]> www.ginac.de Git - ginac.git/blobdiff - ginac/indexed.cpp
added predefined epsilon tensor
[ginac.git] / ginac / indexed.cpp
index 1f67038f9a04dca5784020229e7a44ac1620a55b..fb34df9502a861c35f32cd739f01c4410e605ed6 100644 (file)
@@ -1,9 +1,9 @@
 /** @file indexed.cpp
  *
- *  Implementation of GiNaC's index carrying objects. */
+ *  Implementation of GiNaC's indexed expressions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  */
 
-#include <string>
+#include <stdexcept>
 
 #include "indexed.h"
-#include "ex.h"
 #include "idx.h"
+#include "add.h"
+#include "mul.h"
+#include "ncmul.h"
+#include "power.h"
+#include "archive.h"
+#include "utils.h"
 #include "debugmsg.h"
 
-#ifndef NO_NAMESPACE_GINAC
 namespace GiNaC {
-#endif // ndef NO_NAMESPACE_GINAC
 
 GINAC_IMPLEMENT_REGISTERED_CLASS(indexed, exprseq)
 
@@ -37,98 +40,119 @@ GINAC_IMPLEMENT_REGISTERED_CLASS(indexed, exprseq)
 // default constructor, destructor, copy constructor assignment operator and helpers
 //////////
 
-// public
+indexed::indexed() : symmetry(unknown)
+{
+       debugmsg("indexed default constructor", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+}
 
-indexed::indexed()
+void indexed::copy(const indexed & other)
 {
-    debugmsg("indexed default constructor",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_indexed;
+       inherited::copy(other);
+       symmetry = other.symmetry;
 }
 
-indexed::~indexed()
+void indexed::destroy(bool call_parent)
 {
-    debugmsg("indexed destructor",LOGLEVEL_DESTRUCT);
-    destroy(0);
+       if (call_parent)
+               inherited::destroy(call_parent);
 }
 
-indexed::indexed(const indexed & other)
+//////////
+// other constructors
+//////////
+
+indexed::indexed(const ex & b) : inherited(b), symmetry(unknown)
 {
-    debugmsg("indexed copy constructor",LOGLEVEL_CONSTRUCT);
-    copy (other);
+       debugmsg("indexed constructor from ex", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
-const indexed & indexed::operator=(const indexed & other)
+indexed::indexed(const ex & b, const ex & i1) : inherited(b, i1), symmetry(unknown)
 {
-    debugmsg("indexed operator=",LOGLEVEL_ASSIGNMENT);
-    if (this != &other) {
-        destroy(1);
-        copy(other);
-    }
-    return *this;
+       debugmsg("indexed constructor from ex,ex", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
-// protected
+indexed::indexed(const ex & b, const ex & i1, const ex & i2) : inherited(b, i1, i2), symmetry(unknown)
+{
+       debugmsg("indexed constructor from ex,ex,ex", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
+}
 
-void indexed::copy(const indexed & other)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symmetry(unknown)
 {
-    inherited::copy(other);
+       debugmsg("indexed constructor from ex,ex,ex,ex", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
-void indexed::destroy(bool call_parent)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symmetry(unknown)
 {
-    if (call_parent) {
-        inherited::destroy(call_parent);
-    }
+       debugmsg("indexed constructor from ex,ex,ex,ex,ex", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
-//////////
-// other constructors
-//////////
+indexed::indexed(const ex & b, symmetry_type symm, const ex & i1, const ex & i2) : inherited(b, i1, i2), symmetry(symm)
+{
+       debugmsg("indexed constructor from ex,symmetry,ex,ex", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
+}
 
-// public
+indexed::indexed(const ex & b, symmetry_type symm, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symmetry(symm)
+{
+       debugmsg("indexed constructor from ex,symmetry,ex,ex,ex", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
+}
 
-indexed::indexed(const ex & i1) : inherited(i1)
+indexed::indexed(const ex & b, symmetry_type symm, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symmetry(symm)
 {
-    debugmsg("indexed constructor from ex",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_indexed;
-    GINAC_ASSERT(all_of_type_idx());
+       debugmsg("indexed constructor from ex,symmetry,ex,ex,ex,ex", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
-indexed::indexed(const ex & i1, const ex & i2) : inherited(i1,i2)
+indexed::indexed(const ex & b, const exvector & v) : inherited(b), symmetry(unknown)
 {
-    debugmsg("indexed constructor from ex,ex",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_indexed;
-    GINAC_ASSERT(all_of_type_idx());
+       debugmsg("indexed constructor from ex,exvector", LOGLEVEL_CONSTRUCT);
+       seq.insert(seq.end(), v.begin(), v.end());
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
-indexed::indexed(const ex & i1, const ex & i2, const ex & i3)
-    : inherited(i1,i2,i3)
+indexed::indexed(const ex & b, symmetry_type symm, const exvector & v) : inherited(b), symmetry(symm)
 {
-    debugmsg("indexed constructor from ex,ex,ex",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_indexed;
-    GINAC_ASSERT(all_of_type_idx());
+       debugmsg("indexed constructor from ex,symmetry,exvector", LOGLEVEL_CONSTRUCT);
+       seq.insert(seq.end(), v.begin(), v.end());
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
-indexed::indexed(const ex & i1, const ex & i2, const ex & i3, const ex & i4)
-    : inherited(i1,i2,i3,i4)
+indexed::indexed(symmetry_type symm, const exprseq & es) : inherited(es), symmetry(symm)
 {
-    debugmsg("indexed constructor from ex,ex,ex,ex",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_indexed;
-    GINAC_ASSERT(all_of_type_idx());
+       debugmsg("indexed constructor from symmetry,exprseq", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
-indexed::indexed(const exvector & iv) : inherited(iv)
+indexed::indexed(symmetry_type symm, const exvector & v, bool discardable) : inherited(v, discardable), symmetry(symm)
 {
-    debugmsg("indexed constructor from exvector",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_indexed;
-    GINAC_ASSERT(all_of_type_idx());
+       debugmsg("indexed constructor from symmetry,exvector", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
-indexed::indexed(exvector * ivp) : inherited(ivp)
+indexed::indexed(symmetry_type symm, exvector * vp) : inherited(vp), symmetry(symm)
 {
-    debugmsg("indexed constructor from exvector *",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_indexed;
-    GINAC_ASSERT(all_of_type_idx());
+       debugmsg("indexed constructor from symmetry,exvector *", LOGLEVEL_CONSTRUCT);
+       tinfo_key = TINFO_indexed;
+       assert_all_indices_of_type_idx();
 }
 
 //////////
@@ -138,119 +162,218 @@ indexed::indexed(exvector * ivp) : inherited(ivp)
 /** Construct object from archive_node. */
 indexed::indexed(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
 {
-    debugmsg("indexed constructor from archive_node", LOGLEVEL_CONSTRUCT);
-    tinfo_key = TINFO_indexed;
+       debugmsg("indexed constructor from archive_node", LOGLEVEL_CONSTRUCT);
+       unsigned int symm;
+       if (!(n.find_unsigned("symmetry", symm)))
+               throw (std::runtime_error("unknown indexed symmetry type in archive"));
 }
 
 /** Unarchive the object. */
 ex indexed::unarchive(const archive_node &n, const lst &sym_lst)
 {
-    return (new indexed(n, sym_lst))->setflag(status_flags::dynallocated);
+       return (new indexed(n, sym_lst))->setflag(status_flags::dynallocated);
 }
 
 /** Archive the object. */
 void indexed::archive(archive_node &n) const
 {
-    inherited::archive(n);
+       inherited::archive(n);
+       n.add_unsigned("symmetry", symmetry);
 }
 
 //////////
 // functions overriding virtual functions from bases classes
 //////////
 
-// public
-
-basic * indexed::duplicate() const
+void indexed::printraw(std::ostream & os) const
 {
-    debugmsg("indexed duplicate",LOGLEVEL_DUPLICATE);
-    return new indexed(*this);
-}
+       debugmsg("indexed printraw", LOGLEVEL_PRINT);
+       GINAC_ASSERT(seq.size() > 0);
 
-void indexed::printraw(ostream & os) const
-{
-    debugmsg("indexed printraw",LOGLEVEL_PRINT);
-    os << "indexed(indices=";
-    printrawindices(os);
-    os << ",hash=" << hashvalue << ",flags=" << flags << ")";
+       os << class_name() << "(";
+       seq[0].printraw(os);
+       os << ",indices=";
+       printrawindices(os);
+       os << ",hash=" << hashvalue << ",flags=" << flags << ")";
 }
 
-void indexed::printtree(ostream & os, unsigned indent) const
+void indexed::printtree(std::ostream & os, unsigned indent) const
 {
-    debugmsg("indexed printtree",LOGLEVEL_PRINT);
-    os << string(indent,' ') << "indexed: " << seq.size() << " indices";
-    os << ",hash=" << hashvalue << ",flags=" << flags << endl;
-    printtreeindices(os,indent);
-}
+       debugmsg("indexed printtree", LOGLEVEL_PRINT);
+       GINAC_ASSERT(seq.size() > 0);
 
-void indexed::print(ostream & os, unsigned upper_precedence) const
-{
-    debugmsg("indexed print",LOGLEVEL_PRINT);
-    os << "UNNAMEDINDEX";
-    printindices(os);
+       os << std::string(indent, ' ') << class_name() << ", " << seq.size()-1 << " indices";
+       os << ",hash=" << hashvalue << ",flags=" << flags << std::endl;
+       printtreeindices(os, indent);
 }
 
-void indexed::printcsrc(ostream & os, unsigned type,
-                        unsigned upper_precedence) const
+void indexed::print(std::ostream & os, unsigned upper_precedence) const
 {
-    debugmsg("indexed print csrc",LOGLEVEL_PRINT);
-    print(os,upper_precedence);
+       debugmsg("indexed print", LOGLEVEL_PRINT);
+       GINAC_ASSERT(seq.size() > 0);
+
+       const ex & base = seq[0];
+       bool need_parens = is_ex_exactly_of_type(base, add) || is_ex_exactly_of_type(base, mul)
+                       || is_ex_exactly_of_type(base, ncmul) || is_ex_exactly_of_type(base, power);
+       if (need_parens)
+               os << "(";
+       os << base;
+       if (need_parens)
+               os << ")";
+       printindices(os);
 }
 
 bool indexed::info(unsigned inf) const
 {
-    if (inf==info_flags::indexed) return true;
-    if (inf==info_flags::has_indices) return seq.size()!=0;
-    return inherited::info(inf);
+       if (inf == info_flags::indexed) return true;
+       if (inf == info_flags::has_indices) return seq.size() > 1;
+       return inherited::info(inf);
 }
 
-exvector indexed::get_indices(void) const
+bool indexed::all_index_values_are(unsigned inf) const
 {
-    return seq;
+       // No indices? Then no property can be fulfilled
+       if (seq.size() < 2)
+               return false;
 
-    /*
-    idxvector filtered_indices;
-    filtered_indices.reserve(indices.size());
-    for (idxvector::const_iterator cit=indices.begin(); cit!=indices.end(); ++cit) {
-        if ((*cit).get_type()==t) {
-            filtered_indices.push_back(*cit);
-        }
-    }
-    return filtered_indices;
-    */
+       // Check all indices
+       exvector::const_iterator it = seq.begin() + 1, itend = seq.end();
+       while (it != itend) {
+               GINAC_ASSERT(is_ex_of_type(*it, idx));
+               if (!ex_to_idx(*it).get_value().info(inf))
+                       return false;
+               it++;
+       }
+       return true;
 }
 
-// protected
-
 int indexed::compare_same_type(const basic & other) const
 {
-    GINAC_ASSERT(is_of_type(other,indexed));
-    return inherited::compare_same_type(other);
+       GINAC_ASSERT(is_of_type(other, indexed));
+       return inherited::compare_same_type(other);
 }
 
-bool indexed::is_equal_same_type(const basic & other) const
-{
-    GINAC_ASSERT(is_of_type(other,indexed));
-    return inherited::is_equal_same_type(other);
-}
+// The main difference between sort_index_vector() and canonicalize_indices()
+// is that the latter takes the symmetry of the object into account. Once we
+// implement mixed symmetries, canonicalize_indices() will only be able to
+// reorder index pairs with known symmetry properties, while sort_index_vector()
+// always sorts the whole vector.
 
-unsigned indexed::return_type(void) const
-{
-    return return_types::noncommutative;
-}
-   
-unsigned indexed::return_type_tinfo(void) const
-{
-    return tinfo_key;
+/** Bring a vector of indices into a canonic order (don't care about the
+ *  symmetry of the objects carrying the indices). Dummy indices will lie
+ *  next to each other after the sorting.
+ *
+ *  @param v Index vector to be sorted */
+static void sort_index_vector(exvector &v)
+{
+       // Nothing to sort if less than 2 elements
+       if (v.size() < 2)
+               return;
+
+       // Simple bubble sort algorithm should be sufficient for the small
+       // number of indices expected
+       exvector::iterator it1 = v.begin(), itend = v.end(), next_to_last_idx = itend - 1;
+       while (it1 != next_to_last_idx) {
+               exvector::iterator it2 = it1 + 1;
+               while (it2 != itend) {
+                       if (it1->compare(*it2) > 0)
+                               it1->swap(*it2);
+                       it2++;
+               }
+               it1++;
+       }
+}
+
+/** Bring a vector of indices into a canonic order. This operation only makes
+ *  sense if the object carrying these indices is either symmetric or totally
+ *  antisymmetric with respect to the indices.
+ *
+ *  @param itbegin Start of index vector
+ *  @param itend End of index vector
+ *  @param antisymm Whether the object is antisymmetric
+ *  @return the sign introduced by the reordering of the indices if the object
+ *          is antisymmetric (or 0 if two equal indices are encountered). For
+ *          symmetric objects, this is always +1. If the index vector was
+ *          already in a canonic order this function returns INT_MAX. */
+static int canonicalize_indices(exvector::iterator itbegin, exvector::iterator itend, bool antisymm)
+{
+       bool something_changed = false;
+       int sig = 1;
+
+       // Simple bubble sort algorithm should be sufficient for the small
+       // number of indices expected
+       exvector::iterator it1 = itbegin, next_to_last_idx = itend - 1;
+       while (it1 != next_to_last_idx) {
+               exvector::iterator it2 = it1 + 1;
+               while (it2 != itend) {
+                       int cmpval = it1->compare(*it2);
+                       if (cmpval == 1) {
+                               it1->swap(*it2);
+                               something_changed = true;
+                               if (antisymm)
+                                       sig = -sig;
+                       } else if (cmpval == 0 && antisymm) {
+                               something_changed = true;
+                               sig = 0;
+                       }
+                       it2++;
+               }
+               it1++;
+       }
+
+       return something_changed ? sig : INT_MAX;
+}
+
+ex indexed::eval(int level) const
+{
+       // First evaluate children, then we will end up here again
+       if (level > 1)
+               return indexed(symmetry, evalchildren(level));
+
+       // Canonicalize indices according to the symmetry properties
+       if (seq.size() > 2 && (symmetry != unknown && symmetry != mixed)) {
+               exvector v = seq;
+               int sig = canonicalize_indices(v.begin() + 1, v.end(), symmetry == antisymmetric);
+               if (sig != INT_MAX) {
+                       // Something has changed while sorting indices, more evaluations later
+                       if (sig == 0)
+                               return _ex0();
+                       return ex(sig) * thisexprseq(v);
+               }
+       }
+
+       // Let the class of the base object perform additional evaluations
+       return op(0).bp->eval_indexed(*this);
 }
 
 ex indexed::thisexprseq(const exvector & v) const
 {
-    return indexed(v);
+       return indexed(symmetry, v);
 }
 
 ex indexed::thisexprseq(exvector * vp) const
 {
-    return indexed(vp);
+       return indexed(symmetry, vp);
+}
+
+ex indexed::expand(unsigned options) const
+{
+       GINAC_ASSERT(seq.size() > 0);
+
+       if ((options & expand_options::expand_indexed) && is_ex_exactly_of_type(seq[0], add)) {
+
+               // expand_indexed expands (a+b).i -> a.i + b.i
+               const ex & base = seq[0];
+               ex sum = _ex0();
+               for (unsigned i=0; i<base.nops(); i++) {
+                       exvector s = seq;
+                       s[0] = base.op(i);
+                       sum += thisexprseq(s).expand();
+               }
+               return sum;
+
+       } else
+               return inherited::expand(options);
 }
 
 //////////
@@ -263,70 +386,397 @@ ex indexed::thisexprseq(exvector * vp) const
 // non-virtual functions in this class
 //////////
 
-// protected
-
-void indexed::printrawindices(ostream & os) const
+void indexed::printrawindices(std::ostream & os) const
 {
-    if (seq.size()!=0) {
-        for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) {
-            (*cit).printraw(os);
-            os << ",";
-        }
-    }
+       if (seq.size() > 1) {
+               exvector::const_iterator it=seq.begin() + 1, itend = seq.end();
+               while (it != itend) {
+                       it->printraw(os);
+                       it++;
+                       if (it != itend)
+                               os << ",";
+               }
+       }
 }
 
-void indexed::printtreeindices(ostream & os, unsigned indent) const
+void indexed::printtreeindices(std::ostream & os, unsigned indent) const
 {
-    if (seq.size()!=0) {
-        for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) {
-            os << string(indent+delta_indent,' ');
-            (*cit).printraw(os);
-            os << endl;
-        }
-    }
+       if (seq.size() > 1) {
+               exvector::const_iterator it=seq.begin() + 1, itend = seq.end();
+               while (it != itend) {
+                       os << std::string(indent + delta_indent, ' ');
+                       it->printraw(os);
+                       os << std::endl;
+                       it++;
+               }
+       }
 }
 
-void indexed::printindices(ostream & os) const
+void indexed::printindices(std::ostream & os) const
 {
-    if (seq.size()!=0) {
-        if (seq.size()>1) {
-            os << "{";
-        }
-        exvector::const_iterator last=seq.end()-1;
-        exvector::const_iterator cit=seq.begin();
-        for (; cit!=last; ++cit) {
-            (*cit).print(os);
-            os << ",";
-        }
-        (*cit).print(os);
-        if (seq.size()>1) {
-            os << "}";
-        }
-    }
+       if (seq.size() > 1) {
+               exvector::const_iterator it=seq.begin() + 1, itend = seq.end();
+               while (it != itend) {
+                       it->print(os);
+                       it++;
+               }
+       }
 }
 
-bool indexed::all_of_type_idx(void) const
+/** Check whether all indices are of class idx. This function is used
+ *  internally to make sure that all constructed indexed objects really
+ *  carry indices and not some other classes. */
+void indexed::assert_all_indices_of_type_idx(void) const
 {
-    // used only inside of ASSERTs
-    for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) {
-        if (!is_ex_of_type(*cit,idx)) return false;
-    }
-    return true;
+       GINAC_ASSERT(seq.size() > 0);
+       exvector::const_iterator it = seq.begin() + 1, itend = seq.end();
+       while (it != itend) {
+               if (!is_ex_of_type(*it, idx))
+                       throw(std::invalid_argument("indices of indexed object must be of type idx"));
+               it++;
+       }
 }
 
 //////////
-// static member variables
+// global functions
 //////////
 
-// none
+/** Given a vector of indices, split them into two vectors, one containing
+ *  the free indices, the other containing the dummy indices. */
+static void find_free_and_dummy(exvector::const_iterator it, exvector::const_iterator itend, exvector & out_free, exvector & out_dummy)
+{
+       out_free.clear();
+       out_dummy.clear();
+
+       // No indices? Then do nothing
+       if (it == itend)
+               return;
+
+       // Only one index? Then it is a free one if it's not numeric
+       if (itend - it == 1) {
+               if (ex_to_idx(*it).is_symbolic())
+                       out_free.push_back(*it);
+               return;
+       }
+
+       // Sort index vector. This will cause dummy indices come to lie next
+       // to each other (because the sort order is defined to guarantee this).
+       exvector v(it, itend);
+       sort_index_vector(v);
+
+       // Find dummy pairs and free indices
+       it = v.begin(); itend = v.end();
+       exvector::const_iterator last = it++;
+       while (it != itend) {
+               if (is_dummy_pair(*it, *last)) {
+                       out_dummy.push_back(*last);
+                       it++;
+                       if (it == itend)
+                               return;
+               } else {
+                       if (!it->is_equal(*last) && ex_to_idx(*last).is_symbolic())
+                               out_free.push_back(*last);
+               }
+               last = it++;
+       }
+       if (ex_to_idx(*last).is_symbolic())
+               out_free.push_back(*last);
+}
+
+/** Check whether two sorted index vectors are consistent (i.e. equal). */
+static bool indices_consistent(const exvector & v1, const exvector & v2)
+{
+       // Number of indices must be the same
+       if (v1.size() != v2.size())
+               return false;
+
+       // And also the indices themselves
+       exvector::const_iterator ait = v1.begin(), aitend = v1.end(),
+                                bit = v2.begin(), bitend = v2.end();
+       while (ait != aitend) {
+               if (!ait->is_equal(*bit))
+                       return false;
+               ait++; bit++;
+       }
+       return true;
+}
+
+exvector indexed::get_dummy_indices(void) const
+{
+       exvector free_indices, dummy_indices;
+       find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices);
+       return dummy_indices;
+}
+
+exvector indexed::get_free_indices(void) const
+{
+       exvector free_indices, dummy_indices;
+       find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices);
+       return free_indices;
+}
+
+exvector add::get_free_indices(void) const
+{
+       exvector free_indices;
+       for (unsigned i=0; i<nops(); i++) {
+               if (i == 0)
+                       free_indices = op(i).get_free_indices();
+               else {
+                       exvector free_indices_of_term = op(i).get_free_indices();
+                       if (!indices_consistent(free_indices, free_indices_of_term))
+                               throw (std::runtime_error("add::get_free_indices: inconsistent indices in sum"));
+               }
+       }
+       return free_indices;
+}
+
+exvector mul::get_free_indices(void) const
+{
+       // Concatenate free indices of all factors
+       exvector un;
+       for (unsigned i=0; i<nops(); i++) {
+               exvector free_indices_of_factor = op(i).get_free_indices();
+               un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end());
+       }
+
+       // And remove the dummy indices
+       exvector free_indices, dummy_indices;
+       find_free_and_dummy(un.begin(), un.end(), free_indices, dummy_indices);
+       return free_indices;
+}
+
+exvector ncmul::get_free_indices(void) const
+{
+       // Concatenate free indices of all factors
+       exvector un;
+       for (unsigned i=0; i<nops(); i++) {
+               exvector free_indices_of_factor = op(i).get_free_indices();
+               un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end());
+       }
+
+       // And remove the dummy indices
+       exvector free_indices, dummy_indices;
+       find_free_and_dummy(un.begin(), un.end(), free_indices, dummy_indices);
+       return free_indices;
+}
+
+exvector power::get_free_indices(void) const
+{
+       // Return free indices of basis
+       return basis.get_free_indices();
+}
+
+/** Simplify product of indexed expressions (commutative, noncommutative and
+ *  simple squares), return list of free indices. */
+ex simplify_indexed_product(const ex & e, exvector & free_indices, const scalar_products & sp)
+{
+       // Remember whether the product was commutative or noncommutative
+       // (because we chop it into factors and need to reassemble later)
+       bool non_commutative = is_ex_exactly_of_type(e, ncmul);
+
+       // Collect factors in an exvector, store squares twice
+       exvector v;
+       v.reserve(e.nops() * 2);
+
+       if (is_ex_exactly_of_type(e, power)) {
+               // We only get called for simple squares, split a^2 -> a*a
+               GINAC_ASSERT(e.op(1).is_equal(_ex2()));
+               v.push_back(e.op(0));
+               v.push_back(e.op(0));
+       } else {
+               for (int i=0; i<e.nops(); i++) {
+                       ex f = e.op(i);
+                       if (is_ex_exactly_of_type(f, power) && f.op(1).is_equal(_ex2())) {
+                               v.push_back(f.op(0));
+                   v.push_back(f.op(0));
+                       } else if (is_ex_exactly_of_type(f, ncmul)) {
+                               // Noncommutative factor found, split it as well
+                               non_commutative = true; // everything becomes noncommutative, ncmul will sort out the commutative factors later
+                               for (int j=0; j<f.nops(); i++)
+                                       v.push_back(f.op(j));
+                       } else
+                               v.push_back(f);
+               }
+       }
+
+       // Perform contractions
+       bool something_changed = false;
+       GINAC_ASSERT(v.size() > 1);
+       exvector::iterator it1, itend = v.end(), next_to_last = itend - 1;
+       for (it1 = v.begin(); it1 != next_to_last; it1++) {
+
+try_again:
+               if (!is_ex_of_type(*it1, indexed))
+                       continue;
+
+               // Indexed factor found, look for contraction candidates
+               exvector::iterator it2;
+               for (it2 = it1 + 1; it2 != itend; it2++) {
+
+                       if (!is_ex_of_type(*it2, indexed))
+                               continue;
+
+                       // Check whether the two factors share dummy indices
+                       exvector un(ex_to_indexed(*it1).seq.begin() + 1, ex_to_indexed(*it1).seq.end());
+                       un.insert(un.end(), ex_to_indexed(*it2).seq.begin() + 1, ex_to_indexed(*it2).seq.end());
+                       exvector free, dummy;
+                       find_free_and_dummy(un.begin(), un.end(), free, dummy);
+                       if (dummy.size() == 0)
+                               continue;
+
+                       // At least one dummy index, is it a defined scalar product?
+                       if (free.size() == 0) {
+                               if (sp.is_defined(*it1, *it2)) {
+                                       *it1 = sp.evaluate(*it1, *it2);
+                                       *it2 = _ex1();
+                                       something_changed = true;
+                                       goto try_again;
+                               }
+                       }
+
+                       // Try to contract the first one with the second one
+                       bool contracted = it1->op(0).bp->contract_with(it1, it2, v);
+                       if (!contracted) {
+
+                               // That didn't work; maybe the second object knows how to
+                               // contract itself with the first one
+                               contracted = it2->op(0).bp->contract_with(it2, it1, v);
+                       }
+                       if (contracted) {
+                               something_changed = true;
+
+                               // Both objects may have new indices now or they might
+                               // even not be indexed objects any more, so we have to
+                               // start over
+                               goto try_again;
+                       }
+               }
+       }
+
+       // Find free indices (concatenate them all and call find_free_and_dummy())
+       exvector un, dummy_indices;
+       it1 = v.begin(); itend = v.end();
+       while (it1 != itend) {
+               if (is_ex_of_type(*it1, indexed)) {
+                       const indexed & o = ex_to_indexed(*it1);
+                       un.insert(un.end(), o.seq.begin() + 1, o.seq.end());
+               }
+               it1++;
+       }
+       find_free_and_dummy(un.begin(), un.end(), free_indices, dummy_indices);
+
+       if (something_changed) {
+               if (non_commutative)
+                       return ncmul(v);
+               else
+                       return mul(v);
+       } else
+               return e;
+}
+
+/** Simplify indexed expression, return list of free indices. */
+ex simplify_indexed(const ex & e, exvector & free_indices, const scalar_products & sp)
+{
+       // Expand the expression
+       ex e_expanded = e.expand();
+
+       // Simplification of single indexed object: just find the free indices
+       if (is_ex_of_type(e_expanded, indexed)) {
+               const indexed &i = ex_to_indexed(e_expanded);
+               exvector dummy_indices;
+               find_free_and_dummy(i.seq.begin() + 1, i.seq.end(), free_indices, dummy_indices);
+               return e_expanded;
+       }
+
+       // Simplification of sum = sum of simplifications, check consistency of
+       // free indices in each term
+       if (is_ex_exactly_of_type(e_expanded, add)) {
+               ex sum = _ex0();
+
+               for (unsigned i=0; i<e_expanded.nops(); i++) {
+                       exvector free_indices_of_term;
+                       sum += simplify_indexed(e_expanded.op(i), free_indices_of_term, sp);
+                       if (i == 0)
+                               free_indices = free_indices_of_term;
+                       else if (!indices_consistent(free_indices, free_indices_of_term))
+                               throw (std::runtime_error("simplify_indexed: inconsistent indices in sum"));
+               }
+
+               return sum;
+       }
+
+       // Simplification of products
+       if (is_ex_exactly_of_type(e_expanded, mul)
+        || is_ex_exactly_of_type(e_expanded, ncmul)
+        || (is_ex_exactly_of_type(e_expanded, power) && is_ex_of_type(e_expanded.op(0), indexed) && e_expanded.op(1).is_equal(_ex2())))
+               return simplify_indexed_product(e_expanded, free_indices, sp);
+
+       // Cannot do anything
+       free_indices.clear();
+       return e_expanded;
+}
+
+ex simplify_indexed(const ex & e)
+{
+       exvector free_indices;
+       scalar_products sp;
+       return simplify_indexed(e, free_indices, sp);
+}
+
+ex simplify_indexed(const ex & e, const scalar_products & sp)
+{
+       exvector free_indices;
+       return simplify_indexed(e, free_indices, sp);
+}
 
 //////////
-// global constants
+// helper classes
 //////////
 
-const indexed some_indexed;
-const type_info & typeid_indexed=typeid(some_indexed);
+void scalar_products::add(const ex & v1, const ex & v2, const ex & sp)
+{
+       spm[make_key(v1, v2)] = sp;
+}
+
+void scalar_products::clear(void)
+{
+       spm.clear();
+}
+
+/** Check whether scalar product pair is defined. */
+bool scalar_products::is_defined(const ex & v1, const ex & v2) const
+{
+       return spm.find(make_key(v1, v2)) != spm.end();
+}
+
+/** Return value of defined scalar product pair. */
+ex scalar_products::evaluate(const ex & v1, const ex & v2) const
+{
+       return spm.find(make_key(v1, v2))->second;
+}
+
+void scalar_products::debugprint(void) const
+{
+       std::cerr << "map size=" << spm.size() << std::endl;
+       for (spmap::const_iterator cit=spm.begin(); cit!=spm.end(); ++cit) {
+               const spmapkey & k = cit->first;
+               std::cerr << "item key=(" << k.first << "," << k.second;
+               std::cerr << "), value=" << cit->second << std::endl;
+       }
+}
+
+/** Make key from object pair. */
+spmapkey scalar_products::make_key(const ex & v1, const ex & v2)
+{
+       // If indexed, extract base objects
+       ex s1 = is_ex_of_type(v1, indexed) ? v1.op(0) : v1;
+       ex s2 = is_ex_of_type(v2, indexed) ? v2.op(0) : v2;
+
+       // Enforce canonical order in pair
+       if (s1.compare(s2) > 0)
+               return spmapkey(s2, s1);
+       else
+               return spmapkey(s1, s2);
+}
 
-#ifndef NO_NAMESPACE_GINAC
 } // namespace GiNaC
-#endif // ndef NO_NAMESPACE_GINAC