]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns.cpp
Added complex conjugation methods and GiNaC function "conjugate".
[ginac.git] / ginac / inifcns.cpp
index 50ec3ec8a97dd7f92cfd241f03a1d41021abd0df..33582acb1f3c2672371cdba1742d5dfb19161559 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's initially known functions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -30,6 +30,7 @@
 #include "matrix.h"
 #include "mul.h"
 #include "power.h"
+#include "operators.h"
 #include "relational.h"
 #include "pseries.h"
 #include "symbol.h"
 
 namespace GiNaC {
 
+//////////
+// complex conjugate
+//////////
+
+static ex conjugate_evalf(const ex & arg)
+{
+       if (is_exactly_a<numeric>(arg)) {
+               return ex_to<numeric>(arg).conjugate();
+       }
+       return conjugate(arg).hold();
+}
+
+static ex conjugate_eval(const ex & arg)
+{
+       return arg.conjugate();
+}
+
+static void conjugate_print_latex(const ex & arg, const print_context & c)
+{
+       c.s << "\bar{"; arg.print(c); c.s << "}";
+}
+
+static ex conjugate_conjugate(const ex & arg)
+{
+       return arg;
+}
+
+REGISTER_FUNCTION(conjugate, eval_func(conjugate_eval).
+                       evalf_func(conjugate_evalf).
+                       print_func<print_latex>(conjugate_print_latex).
+                       conjugate_func(conjugate_conjugate));
+
 //////////
 // absolute value
 //////////
@@ -52,14 +85,33 @@ static ex abs_evalf(const ex & arg)
 
 static ex abs_eval(const ex & arg)
 {
-       if (is_ex_exactly_of_type(arg, numeric))
+       if (is_exactly_a<numeric>(arg))
                return abs(ex_to<numeric>(arg));
        else
                return abs(arg).hold();
 }
 
+static void abs_print_latex(const ex & arg, const print_context & c)
+{
+       c.s << "{|"; arg.print(c); c.s << "|}";
+}
+
+static void abs_print_csrc_float(const ex & arg, const print_context & c)
+{
+       c.s << "fabs("; arg.print(c); c.s << ")";
+}
+
+static ex abs_conjugate(const ex & arg)
+{
+       return abs(arg);
+}
+
 REGISTER_FUNCTION(abs, eval_func(abs_eval).
-                       evalf_func(abs_evalf));
+                       evalf_func(abs_evalf).
+                       print_func<print_latex>(abs_print_latex).
+                       print_func<print_csrc_float>(abs_print_csrc_float).
+                       print_func<print_csrc_double>(abs_print_csrc_float).
+                       conjugate_func(abs_conjugate));
 
 
 //////////
@@ -76,11 +128,11 @@ static ex csgn_evalf(const ex & arg)
 
 static ex csgn_eval(const ex & arg)
 {
-       if (is_ex_exactly_of_type(arg, numeric))
+       if (is_exactly_a<numeric>(arg))
                return csgn(ex_to<numeric>(arg));
        
-       else if (is_ex_of_type(arg, mul) &&
-                is_ex_of_type(arg.op(arg.nops()-1),numeric)) {
+       else if (is_exactly_a<mul>(arg) &&
+                is_exactly_a<numeric>(arg.op(arg.nops()-1))) {
                numeric oc = ex_to<numeric>(arg.op(arg.nops()-1));
                if (oc.is_real()) {
                        if (oc > 0)
@@ -108,20 +160,26 @@ static ex csgn_series(const ex & arg,
                       int order,
                       unsigned options)
 {
-       const ex arg_pt = arg.subs(rel);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
        if (arg_pt.info(info_flags::numeric)
            && ex_to<numeric>(arg_pt).real().is_zero()
            && !(options & series_options::suppress_branchcut))
                throw (std::domain_error("csgn_series(): on imaginary axis"));
        
        epvector seq;
-       seq.push_back(expair(csgn(arg_pt), _ex0()));
+       seq.push_back(expair(csgn(arg_pt), _ex0));
        return pseries(rel,seq);
 }
 
+static ex csgn_conjugate(const ex& arg)
+{
+       return csgn(arg);
+}
+
 REGISTER_FUNCTION(csgn, eval_func(csgn_eval).
                         evalf_func(csgn_evalf).
-                        series_func(csgn_series));
+                        series_func(csgn_series).
+                        conjugate_func(csgn_conjugate));
 
 
 //////////
@@ -135,7 +193,7 @@ static ex eta_evalf(const ex &x, const ex &y)
        // It seems like we basically have to replicate the eval function here,
        // since the expression might not be fully evaluated yet.
        if (x.info(info_flags::positive) || y.info(info_flags::positive))
-               return _ex0();
+               return _ex0;
 
        if (x.info(info_flags::numeric) &&      y.info(info_flags::numeric)) {
                const numeric nx = ex_to<numeric>(x);
@@ -159,7 +217,7 @@ static ex eta_eval(const ex &x, const ex &y)
 {
        // trivial:  eta(x,c) -> 0  if c is real and positive
        if (x.info(info_flags::positive) || y.info(info_flags::positive))
-               return _ex0();
+               return _ex0;
 
        if (x.info(info_flags::numeric) &&      y.info(info_flags::numeric)) {
                // don't call eta_evalf here because it would call Pi.evalf()!
@@ -185,22 +243,28 @@ static ex eta_series(const ex & x, const ex & y,
                      int order,
                      unsigned options)
 {
-       const ex x_pt = x.subs(rel);
-       const ex y_pt = y.subs(rel);
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
+       const ex y_pt = y.subs(rel, subs_options::no_pattern);
        if ((x_pt.info(info_flags::numeric) && x_pt.info(info_flags::negative)) ||
            (y_pt.info(info_flags::numeric) && y_pt.info(info_flags::negative)) ||
            ((x_pt*y_pt).info(info_flags::numeric) && (x_pt*y_pt).info(info_flags::negative)))
                        throw (std::domain_error("eta_series(): on discontinuity"));
        epvector seq;
-       seq.push_back(expair(eta(x_pt,y_pt), _ex0()));
+       seq.push_back(expair(eta(x_pt,y_pt), _ex0));
        return pseries(rel,seq);
 }
 
+static ex eta_conjugate(const ex & x, const ex & y)
+{
+       return -eta(x,y);
+}
+
 REGISTER_FUNCTION(eta, eval_func(eta_eval).
                        evalf_func(eta_evalf).
                        series_func(eta_series).
                        latex_name("\\eta").
-                       set_symmetry(sy_symm(0, 1)));
+                       set_symmetry(sy_symm(0, 1)).
+                       conjugate_func(eta_conjugate));
 
 
 //////////
@@ -220,22 +284,22 @@ static ex Li2_eval(const ex & x)
        if (x.info(info_flags::numeric)) {
                // Li2(0) -> 0
                if (x.is_zero())
-                       return _ex0();
+                       return _ex0;
                // Li2(1) -> Pi^2/6
-               if (x.is_equal(_ex1()))
-                       return power(Pi,_ex2())/_ex6();
+               if (x.is_equal(_ex1))
+                       return power(Pi,_ex2)/_ex6;
                // Li2(1/2) -> Pi^2/12 - log(2)^2/2
-               if (x.is_equal(_ex1_2()))
-                       return power(Pi,_ex2())/_ex12() + power(log(_ex2()),_ex2())*_ex_1_2();
+               if (x.is_equal(_ex1_2))
+                       return power(Pi,_ex2)/_ex12 + power(log(_ex2),_ex2)*_ex_1_2;
                // Li2(-1) -> -Pi^2/12
-               if (x.is_equal(_ex_1()))
-                       return -power(Pi,_ex2())/_ex12();
+               if (x.is_equal(_ex_1))
+                       return -power(Pi,_ex2)/_ex12;
                // Li2(I) -> -Pi^2/48+Catalan*I
                if (x.is_equal(I))
-                       return power(Pi,_ex2())/_ex_48() + Catalan*I;
+                       return power(Pi,_ex2)/_ex_48 + Catalan*I;
                // Li2(-I) -> -Pi^2/48-Catalan*I
                if (x.is_equal(-I))
-                       return power(Pi,_ex2())/_ex_48() - Catalan*I;
+                       return power(Pi,_ex2)/_ex_48 - Catalan*I;
                // Li2(float)
                if (!x.info(info_flags::crational))
                        return Li2(ex_to<numeric>(x));
@@ -249,12 +313,12 @@ static ex Li2_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx Li2(x) -> -log(1-x)/x
-       return -log(_ex1()-x)/x;
+       return -log(_ex1-x)/x;
 }
 
 static ex Li2_series(const ex &x, const relational &rel, int order, unsigned options)
 {
-       const ex x_pt = x.subs(rel);
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
        if (x_pt.info(info_flags::numeric)) {
                // First special case: x==0 (derivatives have poles)
                if (x_pt.is_zero()) {
@@ -274,12 +338,12 @@ static ex Li2_series(const ex &x, const relational &rel, int order, unsigned opt
                        ex ser;
                        // manually construct the primitive expansion
                        for (int i=1; i<order; ++i)
-                               ser += pow(s,i) / pow(numeric(i), _num2());
+                               ser += pow(s,i) / pow(numeric(i), _num2);
                        // substitute the argument's series expansion
-                       ser = ser.subs(s==x.series(rel, order));
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
                        // maybe that was terminating, so add a proper order term
                        epvector nseq;
-                       nseq.push_back(expair(Order(_ex1()), order));
+                       nseq.push_back(expair(Order(_ex1), order));
                        ser += pseries(rel, nseq);
                        // reexpanding it will collapse the series again
                        return ser.series(rel, order);
@@ -292,19 +356,19 @@ static ex Li2_series(const ex &x, const relational &rel, int order, unsigned opt
                        // obsolete!
                }
                // second special case: x==1 (branch point)
-               if (x_pt.is_equal(_ex1())) {
+               if (x_pt.is_equal(_ex1)) {
                        // method:
                        // construct series manually in a dummy symbol s
                        const symbol s;
-                       ex ser = zeta(_ex2());
+                       ex ser = zeta(_ex2);
                        // manually construct the primitive expansion
                        for (int i=1; i<order; ++i)
                                ser += pow(1-s,i) * (numeric(1,i)*(I*Pi+log(s-1)) - numeric(1,i*i));
                        // substitute the argument's series expansion
-                       ser = ser.subs(s==x.series(rel, order));
+                       ser = ser.subs(s==x.series(rel, order), subs_options::no_pattern);
                        // maybe that was terminating, so add a proper order term
                        epvector nseq;
-                       nseq.push_back(expair(Order(_ex1()), order));
+                       nseq.push_back(expair(Order(_ex1), order));
                        ser += pseries(rel, nseq);
                        // reexpanding it will collapse the series again
                        return ser.series(rel, order);
@@ -315,18 +379,18 @@ static ex Li2_series(const ex &x, const relational &rel, int order, unsigned opt
                        // method:
                        // This is the branch cut: assemble the primitive series manually
                        // and then add the corresponding complex step function.
-                       const symbol *s = static_cast<symbol *>(rel.lhs().bp);
+                       const symbol &s = ex_to<symbol>(rel.lhs());
                        const ex point = rel.rhs();
                        const symbol foo;
                        epvector seq;
                        // zeroth order term:
-                       seq.push_back(expair(Li2(x_pt), _ex0()));
+                       seq.push_back(expair(Li2(x_pt), _ex0));
                        // compute the intermediate terms:
-                       ex replarg = series(Li2(x), *s==foo, order);
-                       for (unsigned i=1; i<replarg.nops()-1; ++i)
-                               seq.push_back(expair((replarg.op(i)/power(*s-foo,i)).series(foo==point,1,options).op(0).subs(foo==*s),i));
+                       ex replarg = series(Li2(x), s==foo, order);
+                       for (size_t i=1; i<replarg.nops()-1; ++i)
+                               seq.push_back(expair((replarg.op(i)/power(s-foo,i)).series(foo==point,1,options).op(0).subs(foo==s, subs_options::no_pattern),i));
                        // append an order term:
-                       seq.push_back(expair(Order(_ex1()), replarg.nops()-1));
+                       seq.push_back(expair(Order(_ex1), replarg.nops()-1));
                        return pseries(rel, seq);
                }
        }
@@ -354,6 +418,37 @@ static ex Li3_eval(const ex & x)
 REGISTER_FUNCTION(Li3, eval_func(Li3_eval).
                        latex_name("\\mbox{Li}_3"));
 
+//////////
+// Derivatives of Riemann's Zeta-function  zetaderiv(0,x)==zeta(x)
+//////////
+
+static ex zetaderiv_eval(const ex & n, const ex & x)
+{
+       if (n.info(info_flags::numeric)) {
+               // zetaderiv(0,x) -> zeta(x)
+               if (n.is_zero())
+                       return zeta(x);
+       }
+       
+       return zetaderiv(n, x).hold();
+}
+
+static ex zetaderiv_deriv(const ex & n, const ex & x, unsigned deriv_param)
+{
+       GINAC_ASSERT(deriv_param<2);
+       
+       if (deriv_param==0) {
+               // d/dn zeta(n,x)
+               throw(std::logic_error("cannot diff zetaderiv(n,x) with respect to n"));
+       }
+       // d/dx psi(n,x)
+       return zetaderiv(n+1,x);
+}
+
+REGISTER_FUNCTION(zetaderiv, eval_func(zetaderiv_eval).
+                                derivative_func(zetaderiv_deriv).
+                                latex_name("\\zeta^\\prime"));
+
 //////////
 // factorial
 //////////
@@ -365,14 +460,20 @@ static ex factorial_evalf(const ex & x)
 
 static ex factorial_eval(const ex & x)
 {
-       if (is_ex_exactly_of_type(x, numeric))
+       if (is_exactly_a<numeric>(x))
                return factorial(ex_to<numeric>(x));
        else
                return factorial(x).hold();
 }
 
+static ex factorial_conjugate(const ex & x)
+{
+       return factorial(x);
+}
+
 REGISTER_FUNCTION(factorial, eval_func(factorial_eval).
-                             evalf_func(factorial_evalf));
+                             evalf_func(factorial_evalf).
+                             conjugate_func(factorial_conjugate));
 
 //////////
 // binomial
@@ -385,14 +486,23 @@ static ex binomial_evalf(const ex & x, const ex & y)
 
 static ex binomial_eval(const ex & x, const ex &y)
 {
-       if (is_ex_exactly_of_type(x, numeric) && is_ex_exactly_of_type(y, numeric))
+       if (is_exactly_a<numeric>(x) && is_exactly_a<numeric>(y))
                return binomial(ex_to<numeric>(x), ex_to<numeric>(y));
        else
                return binomial(x, y).hold();
 }
 
+// At the moment the numeric evaluation of a binomail function always
+// gives a real number, but if this would be implemented using the gamma
+// function, also complex conjugation should be changed (or rather, deleted).
+static ex binomial_conjugate(const ex & x, const ex & y)
+{
+       return binomial(x,y);
+}
+
 REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
-                            evalf_func(binomial_evalf));
+                            evalf_func(binomial_evalf).
+                            conjugate_func(binomial_conjugate));
 
 //////////
 // Order term function (for truncated power series)
@@ -400,17 +510,17 @@ REGISTER_FUNCTION(binomial, eval_func(binomial_eval).
 
 static ex Order_eval(const ex & x)
 {
-       if (is_ex_exactly_of_type(x, numeric)) {
+       if (is_exactly_a<numeric>(x)) {
                // O(c) -> O(1) or 0
                if (!x.is_zero())
-                       return Order(_ex1()).hold();
+                       return Order(_ex1).hold();
                else
-                       return _ex0();
-       } else if (is_ex_exactly_of_type(x, mul)) {
-               mul *m = static_cast<mul *>(x.bp);
+                       return _ex0;
+       } else if (is_exactly_a<mul>(x)) {
+               const mul &m = ex_to<mul>(x);
                // O(c*expr) -> O(expr)
-               if (is_ex_exactly_of_type(m->op(m->nops() - 1), numeric))
-                       return Order(x / m->op(m->nops() - 1)).hold();
+               if (is_exactly_a<numeric>(m.op(m.nops() - 1)))
+                       return Order(x / m.op(m.nops() - 1)).hold();
        }
        return Order(x).hold();
 }
@@ -419,17 +529,23 @@ static ex Order_series(const ex & x, const relational & r, int order, unsigned o
 {
        // Just wrap the function into a pseries object
        epvector new_seq;
-       GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol));
-       const symbol *s = static_cast<symbol *>(r.lhs().bp);
-       new_seq.push_back(expair(Order(_ex1()), numeric(std::min(x.ldegree(*s), order))));
+       GINAC_ASSERT(is_a<symbol>(r.lhs()));
+       const symbol &s = ex_to<symbol>(r.lhs());
+       new_seq.push_back(expair(Order(_ex1), numeric(std::min(x.ldegree(s), order))));
        return pseries(r, new_seq);
 }
 
+static ex Order_conjugate(const ex & x)
+{
+       return Order(x);
+}
+
 // Differentiation is handled in function::derivative because of its special requirements
 
 REGISTER_FUNCTION(Order, eval_func(Order_eval).
                          series_func(Order_series).
-                         latex_name("\\mathcal{O}"));
+                         latex_name("\\mathcal{O}").
+                         conjugate_func(Order_conjugate));
 
 //////////
 // Solve linear system
@@ -444,7 +560,7 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
                const ex sol = lsolve(lst(eqns),lst(symbols));
                
                GINAC_ASSERT(sol.nops()==1);
-               GINAC_ASSERT(is_ex_exactly_of_type(sol.op(0),relational));
+               GINAC_ASSERT(is_exactly_a<relational>(sol.op(0)));
                
                return sol.op(0).op(1); // return rhs of first solution
        }
@@ -453,7 +569,7 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        if (!eqns.info(info_flags::list)) {
                throw(std::invalid_argument("lsolve(): 1st argument must be a list"));
        }
-       for (unsigned i=0; i<eqns.nops(); i++) {
+       for (size_t i=0; i<eqns.nops(); i++) {
                if (!eqns.op(i).info(info_flags::relation_equal)) {
                        throw(std::invalid_argument("lsolve(): 1st argument must be a list of equations"));
                }
@@ -461,7 +577,7 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        if (!symbols.info(info_flags::list)) {
                throw(std::invalid_argument("lsolve(): 2nd argument must be a list"));
        }
-       for (unsigned i=0; i<symbols.nops(); i++) {
+       for (size_t i=0; i<symbols.nops(); i++) {
                if (!symbols.op(i).info(info_flags::symbol)) {
                        throw(std::invalid_argument("lsolve(): 2nd argument must be a list of symbols"));
                }
@@ -472,10 +588,10 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        matrix rhs(eqns.nops(),1);
        matrix vars(symbols.nops(),1);
        
-       for (unsigned r=0; r<eqns.nops(); r++) {
+       for (size_t r=0; r<eqns.nops(); r++) {
                const ex eq = eqns.op(r).op(0)-eqns.op(r).op(1); // lhs-rhs==0
                ex linpart = eq;
-               for (unsigned c=0; c<symbols.nops(); c++) {
+               for (size_t c=0; c<symbols.nops(); c++) {
                        const ex co = eq.coeff(ex_to<symbol>(symbols.op(c)),1);
                        linpart -= co*symbols.op(c);
                        sys(r,c) = co;
@@ -485,7 +601,7 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        }
        
        // test if system is linear and fill vars matrix
-       for (unsigned i=0; i<symbols.nops(); i++) {
+       for (size_t i=0; i<symbols.nops(); i++) {
                vars(i,0) = symbols.op(i);
                if (sys.has(symbols.op(i)))
                        throw(std::logic_error("lsolve: system is not linear"));
@@ -506,7 +622,7 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
        
        // return list of equations of the form lst(var1==sol1,var2==sol2,...)
        lst sollist;
-       for (unsigned i=0; i<symbols.nops(); i++)
+       for (size_t i=0; i<symbols.nops(); i++)
                sollist.append(symbols.op(i)==solution(i,0));
        
        return sollist;
@@ -514,7 +630,7 @@ ex lsolve(const ex &eqns, const ex &symbols, unsigned options)
 
 /* Force inclusion of functions from inifcns_gamma and inifcns_zeta
  * for static lib (so ginsh will see them). */
-unsigned force_include_tgamma = function_index_tgamma;
-unsigned force_include_zeta1 = function_index_zeta1;
+unsigned force_include_tgamma = tgamma_SERIAL::serial;
+unsigned force_include_zeta1 = zeta1_SERIAL::serial;
 
 } // namespace GiNaC