex0));
+       return pseries(rel,seq);
+}
+
+static ex step_conjugate(const ex& arg)
+{
+       return step(arg);
+}
 
+REGISTER_FUNCTION(step, eval_func(step_eval).
+                        evalf_func(step_evalf).
+                        series_func(step_series).
+                        conjugate_func(step_conjugate));
 
 //////////
 // Complex sign
@@ -176,10 +252,23 @@ static ex csgn_conjugate(const ex& arg)
        return csgn(arg);
 }
 
+static ex csgn_power(const ex & arg, const ex & exp)
+{
+       if (is_a<numeric>(exp) && exp.info(info_flags::positive) && ex_to<numeric>(exp).is_integer()) {
+               if (ex_to<numeric>(exp).is_odd())
+                       return csgn(arg);
+               else
+                       return power(csgn(arg), _ex2).hold();
+       } else
+               return power(csgn(arg), exp).hold();
+}
+
+
 REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
                         evalf_func(csgn_evalf).
                         series_func(csgn_series).
-                        conjugate_func(csgn_conjugate));
+                        conjugate_func(csgn_conjugate).
+                        power_func(csgn_power));
 
 
 //////////
@@ -338,7 +427,7 @@ static ex Li2_series(const ex &x, const relational &rel, int order, unsigned opt
                        ex ser;
                        // manually construct the primitive expansion
                        for (int i=1; i<order; ++i)
-                               ser += pow(s,i) / pow(numeric(i), _num2);
+                               ser += pow(s,i) / pow(numeric(i), *_num2_p);
                        // substitute the argument's series expansion
                        ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
                        // maybe that was terminating, so add a proper order term
@@ -466,6 +555,17 @@ static ex factorial_eval(const ex & x)
                return factorial(x).hold();
 }
 
+static void factorial_print_dflt_latex(const ex & x, const print_context & c)
+{
+       if (is_exactly_a<symbol>(x) ||
+           is_exactly_a<constant>(x) ||
+               is_exactly_a<function>(x)) {
+               x.print(c); c.s << "!";
+       } else {
+               c.s << "("; x.print(c); c.s << ")!";
+       }
+}
+
 static ex factorial_conjugate(const ex & x)
 {
        return factorial(x);
@@ -473,6 +573,8 @@ static ex factorial_conjugate(const ex & x)
 
 REGISTER_FUNCTION(factorial, eval_func(factorial_eval).
                              evalf_func(factorial_evalf).
+                             print_func<print_dflt>(factorial_print_dflt_latex).
+                             print_func<print_latex>(factorial_print_dflt_latex).
                              conjugate_func(factorial_conjugate));
 
 //////////
@@ -484,11 +586,32 @@ static ex binomial_evalf(const ex & x, const ex & y)
        return binomial(x, y).hold();
 }
 
+static ex binomial_sym(const ex & x, const numeric & y)
+{
+       if (y.is_integer()) {
+               if (y.is_nonneg_integer()) {
+                       const unsigned N = y.to_int();
+                       if (N == 0) return _ex0;
+                       if (N == 1) return x;
+                       ex t = x.expand();
+                       for (unsigned i = 2; i <= N; ++i)
+                               t = (t * (x + i - y - 1)).expand() / i;
+                       return t;
+               } else
+                       return _ex0;
+       }
+
+       return binomial(x, y).hold();
+}
+
 static ex binomial_eval(const ex & x, const ex &y)
 {
-       if (is_exactly_a<numeric>(x) && is_exactly_a<numeric>(y))
-               return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
-       else
+       if (is_exactly_a<numeric>(y)) {
+               if (is_exactly_a<numeric>(x) && ex_to<numeric>(x).is_integer())
+                       return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
+               else
+                       return binomial_sym(x, ex_to<numeric>(y));
+       } else
                return binomial(x, y).hold();
 }
 
@@ -628,6 +751,106 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        return sollist;
 }
 
+//////////
+// Find real root of f(x) numerically
+//////////
+
+const numeric
+fsolve(const ex& f_in, const symbol& x, const numeric& x1, const numeric& x2)
+{
+       if (!x1.is_real() || !x2.is_real()) {
+               throw std::runtime_error("fsolve(): interval not bounded by real numbers");
+       }
+       if (x1==x2) {
+               throw std::runtime_error("fsolve(): vanishing interval");
+       }
+       // xx[0] == left interval limit, xx[1] == right interval limit.
+       // fx[0] == f(xx[0]), fx[1] == f(xx[1]).
+       // We keep the root bracketed: xx[0]<xx[1] and fx[0]*fx[1]<0.
+       numeric xx[2] = { x1<x2 ? x1 : x2,
+                         x1<x2 ? x2 : x1 };
+       ex f;
+       if (is_a<relational>(f_in)) {
+               f = f_in.lhs()-f_in.rhs();
+       } else {
+               f = f_in;
+       }
+       const ex fx_[2] = { f.subs(x==xx[0]).evalf(),
+                           f.subs(x==xx[1]).evalf() };
+       if (!is_a<numeric>(fx_[0]) || !is_a<numeric>(fx_[1])) {
+               throw std::runtime_error("fsolve(): function does not evaluate numerically");
+       }
+       numeric fx[2] = { ex_to<numeric>(fx_[0]),
+                         ex_to<numeric>(fx_[1]) };
+       if (!fx[0].is_real() || !fx[1].is_real()) {
+               throw std::runtime_error("fsolve(): function evaluates to complex values at interval boundaries");
+       }
+       if (fx[0]*fx[1]>=0) {
+               throw std::runtime_error("fsolve(): function does not change sign at interval boundaries");
+       }
+
+       // The Newton-Raphson method has quadratic convergence!  Simply put, it
+       // replaces x with x-f(x)/f'(x) at each step.  -f/f' is the delta:
+       const ex ff = normal(-f/f.diff(x));
+       int side = 0;  // Start at left interval limit.
+       numeric xxprev;
+       numeric fxprev;
+       do {
+               xxprev = xx[side];
+               fxprev = fx[side];
+               xx[side] += ex_to<numeric>(ff.subs(x==xx[side]).evalf());
+               fx[side] = ex_to<numeric>(f.subs(x==xx[side]).evalf());
+               if ((side==0 && xx[0]<xxprev) || (side==1 && xx[1]>xxprev) || xx[0]>xx[1]) {
+                       // Oops, Newton-Raphson method shot out of the interval.
+                       // Restore, and try again with the other side instead!
+                       xx[side] = xxprev;
+                       fx[side] = fxprev;
+                       side = !side;
+                       xxprev = xx[side];
+                       fxprev = fx[side];
+                       xx[side] += ex_to<numeric>(ff.subs(x==xx[side]).evalf());
+                       fx[side] = ex_to<numeric>(f.subs(x==xx[side]).evalf());
+               }
+               if ((fx[side]<0 && fx[!side]<0) || (fx[side]>0 && fx[!side]>0)) {
+                       // Oops, the root isn't bracketed any more.
+                       // Restore, and perform a bisection!
+                       xx[side] = xxprev;
+                       fx[side] = fxprev;
+
+                       // Ah, the bisection! Bisections converge linearly. Unfortunately,
+                       // they occur pretty often when Newton-Raphson arrives at an x too
+                       // close to the result on one side of the interval and
+                       // f(x-f(x)/f'(x)) turns out to have the same sign as f(x) due to
+                       // precision errors! Recall that this function does not have a
+                       // precision goal as one of its arguments but instead relies on
+                       // x converging to a fixed point. We speed up the (safe but slow)
+                       // bisection method by mixing in a dash of the (unsafer but faster)
+                       // secant method: Instead of splitting the interval at the
+                       // arithmetic mean (bisection), we split it nearer to the root as
+                       // determined by the secant between the values xx[0] and xx[1].
+                       // Don't set the secant_weight to one because that could disturb
+                       // the convergence in some corner cases!
+                       static const double secant_weight = 0.984375;  // == 63/64 < 1
+                       numeric xxmid = (1-secant_weight)*0.5*(xx[0]+xx[1])
+                           + secant_weight*(xx[0]+fx[0]*(xx[0]-xx[1])/(fx[1]-fx[0]));
+                       numeric fxmid = ex_to<numeric>(f.subs(x==xxmid).evalf());
+                       if (fxmid.is_zero()) {
+                               // Luck strikes...
+                               return xxmid;
+                       }
+                       if ((fxmid<0 && fx[side]>0) || (fxmid>0 && fx[side]<0)) {
+                               side = !side;
+                       }
+                       xxprev = xx[side];
+                       fxprev = fx[side];
+                       xx[side] = xxmid;
+                       fx[side] = fxmid;
+               }
+       } while (xxprev!=xx[side]);
+       return xxprev;
+}
+
+
 /* Force inclusion of functions from inifcns_gamma and inifcns_zeta
  * for static lib (so ginsh will see them). */
 unsigned force_include_tgamma = tgamma_SERIAL::serial;