]> www.ginac.de Git - ginac.git/blobdiff - ginac/indexed.cpp
Removed debugging code.
[ginac.git] / ginac / indexed.cpp
index fb34df9502a861c35f32cd739f01c4410e605ed6..edbc730037e9f10036e8fbadea2462af57bb85f0 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's indexed expressions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -20,6 +20,8 @@
  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  */
 
+#include <iostream>
+#include <sstream>
 #include <stdexcept>
 
 #include "indexed.h"
 #include "mul.h"
 #include "ncmul.h"
 #include "power.h"
+#include "relational.h"
+#include "symmetry.h"
+#include "operators.h"
+#include "lst.h"
 #include "archive.h"
 #include "utils.h"
-#include "debugmsg.h"
 
 namespace GiNaC {
 
-GINAC_IMPLEMENT_REGISTERED_CLASS(indexed, exprseq)
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(indexed, exprseq,
+  print_func<print_context>(&indexed::do_print).
+  print_func<print_latex>(&indexed::do_print_latex).
+  print_func<print_tree>(&indexed::do_print_tree))
 
 //////////
-// default constructor, destructor, copy constructor assignment operator and helpers
+// default constructor
 //////////
 
-indexed::indexed() : symmetry(unknown)
+indexed::indexed() : symtree(sy_none())
 {
-       debugmsg("indexed default constructor", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
 }
 
-void indexed::copy(const indexed & other)
-{
-       inherited::copy(other);
-       symmetry = other.symmetry;
-}
-
-void indexed::destroy(bool call_parent)
-{
-       if (call_parent)
-               inherited::destroy(call_parent);
-}
-
 //////////
 // other constructors
 //////////
 
-indexed::indexed(const ex & b) : inherited(b), symmetry(unknown)
+indexed::indexed(const ex & b) : inherited(b), symtree(sy_none())
 {
-       debugmsg("indexed constructor from ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const ex & i1) : inherited(b, i1), symmetry(unknown)
+indexed::indexed(const ex & b, const ex & i1) : inherited(b, i1), symtree(sy_none())
 {
-       debugmsg("indexed constructor from ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const ex & i1, const ex & i2) : inherited(b, i1, i2), symmetry(unknown)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(sy_none())
 {
-       debugmsg("indexed constructor from ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symmetry(unknown)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(sy_none())
 {
-       debugmsg("indexed constructor from ex,ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symmetry(unknown)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(sy_none())
 {
-       debugmsg("indexed constructor from ex,ex,ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, symmetry_type symm, const ex & i1, const ex & i2) : inherited(b, i1, i2), symmetry(symm)
+indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(symm)
 {
-       debugmsg("indexed constructor from ex,symmetry,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, symmetry_type symm, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symmetry(symm)
+indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(symm)
 {
-       debugmsg("indexed constructor from ex,symmetry,ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, symmetry_type symm, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symmetry(symm)
+indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(symm)
 {
-       debugmsg("indexed constructor from ex,symmetry,ex,ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const exvector & v) : inherited(b), symmetry(unknown)
+indexed::indexed(const ex & b, const exvector & v) : inherited(b), symtree(sy_none())
 {
-       debugmsg("indexed constructor from ex,exvector", LOGLEVEL_CONSTRUCT);
        seq.insert(seq.end(), v.begin(), v.end());
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, symmetry_type symm, const exvector & v) : inherited(b), symmetry(symm)
+indexed::indexed(const ex & b, const symmetry & symm, const exvector & v) : inherited(b), symtree(symm)
 {
-       debugmsg("indexed constructor from ex,symmetry,exvector", LOGLEVEL_CONSTRUCT);
        seq.insert(seq.end(), v.begin(), v.end());
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(symmetry_type symm, const exprseq & es) : inherited(es), symmetry(symm)
+indexed::indexed(const symmetry & symm, const exprseq & es) : inherited(es), symtree(symm)
 {
-       debugmsg("indexed constructor from symmetry,exprseq", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
 }
 
-indexed::indexed(symmetry_type symm, const exvector & v, bool discardable) : inherited(v, discardable), symmetry(symm)
+indexed::indexed(const symmetry & symm, const exvector & v, bool discardable) : inherited(v, discardable), symtree(symm)
 {
-       debugmsg("indexed constructor from symmetry,exvector", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
 }
 
-indexed::indexed(symmetry_type symm, exvector * vp) : inherited(vp), symmetry(symm)
+indexed::indexed(const symmetry & symm, std::auto_ptr<exvector> vp) : inherited(vp), symtree(symm)
 {
-       debugmsg("indexed constructor from symmetry,exvector *", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
 }
 
 //////////
 // archiving
 //////////
 
-/** Construct object from archive_node. */
-indexed::indexed(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
+indexed::indexed(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst)
 {
-       debugmsg("indexed constructor from archive_node", LOGLEVEL_CONSTRUCT);
-       unsigned int symm;
-       if (!(n.find_unsigned("symmetry", symm)))
-               throw (std::runtime_error("unknown indexed symmetry type in archive"));
-}
-
-/** Unarchive the object. */
-ex indexed::unarchive(const archive_node &n, const lst &sym_lst)
-{
-       return (new indexed(n, sym_lst))->setflag(status_flags::dynallocated);
+       if (!n.find_ex("symmetry", symtree, sym_lst)) {
+               // GiNaC versions <= 0.9.0 had an unsigned "symmetry" property
+               unsigned symm = 0;
+               n.find_unsigned("symmetry", symm);
+               switch (symm) {
+                       case 1:
+                               symtree = sy_symm();
+                               break;
+                       case 2:
+                               symtree = sy_anti();
+                               break;
+                       default:
+                               symtree = sy_none();
+                               break;
+               }
+               const_cast<symmetry &>(ex_to<symmetry>(symtree)).validate(seq.size() - 1);
+       }
 }
 
-/** Archive the object. */
 void indexed::archive(archive_node &n) const
 {
        inherited::archive(n);
-       n.add_unsigned("symmetry", symmetry);
+       n.add_ex("symmetry", symtree);
 }
 
+DEFAULT_UNARCHIVE(indexed)
+
 //////////
-// functions overriding virtual functions from bases classes
+// functions overriding virtual functions from base classes
 //////////
 
-void indexed::printraw(std::ostream & os) const
+void indexed::printindices(const print_context & c, unsigned level) const
 {
-       debugmsg("indexed printraw", LOGLEVEL_PRINT);
-       GINAC_ASSERT(seq.size() > 0);
+       if (seq.size() > 1) {
+
+               exvector::const_iterator it=seq.begin() + 1, itend = seq.end();
+
+               if (is_a<print_latex>(c)) {
+
+                       // TeX output: group by variance
+                       bool first = true;
+                       bool covariant = true;
+
+                       while (it != itend) {
+                               bool cur_covariant = (is_a<varidx>(*it) ? ex_to<varidx>(*it).is_covariant() : true);
+                               if (first || cur_covariant != covariant) { // Variance changed
+                                       // The empty {} prevents indices from ending up on top of each other
+                                       if (!first)
+                                               c.s << "}{}";
+                                       covariant = cur_covariant;
+                                       if (covariant)
+                                               c.s << "_{";
+                                       else
+                                               c.s << "^{";
+                               }
+                               it->print(c, level);
+                               c.s << " ";
+                               first = false;
+                               it++;
+                       }
+                       c.s << "}";
 
-       os << class_name() << "(";
-       seq[0].printraw(os);
-       os << ",indices=";
-       printrawindices(os);
-       os << ",hash=" << hashvalue << ",flags=" << flags << ")";
+               } else {
+
+                       // Ordinary output
+                       while (it != itend) {
+                               it->print(c, level);
+                               it++;
+                       }
+               }
+       }
 }
 
-void indexed::printtree(std::ostream & os, unsigned indent) const
+void indexed::print_indexed(const print_context & c, const char *openbrace, const char *closebrace, unsigned level) const
 {
-       debugmsg("indexed printtree", LOGLEVEL_PRINT);
-       GINAC_ASSERT(seq.size() > 0);
+       if (precedence() <= level)
+               c.s << openbrace << '(';
+       c.s << openbrace;
+       seq[0].print(c, precedence());
+       c.s << closebrace;
+       printindices(c, level);
+       if (precedence() <= level)
+               c.s << ')' << closebrace;
+}
 
-       os << std::string(indent, ' ') << class_name() << ", " << seq.size()-1 << " indices";
-       os << ",hash=" << hashvalue << ",flags=" << flags << std::endl;
-       printtreeindices(os, indent);
+void indexed::do_print(const print_context & c, unsigned level) const
+{
+       print_indexed(c, "", "", level);
 }
 
-void indexed::print(std::ostream & os, unsigned upper_precedence) const
+void indexed::do_print_latex(const print_latex & c, unsigned level) const
 {
-       debugmsg("indexed print", LOGLEVEL_PRINT);
-       GINAC_ASSERT(seq.size() > 0);
+       print_indexed(c, "{", "}", level);
+}
 
-       const ex & base = seq[0];
-       bool need_parens = is_ex_exactly_of_type(base, add) || is_ex_exactly_of_type(base, mul)
-                       || is_ex_exactly_of_type(base, ncmul) || is_ex_exactly_of_type(base, power);
-       if (need_parens)
-               os << "(";
-       os << base;
-       if (need_parens)
-               os << ")";
-       printindices(os);
+void indexed::do_print_tree(const print_tree & c, unsigned level) const
+{
+       c.s << std::string(level, ' ') << class_name() << " @" << this
+           << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
+           << ", " << seq.size()-1 << " indices"
+           << ", symmetry=" << symtree << std::endl;
+       seq[0].print(c, level + c.delta_indent);
+       printindices(c, level + c.delta_indent);
 }
 
 bool indexed::info(unsigned inf) const
@@ -230,6 +252,12 @@ bool indexed::info(unsigned inf) const
        return inherited::info(inf);
 }
 
+struct idx_is_not : public std::binary_function<ex, unsigned, bool> {
+       bool operator() (const ex & e, unsigned inf) const {
+               return !(ex_to<idx>(e).get_value().info(inf));
+       }
+};
+
 bool indexed::all_index_values_are(unsigned inf) const
 {
        // No indices? Then no property can be fulfilled
@@ -237,138 +265,75 @@ bool indexed::all_index_values_are(unsigned inf) const
                return false;
 
        // Check all indices
-       exvector::const_iterator it = seq.begin() + 1, itend = seq.end();
-       while (it != itend) {
-               GINAC_ASSERT(is_ex_of_type(*it, idx));
-               if (!ex_to_idx(*it).get_value().info(inf))
-                       return false;
-               it++;
-       }
-       return true;
+       return find_if(seq.begin() + 1, seq.end(), bind2nd(idx_is_not(), inf)) == seq.end();
 }
 
 int indexed::compare_same_type(const basic & other) const
 {
-       GINAC_ASSERT(is_of_type(other, indexed));
+       GINAC_ASSERT(is_a<indexed>(other));
        return inherited::compare_same_type(other);
 }
 
-// The main difference between sort_index_vector() and canonicalize_indices()
-// is that the latter takes the symmetry of the object into account. Once we
-// implement mixed symmetries, canonicalize_indices() will only be able to
-// reorder index pairs with known symmetry properties, while sort_index_vector()
-// always sorts the whole vector.
-
-/** Bring a vector of indices into a canonic order (don't care about the
- *  symmetry of the objects carrying the indices). Dummy indices will lie
- *  next to each other after the sorting.
- *
- *  @param v Index vector to be sorted */
-static void sort_index_vector(exvector &v)
-{
-       // Nothing to sort if less than 2 elements
-       if (v.size() < 2)
-               return;
-
-       // Simple bubble sort algorithm should be sufficient for the small
-       // number of indices expected
-       exvector::iterator it1 = v.begin(), itend = v.end(), next_to_last_idx = itend - 1;
-       while (it1 != next_to_last_idx) {
-               exvector::iterator it2 = it1 + 1;
-               while (it2 != itend) {
-                       if (it1->compare(*it2) > 0)
-                               it1->swap(*it2);
-                       it2++;
-               }
-               it1++;
-       }
-}
-
-/** Bring a vector of indices into a canonic order. This operation only makes
- *  sense if the object carrying these indices is either symmetric or totally
- *  antisymmetric with respect to the indices.
- *
- *  @param itbegin Start of index vector
- *  @param itend End of index vector
- *  @param antisymm Whether the object is antisymmetric
- *  @return the sign introduced by the reordering of the indices if the object
- *          is antisymmetric (or 0 if two equal indices are encountered). For
- *          symmetric objects, this is always +1. If the index vector was
- *          already in a canonic order this function returns INT_MAX. */
-static int canonicalize_indices(exvector::iterator itbegin, exvector::iterator itend, bool antisymm)
-{
-       bool something_changed = false;
-       int sig = 1;
-
-       // Simple bubble sort algorithm should be sufficient for the small
-       // number of indices expected
-       exvector::iterator it1 = itbegin, next_to_last_idx = itend - 1;
-       while (it1 != next_to_last_idx) {
-               exvector::iterator it2 = it1 + 1;
-               while (it2 != itend) {
-                       int cmpval = it1->compare(*it2);
-                       if (cmpval == 1) {
-                               it1->swap(*it2);
-                               something_changed = true;
-                               if (antisymm)
-                                       sig = -sig;
-                       } else if (cmpval == 0 && antisymm) {
-                               something_changed = true;
-                               sig = 0;
-                       }
-                       it2++;
-               }
-               it1++;
-       }
-
-       return something_changed ? sig : INT_MAX;
-}
-
 ex indexed::eval(int level) const
 {
        // First evaluate children, then we will end up here again
        if (level > 1)
-               return indexed(symmetry, evalchildren(level));
+               return indexed(ex_to<symmetry>(symtree), evalchildren(level));
+
+       const ex &base = seq[0];
+
+       // If the base object is 0, the whole object is 0
+       if (base.is_zero())
+               return _ex0;
+
+       // If the base object is a product, pull out the numeric factor
+       if (is_exactly_a<mul>(base) && is_exactly_a<numeric>(base.op(base.nops() - 1))) {
+               exvector v(seq);
+               ex f = ex_to<numeric>(base.op(base.nops() - 1));
+               v[0] = seq[0] / f;
+               return f * thiscontainer(v);
+       }
 
        // Canonicalize indices according to the symmetry properties
-       if (seq.size() > 2 && (symmetry != unknown && symmetry != mixed)) {
+       if (seq.size() > 2) {
                exvector v = seq;
-               int sig = canonicalize_indices(v.begin() + 1, v.end(), symmetry == antisymmetric);
+               GINAC_ASSERT(is_exactly_a<symmetry>(symtree));
+               int sig = canonicalize(v.begin() + 1, ex_to<symmetry>(symtree));
                if (sig != INT_MAX) {
                        // Something has changed while sorting indices, more evaluations later
                        if (sig == 0)
-                               return _ex0();
-                       return ex(sig) * thisexprseq(v);
+                               return _ex0;
+                       return ex(sig) * thiscontainer(v);
                }
        }
 
        // Let the class of the base object perform additional evaluations
-       return op(0).bp->eval_indexed(*this);
+       return ex_to<basic>(base).eval_indexed(*this);
 }
 
-ex indexed::thisexprseq(const exvector & v) const
+ex indexed::thiscontainer(const exvector & v) const
 {
-       return indexed(symmetry, v);
+       return indexed(ex_to<symmetry>(symtree), v);
 }
 
-ex indexed::thisexprseq(exvector * vp) const
+ex indexed::thiscontainer(std::auto_ptr<exvector> vp) const
 {
-       return indexed(symmetry, vp);
+       return indexed(ex_to<symmetry>(symtree), vp);
 }
 
 ex indexed::expand(unsigned options) const
 {
        GINAC_ASSERT(seq.size() > 0);
 
-       if ((options & expand_options::expand_indexed) && is_ex_exactly_of_type(seq[0], add)) {
+       if ((options & expand_options::expand_indexed) && is_exactly_a<add>(seq[0])) {
 
                // expand_indexed expands (a+b).i -> a.i + b.i
                const ex & base = seq[0];
-               ex sum = _ex0();
-               for (unsigned i=0; i<base.nops(); i++) {
+               ex sum = _ex0;
+               for (size_t i=0; i<base.nops(); i++) {
                        exvector s = seq;
                        s[0] = base.op(i);
-                       sum += thisexprseq(s).expand();
+                       sum += thiscontainer(s).expand();
                }
                return sum;
 
@@ -386,102 +351,53 @@ ex indexed::expand(unsigned options) const
 // non-virtual functions in this class
 //////////
 
-void indexed::printrawindices(std::ostream & os) const
-{
-       if (seq.size() > 1) {
-               exvector::const_iterator it=seq.begin() + 1, itend = seq.end();
-               while (it != itend) {
-                       it->printraw(os);
-                       it++;
-                       if (it != itend)
-                               os << ",";
-               }
-       }
-}
-
-void indexed::printtreeindices(std::ostream & os, unsigned indent) const
-{
-       if (seq.size() > 1) {
-               exvector::const_iterator it=seq.begin() + 1, itend = seq.end();
-               while (it != itend) {
-                       os << std::string(indent + delta_indent, ' ');
-                       it->printraw(os);
-                       os << std::endl;
-                       it++;
-               }
-       }
-}
-
-void indexed::printindices(std::ostream & os) const
-{
-       if (seq.size() > 1) {
-               exvector::const_iterator it=seq.begin() + 1, itend = seq.end();
-               while (it != itend) {
-                       it->print(os);
-                       it++;
-               }
-       }
-}
-
-/** Check whether all indices are of class idx. This function is used
- *  internally to make sure that all constructed indexed objects really
- *  carry indices and not some other classes. */
-void indexed::assert_all_indices_of_type_idx(void) const
+/** Check whether all indices are of class idx and validate the symmetry
+ *  tree. This function is used internally to make sure that all constructed
+ *  indexed objects really carry indices and not some other classes. */
+void indexed::validate() const
 {
        GINAC_ASSERT(seq.size() > 0);
        exvector::const_iterator it = seq.begin() + 1, itend = seq.end();
        while (it != itend) {
-               if (!is_ex_of_type(*it, idx))
+               if (!is_a<idx>(*it))
                        throw(std::invalid_argument("indices of indexed object must be of type idx"));
                it++;
        }
+
+       if (!symtree.is_zero()) {
+               if (!is_exactly_a<symmetry>(symtree))
+                       throw(std::invalid_argument("symmetry of indexed object must be of type symmetry"));
+               const_cast<symmetry &>(ex_to<symmetry>(symtree)).validate(seq.size() - 1);
+       }
+}
+
+/** Implementation of ex::diff() for an indexed object always returns 0.
+ *
+ *  @see ex::diff */
+ex indexed::derivative(const symbol & s) const
+{
+       return _ex0;
 }
 
 //////////
 // global functions
 //////////
 
-/** Given a vector of indices, split them into two vectors, one containing
- *  the free indices, the other containing the dummy indices. */
-static void find_free_and_dummy(exvector::const_iterator it, exvector::const_iterator itend, exvector & out_free, exvector & out_dummy)
-{
-       out_free.clear();
-       out_dummy.clear();
-
-       // No indices? Then do nothing
-       if (it == itend)
-               return;
-
-       // Only one index? Then it is a free one if it's not numeric
-       if (itend - it == 1) {
-               if (ex_to_idx(*it).is_symbolic())
-                       out_free.push_back(*it);
-               return;
-       }
-
-       // Sort index vector. This will cause dummy indices come to lie next
-       // to each other (because the sort order is defined to guarantee this).
-       exvector v(it, itend);
-       sort_index_vector(v);
-
-       // Find dummy pairs and free indices
-       it = v.begin(); itend = v.end();
-       exvector::const_iterator last = it++;
-       while (it != itend) {
-               if (is_dummy_pair(*it, *last)) {
-                       out_dummy.push_back(*last);
-                       it++;
-                       if (it == itend)
-                               return;
-               } else {
-                       if (!it->is_equal(*last) && ex_to_idx(*last).is_symbolic())
-                               out_free.push_back(*last);
-               }
-               last = it++;
+struct idx_is_equal_ignore_dim : public std::binary_function<ex, ex, bool> {
+       bool operator() (const ex &lh, const ex &rh) const
+       {
+               if (lh.is_equal(rh))
+                       return true;
+               else
+                       try {
+                               // Replacing the dimension might cause an error (e.g. with
+                               // index classes that only work in a fixed number of dimensions)
+                               return lh.is_equal(ex_to<idx>(rh).replace_dim(ex_to<idx>(lh).get_dim()));
+                       } catch (...) {
+                               return false;
+                       }
        }
-       if (ex_to_idx(*last).is_symbolic())
-               out_free.push_back(*last);
-}
+};
 
 /** Check whether two sorted index vectors are consistent (i.e. equal). */
 static bool indices_consistent(const exvector & v1, const exvector & v2)
@@ -490,35 +406,54 @@ static bool indices_consistent(const exvector & v1, const exvector & v2)
        if (v1.size() != v2.size())
                return false;
 
-       // And also the indices themselves
-       exvector::const_iterator ait = v1.begin(), aitend = v1.end(),
-                                bit = v2.begin(), bitend = v2.end();
-       while (ait != aitend) {
-               if (!ait->is_equal(*bit))
-                       return false;
-               ait++; bit++;
-       }
-       return true;
+       return equal(v1.begin(), v1.end(), v2.begin(), idx_is_equal_ignore_dim());
 }
 
-exvector indexed::get_dummy_indices(void) const
+exvector indexed::get_indices() const
+{
+       GINAC_ASSERT(seq.size() >= 1);
+       return exvector(seq.begin() + 1, seq.end());
+}
+
+exvector indexed::get_dummy_indices() const
 {
        exvector free_indices, dummy_indices;
        find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices);
        return dummy_indices;
 }
 
-exvector indexed::get_free_indices(void) const
+exvector indexed::get_dummy_indices(const indexed & other) const
+{
+       exvector indices = get_free_indices();
+       exvector other_indices = other.get_free_indices();
+       indices.insert(indices.end(), other_indices.begin(), other_indices.end());
+       exvector dummy_indices;
+       find_dummy_indices(indices, dummy_indices);
+       return dummy_indices;
+}
+
+bool indexed::has_dummy_index_for(const ex & i) const
+{
+       exvector::const_iterator it = seq.begin() + 1, itend = seq.end();
+       while (it != itend) {
+               if (is_dummy_pair(*it, i))
+                       return true;
+               it++;
+       }
+       return false;
+}
+
+exvector indexed::get_free_indices() const
 {
        exvector free_indices, dummy_indices;
        find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices);
        return free_indices;
 }
 
-exvector add::get_free_indices(void) const
+exvector add::get_free_indices() const
 {
        exvector free_indices;
-       for (unsigned i=0; i<nops(); i++) {
+       for (size_t i=0; i<nops(); i++) {
                if (i == 0)
                        free_indices = op(i).get_free_indices();
                else {
@@ -530,69 +465,208 @@ exvector add::get_free_indices(void) const
        return free_indices;
 }
 
-exvector mul::get_free_indices(void) const
+exvector mul::get_free_indices() const
 {
        // Concatenate free indices of all factors
        exvector un;
-       for (unsigned i=0; i<nops(); i++) {
+       for (size_t i=0; i<nops(); i++) {
                exvector free_indices_of_factor = op(i).get_free_indices();
                un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end());
        }
 
        // And remove the dummy indices
        exvector free_indices, dummy_indices;
-       find_free_and_dummy(un.begin(), un.end(), free_indices, dummy_indices);
+       find_free_and_dummy(un, free_indices, dummy_indices);
        return free_indices;
 }
 
-exvector ncmul::get_free_indices(void) const
+exvector ncmul::get_free_indices() const
 {
        // Concatenate free indices of all factors
        exvector un;
-       for (unsigned i=0; i<nops(); i++) {
+       for (size_t i=0; i<nops(); i++) {
                exvector free_indices_of_factor = op(i).get_free_indices();
                un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end());
        }
 
        // And remove the dummy indices
        exvector free_indices, dummy_indices;
-       find_free_and_dummy(un.begin(), un.end(), free_indices, dummy_indices);
+       find_free_and_dummy(un, free_indices, dummy_indices);
        return free_indices;
 }
 
-exvector power::get_free_indices(void) const
+exvector power::get_free_indices() const
 {
        // Return free indices of basis
        return basis.get_free_indices();
 }
 
+/** Rename dummy indices in an expression.
+ *
+ *  @param e Expression to work on
+ *  @param local_dummy_indices The set of dummy indices that appear in the
+ *    expression "e"
+ *  @param global_dummy_indices The set of dummy indices that have appeared
+ *    before and which we would like to use in "e", too. This gets updated
+ *    by the function */
+static ex rename_dummy_indices(const ex & e, exvector & global_dummy_indices, exvector & local_dummy_indices)
+{
+       size_t global_size = global_dummy_indices.size(),
+              local_size = local_dummy_indices.size();
+
+       // Any local dummy indices at all?
+       if (local_size == 0)
+               return e;
+
+       if (global_size < local_size) {
+
+               // More local indices than we encountered before, add the new ones
+               // to the global set
+               size_t old_global_size = global_size;
+               int remaining = local_size - global_size;
+               exvector::const_iterator it = local_dummy_indices.begin(), itend = local_dummy_indices.end();
+               while (it != itend && remaining > 0) {
+                       if (find_if(global_dummy_indices.begin(), global_dummy_indices.end(), bind2nd(op0_is_equal(), *it)) == global_dummy_indices.end()) {
+                               global_dummy_indices.push_back(*it);
+                               global_size++;
+                               remaining--;
+                       }
+                       it++;
+               }
+
+               // If this is the first set of local indices, do nothing
+               if (old_global_size == 0)
+                       return e;
+       }
+       GINAC_ASSERT(local_size <= global_size);
+
+       // Construct vectors of index symbols
+       exvector local_syms, global_syms;
+       local_syms.reserve(local_size);
+       global_syms.reserve(local_size);
+       for (size_t i=0; i<local_size; i++)
+               local_syms.push_back(local_dummy_indices[i].op(0));
+       shaker_sort(local_syms.begin(), local_syms.end(), ex_is_less(), ex_swap());
+       for (size_t i=0; i<local_size; i++) // don't use more global symbols than necessary
+               global_syms.push_back(global_dummy_indices[i].op(0));
+       shaker_sort(global_syms.begin(), global_syms.end(), ex_is_less(), ex_swap());
+
+       // Remove common indices
+       exvector local_uniq, global_uniq;
+       set_difference(local_syms.begin(), local_syms.end(), global_syms.begin(), global_syms.end(), std::back_insert_iterator<exvector>(local_uniq), ex_is_less());
+       set_difference(global_syms.begin(), global_syms.end(), local_syms.begin(), local_syms.end(), std::back_insert_iterator<exvector>(global_uniq), ex_is_less());
+
+       // Replace remaining non-common local index symbols by global ones
+       if (local_uniq.empty())
+               return e;
+       else {
+               while (global_uniq.size() > local_uniq.size())
+                       global_uniq.pop_back();
+               return e.subs(lst(local_uniq.begin(), local_uniq.end()), lst(global_uniq.begin(), global_uniq.end()), subs_options::no_pattern);
+       }
+}
+
+/** Given a set of indices, extract those of class varidx. */
+static void find_variant_indices(const exvector & v, exvector & variant_indices)
+{
+       exvector::const_iterator it1, itend;
+       for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) {
+               if (is_exactly_a<varidx>(*it1))
+                       variant_indices.push_back(*it1);
+       }
+}
+
+/** Raise/lower dummy indices in a single indexed objects to canonicalize their
+ *  variance.
+ *
+ *  @param e Object to work on
+ *  @param variant_dummy_indices The set of indices that might need repositioning (will be changed by this function)
+ *  @param moved_indices The set of indices that have been repositioned (will be changed by this function)
+ *  @return true if 'e' was changed */
+bool reposition_dummy_indices(ex & e, exvector & variant_dummy_indices, exvector & moved_indices)
+{
+       bool something_changed = false;
+
+       // If a dummy index is encountered for the first time in the
+       // product, pull it up, otherwise, pull it down
+       exvector::const_iterator it2, it2start, it2end;
+       for (it2start = ex_to<indexed>(e).seq.begin(), it2end = ex_to<indexed>(e).seq.end(), it2 = it2start + 1; it2 != it2end; ++it2) {
+               if (!is_exactly_a<varidx>(*it2))
+                       continue;
+
+               exvector::iterator vit, vitend;
+               for (vit = variant_dummy_indices.begin(), vitend = variant_dummy_indices.end(); vit != vitend; ++vit) {
+                       if (it2->op(0).is_equal(vit->op(0))) {
+                               if (ex_to<varidx>(*it2).is_covariant()) {
+                                       e = e.subs(lst(
+                                               *it2 == ex_to<varidx>(*it2).toggle_variance(),
+                                               ex_to<varidx>(*it2).toggle_variance() == *it2
+                                       ), subs_options::no_pattern);
+                                       something_changed = true;
+                                       it2 = ex_to<indexed>(e).seq.begin() + (it2 - it2start);
+                                       it2start = ex_to<indexed>(e).seq.begin();
+                                       it2end = ex_to<indexed>(e).seq.end();
+                               }
+                               moved_indices.push_back(*vit);
+                               variant_dummy_indices.erase(vit);
+                               goto next_index;
+                       }
+               }
+
+               for (vit = moved_indices.begin(), vitend = moved_indices.end(); vit != vitend; ++vit) {
+                       if (it2->op(0).is_equal(vit->op(0))) {
+                               if (ex_to<varidx>(*it2).is_contravariant()) {
+                                       e = e.subs(*it2 == ex_to<varidx>(*it2).toggle_variance(), subs_options::no_pattern);
+                                       something_changed = true;
+                                       it2 = ex_to<indexed>(e).seq.begin() + (it2 - it2start);
+                                       it2start = ex_to<indexed>(e).seq.begin();
+                                       it2end = ex_to<indexed>(e).seq.end();
+                               }
+                               goto next_index;
+                       }
+               }
+
+next_index: ;
+       }
+
+       return something_changed;
+}
+
+/* Ordering that only compares the base expressions of indexed objects. */
+struct ex_base_is_less : public std::binary_function<ex, ex, bool> {
+       bool operator() (const ex &lh, const ex &rh) const
+       {
+               return (is_a<indexed>(lh) ? lh.op(0) : lh).compare(is_a<indexed>(rh) ? rh.op(0) : rh) < 0;
+       }
+};
+
 /** Simplify product of indexed expressions (commutative, noncommutative and
  *  simple squares), return list of free indices. */
-ex simplify_indexed_product(const ex & e, exvector & free_indices, const scalar_products & sp)
+ex simplify_indexed_product(const ex & e, exvector & free_indices, exvector & dummy_indices, const scalar_products & sp)
 {
        // Remember whether the product was commutative or noncommutative
        // (because we chop it into factors and need to reassemble later)
-       bool non_commutative = is_ex_exactly_of_type(e, ncmul);
+       bool non_commutative = is_exactly_a<ncmul>(e);
 
        // Collect factors in an exvector, store squares twice
        exvector v;
        v.reserve(e.nops() * 2);
 
-       if (is_ex_exactly_of_type(e, power)) {
+       if (is_exactly_a<power>(e)) {
                // We only get called for simple squares, split a^2 -> a*a
-               GINAC_ASSERT(e.op(1).is_equal(_ex2()));
+               GINAC_ASSERT(e.op(1).is_equal(_ex2));
                v.push_back(e.op(0));
                v.push_back(e.op(0));
        } else {
-               for (int i=0; i<e.nops(); i++) {
+               for (size_t i=0; i<e.nops(); i++) {
                        ex f = e.op(i);
-                       if (is_ex_exactly_of_type(f, power) && f.op(1).is_equal(_ex2())) {
+                       if (is_exactly_a<power>(f) && f.op(1).is_equal(_ex2)) {
                                v.push_back(f.op(0));
                    v.push_back(f.op(0));
-                       } else if (is_ex_exactly_of_type(f, ncmul)) {
+                       } else if (is_exactly_a<ncmul>(f)) {
                                // Noncommutative factor found, split it as well
                                non_commutative = true; // everything becomes noncommutative, ncmul will sort out the commutative factors later
-                               for (int j=0; j<f.nops(); i++)
+                               for (size_t j=0; j<f.nops(); j++)
                                        v.push_back(f.op(j));
                        } else
                                v.push_back(f);
@@ -606,177 +680,571 @@ ex simplify_indexed_product(const ex & e, exvector & free_indices, const scalar_
        for (it1 = v.begin(); it1 != next_to_last; it1++) {
 
 try_again:
-               if (!is_ex_of_type(*it1, indexed))
+               if (!is_a<indexed>(*it1))
                        continue;
 
-               // Indexed factor found, look for contraction candidates
+               bool first_noncommutative = (it1->return_type() != return_types::commutative);
+
+               // Indexed factor found, get free indices and look for contraction
+               // candidates
+               exvector free1, dummy1;
+               find_free_and_dummy(ex_to<indexed>(*it1).seq.begin() + 1, ex_to<indexed>(*it1).seq.end(), free1, dummy1);
+
                exvector::iterator it2;
                for (it2 = it1 + 1; it2 != itend; it2++) {
 
-                       if (!is_ex_of_type(*it2, indexed))
+                       if (!is_a<indexed>(*it2))
                                continue;
 
+                       bool second_noncommutative = (it2->return_type() != return_types::commutative);
+
+                       // Find free indices of second factor and merge them with free
+                       // indices of first factor
+                       exvector un;
+                       find_free_and_dummy(ex_to<indexed>(*it2).seq.begin() + 1, ex_to<indexed>(*it2).seq.end(), un, dummy1);
+                       un.insert(un.end(), free1.begin(), free1.end());
+
                        // Check whether the two factors share dummy indices
-                       exvector un(ex_to_indexed(*it1).seq.begin() + 1, ex_to_indexed(*it1).seq.end());
-                       un.insert(un.end(), ex_to_indexed(*it2).seq.begin() + 1, ex_to_indexed(*it2).seq.end());
                        exvector free, dummy;
-                       find_free_and_dummy(un.begin(), un.end(), free, dummy);
-                       if (dummy.size() == 0)
+                       find_free_and_dummy(un, free, dummy);
+                       size_t num_dummies = dummy.size();
+                       if (num_dummies == 0)
                                continue;
 
                        // At least one dummy index, is it a defined scalar product?
-                       if (free.size() == 0) {
-                               if (sp.is_defined(*it1, *it2)) {
-                                       *it1 = sp.evaluate(*it1, *it2);
-                                       *it2 = _ex1();
-                                       something_changed = true;
-                                       goto try_again;
+                       bool contracted = false;
+                       if (free.empty()) {
+
+                               // Find minimal dimension of all indices of both factors
+                               exvector::const_iterator dit = ex_to<indexed>(*it1).seq.begin() + 1, ditend = ex_to<indexed>(*it1).seq.end();
+                               ex dim = ex_to<idx>(*dit).get_dim();
+                               ++dit;
+                               for (; dit != ditend; ++dit) {
+                                       dim = minimal_dim(dim, ex_to<idx>(*dit).get_dim());
+                               }
+                               dit = ex_to<indexed>(*it2).seq.begin() + 1;
+                               ditend = ex_to<indexed>(*it2).seq.end();
+                               for (; dit != ditend; ++dit) {
+                                       dim = minimal_dim(dim, ex_to<idx>(*dit).get_dim());
+                               }
+
+                               // User-defined scalar product?
+                               if (sp.is_defined(*it1, *it2, dim)) {
+
+                                       // Yes, substitute it
+                                       *it1 = sp.evaluate(*it1, *it2, dim);
+                                       *it2 = _ex1;
+                                       goto contraction_done;
                                }
                        }
 
                        // Try to contract the first one with the second one
-                       bool contracted = it1->op(0).bp->contract_with(it1, it2, v);
+                       contracted = ex_to<basic>(it1->op(0)).contract_with(it1, it2, v);
                        if (!contracted) {
 
                                // That didn't work; maybe the second object knows how to
                                // contract itself with the first one
-                               contracted = it2->op(0).bp->contract_with(it2, it1, v);
+                               contracted = ex_to<basic>(it2->op(0)).contract_with(it2, it1, v);
                        }
                        if (contracted) {
-                               something_changed = true;
+contraction_done:
+                               if (first_noncommutative || second_noncommutative
+                                || is_exactly_a<add>(*it1) || is_exactly_a<add>(*it2)
+                                || is_exactly_a<mul>(*it1) || is_exactly_a<mul>(*it2)
+                                || is_exactly_a<ncmul>(*it1) || is_exactly_a<ncmul>(*it2)) {
+
+                                       // One of the factors became a sum or product:
+                                       // re-expand expression and run again
+                                       // Non-commutative products are always re-expanded to give
+                                       // eval_ncmul() the chance to re-order and canonicalize
+                                       // the product
+                                       ex r = (non_commutative ? ex(ncmul(v, true)) : ex(mul(v)));
+                                       return simplify_indexed(r, free_indices, dummy_indices, sp);
+                               }
 
                                // Both objects may have new indices now or they might
                                // even not be indexed objects any more, so we have to
                                // start over
+                               something_changed = true;
                                goto try_again;
                        }
                }
        }
 
        // Find free indices (concatenate them all and call find_free_and_dummy())
-       exvector un, dummy_indices;
-       it1 = v.begin(); itend = v.end();
-       while (it1 != itend) {
-               if (is_ex_of_type(*it1, indexed)) {
-                       const indexed & o = ex_to_indexed(*it1);
-                       un.insert(un.end(), o.seq.begin() + 1, o.seq.end());
+       // and all dummy indices that appear
+       exvector un, individual_dummy_indices;
+       for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) {
+               exvector free_indices_of_factor;
+               if (is_a<indexed>(*it1)) {
+                       exvector dummy_indices_of_factor;
+                       find_free_and_dummy(ex_to<indexed>(*it1).seq.begin() + 1, ex_to<indexed>(*it1).seq.end(), free_indices_of_factor, dummy_indices_of_factor);
+                       individual_dummy_indices.insert(individual_dummy_indices.end(), dummy_indices_of_factor.begin(), dummy_indices_of_factor.end());
+               } else
+                       free_indices_of_factor = it1->get_free_indices();
+               un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end());
+       }
+       exvector local_dummy_indices;
+       find_free_and_dummy(un, free_indices, local_dummy_indices);
+       local_dummy_indices.insert(local_dummy_indices.end(), individual_dummy_indices.begin(), individual_dummy_indices.end());
+
+       // Filter out the dummy indices with variance
+       exvector variant_dummy_indices;
+       find_variant_indices(local_dummy_indices, variant_dummy_indices);
+
+       // Any indices with variance present at all?
+       if (!variant_dummy_indices.empty()) {
+
+               // Yes, bring the product into a canonical order that only depends on
+               // the base expressions of indexed objects
+               if (!non_commutative)
+                       std::sort(v.begin(), v.end(), ex_base_is_less());
+
+               exvector moved_indices;
+
+               // Iterate over all indexed objects in the product
+               for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) {
+                       if (!is_a<indexed>(*it1))
+                               continue;
+
+                       if (reposition_dummy_indices(*it1, variant_dummy_indices, moved_indices))
+                               something_changed = true;
                }
-               it1++;
        }
-       find_free_and_dummy(un.begin(), un.end(), free_indices, dummy_indices);
 
-       if (something_changed) {
-               if (non_commutative)
-                       return ncmul(v);
-               else
-                       return mul(v);
-       } else
-               return e;
+       ex r;
+       if (something_changed)
+               r = non_commutative ? ex(ncmul(v, true)) : ex(mul(v));
+       else
+               r = e;
+
+       // The result should be symmetric with respect to exchange of dummy
+       // indices, so if the symmetrization vanishes, the whole expression is
+       // zero. This detects things like eps.i.j.k * p.j * p.k = 0.
+       if (local_dummy_indices.size() >= 2) {
+               exvector dummy_syms;
+               dummy_syms.reserve(local_dummy_indices.size());
+               for (exvector::const_iterator it = local_dummy_indices.begin(); it != local_dummy_indices.end(); ++it)
+                       dummy_syms.push_back(it->op(0));
+               if (symmetrize(r, dummy_syms).is_zero()) {
+                       free_indices.clear();
+                       return _ex0;
+               }
+       }
+
+       // Dummy index renaming
+       r = rename_dummy_indices(r, dummy_indices, local_dummy_indices);
+
+       // Product of indexed object with a scalar?
+       if (is_exactly_a<mul>(r) && r.nops() == 2
+        && is_exactly_a<numeric>(r.op(1)) && is_a<indexed>(r.op(0)))
+               return ex_to<basic>(r.op(0).op(0)).scalar_mul_indexed(r.op(0), ex_to<numeric>(r.op(1)));
+       else
+               return r;
 }
 
+/** This structure stores the original and symmetrized versions of terms
+ *  obtained during the simplification of sums. */
+class terminfo {
+public:
+       terminfo(const ex & orig_, const ex & symm_) : orig(orig_), symm(symm_) {}
+
+       ex orig; /**< original term */
+       ex symm; /**< symmtrized term */
+};
+
+class terminfo_is_less {
+public:
+       bool operator() (const terminfo & ti1, const terminfo & ti2) const
+       {
+               return (ti1.symm.compare(ti2.symm) < 0);
+       }
+};
+
+/** This structure stores the individual symmetrized terms obtained during
+ *  the simplification of sums. */
+class symminfo {
+public:
+       symminfo() : num(0) {}
+
+       symminfo(const ex & symmterm_, const ex & orig_, size_t num_) : orig(orig_), num(num_)
+       {
+               if (is_exactly_a<mul>(symmterm_) && is_exactly_a<numeric>(symmterm_.op(symmterm_.nops()-1))) {
+                       coeff = symmterm_.op(symmterm_.nops()-1);
+                       symmterm = symmterm_ / coeff;
+               } else {
+                       coeff = 1;
+                       symmterm = symmterm_;
+               }
+       }
+
+       ex symmterm;  /**< symmetrized term */
+       ex coeff;     /**< coefficient of symmetrized term */
+       ex orig;      /**< original term */
+       size_t num; /**< how many symmetrized terms resulted from the original term */
+};
+
+class symminfo_is_less_by_symmterm {
+public:
+       bool operator() (const symminfo & si1, const symminfo & si2) const
+       {
+               return (si1.symmterm.compare(si2.symmterm) < 0);
+       }
+};
+
+class symminfo_is_less_by_orig {
+public:
+       bool operator() (const symminfo & si1, const symminfo & si2) const
+       {
+               return (si1.orig.compare(si2.orig) < 0);
+       }
+};
+
 /** Simplify indexed expression, return list of free indices. */
-ex simplify_indexed(const ex & e, exvector & free_indices, const scalar_products & sp)
+ex simplify_indexed(const ex & e, exvector & free_indices, exvector & dummy_indices, const scalar_products & sp)
 {
        // Expand the expression
        ex e_expanded = e.expand();
 
        // Simplification of single indexed object: just find the free indices
-       if (is_ex_of_type(e_expanded, indexed)) {
-               const indexed &i = ex_to_indexed(e_expanded);
-               exvector dummy_indices;
-               find_free_and_dummy(i.seq.begin() + 1, i.seq.end(), free_indices, dummy_indices);
-               return e_expanded;
+       // and perform dummy index renaming/repositioning
+       if (is_a<indexed>(e_expanded)) {
+
+               // Find the dummy indices
+               const indexed &i = ex_to<indexed>(e_expanded);
+               exvector local_dummy_indices;
+               find_free_and_dummy(i.seq.begin() + 1, i.seq.end(), free_indices, local_dummy_indices);
+
+               // Filter out the dummy indices with variance
+               exvector variant_dummy_indices;
+               find_variant_indices(local_dummy_indices, variant_dummy_indices);
+
+               // Any indices with variance present at all?
+               if (!variant_dummy_indices.empty()) {
+
+                       // Yes, reposition them
+                       exvector moved_indices;
+                       reposition_dummy_indices(e_expanded, variant_dummy_indices, moved_indices);
+               }
+
+               // Rename the dummy indices
+               return rename_dummy_indices(e_expanded, dummy_indices, local_dummy_indices);
        }
 
        // Simplification of sum = sum of simplifications, check consistency of
        // free indices in each term
-       if (is_ex_exactly_of_type(e_expanded, add)) {
-               ex sum = _ex0();
+       if (is_exactly_a<add>(e_expanded)) {
+               bool first = true;
+               ex sum;
+               free_indices.clear();
 
-               for (unsigned i=0; i<e_expanded.nops(); i++) {
+               for (size_t i=0; i<e_expanded.nops(); i++) {
                        exvector free_indices_of_term;
-                       sum += simplify_indexed(e_expanded.op(i), free_indices_of_term, sp);
-                       if (i == 0)
-                               free_indices = free_indices_of_term;
-                       else if (!indices_consistent(free_indices, free_indices_of_term))
-                               throw (std::runtime_error("simplify_indexed: inconsistent indices in sum"));
+                       ex term = simplify_indexed(e_expanded.op(i), free_indices_of_term, dummy_indices, sp);
+                       if (!term.is_zero()) {
+                               if (first) {
+                                       free_indices = free_indices_of_term;
+                                       sum = term;
+                                       first = false;
+                               } else {
+                                       if (!indices_consistent(free_indices, free_indices_of_term)) {
+                                               std::ostringstream s;
+                                               s << "simplify_indexed: inconsistent indices in sum: ";
+                                               s << exprseq(free_indices) << " vs. " << exprseq(free_indices_of_term);
+                                               throw (std::runtime_error(s.str()));
+                                       }
+                                       if (is_a<indexed>(sum) && is_a<indexed>(term))
+                                               sum = ex_to<basic>(sum.op(0)).add_indexed(sum, term);
+                                       else
+                                               sum += term;
+                               }
+                       }
                }
 
-               return sum;
+               // If the sum turns out to be zero, we are finished
+               if (sum.is_zero()) {
+                       free_indices.clear();
+                       return sum;
+               }
+
+               // More than one term and more than one dummy index?
+               size_t num_terms_orig = (is_exactly_a<add>(sum) ? sum.nops() : 1);
+               if (num_terms_orig < 2 || dummy_indices.size() < 2)
+                       return sum;
+
+               // Yes, construct vector of all dummy index symbols
+               exvector dummy_syms;
+               dummy_syms.reserve(dummy_indices.size());
+               for (exvector::const_iterator it = dummy_indices.begin(); it != dummy_indices.end(); ++it)
+                       dummy_syms.push_back(it->op(0));
+
+               // Chop the sum into terms and symmetrize each one over the dummy
+               // indices
+               std::vector<terminfo> terms;
+               for (size_t i=0; i<sum.nops(); i++) {
+                       const ex & term = sum.op(i);
+                       ex term_symm = symmetrize(term, dummy_syms);
+                       if (term_symm.is_zero())
+                               continue;
+                       terms.push_back(terminfo(term, term_symm));
+               }
+
+               // Sort by symmetrized terms
+               std::sort(terms.begin(), terms.end(), terminfo_is_less());
+
+               // Combine equal symmetrized terms
+               std::vector<terminfo> terms_pass2;
+               for (std::vector<terminfo>::const_iterator i=terms.begin(); i!=terms.end(); ) {
+                       size_t num = 1;
+                       std::vector<terminfo>::const_iterator j = i + 1;
+                       while (j != terms.end() && j->symm == i->symm) {
+                               num++;
+                               j++;
+                       }
+                       terms_pass2.push_back(terminfo(i->orig * num, i->symm * num));
+                       i = j;
+               }
+
+               // If there is only one term left, we are finished
+               if (terms_pass2.size() == 1)
+                       return terms_pass2[0].orig;
+
+               // Chop the symmetrized terms into subterms
+               std::vector<symminfo> sy;
+               for (std::vector<terminfo>::const_iterator i=terms_pass2.begin(); i!=terms_pass2.end(); ++i) {
+                       if (is_exactly_a<add>(i->symm)) {
+                               size_t num = i->symm.nops();
+                               for (size_t j=0; j<num; j++)
+                                       sy.push_back(symminfo(i->symm.op(j), i->orig, num));
+                       } else
+                               sy.push_back(symminfo(i->symm, i->orig, 1));
+               }
+
+               // Sort by symmetrized subterms
+               std::sort(sy.begin(), sy.end(), symminfo_is_less_by_symmterm());
+
+               // Combine equal symmetrized subterms
+               std::vector<symminfo> sy_pass2;
+               exvector result;
+               for (std::vector<symminfo>::const_iterator i=sy.begin(); i!=sy.end(); ) {
+
+                       // Combine equal terms
+                       std::vector<symminfo>::const_iterator j = i + 1;
+                       if (j != sy.end() && j->symmterm == i->symmterm) {
+
+                               // More than one term, collect the coefficients
+                               ex coeff = i->coeff;
+                               while (j != sy.end() && j->symmterm == i->symmterm) {
+                                       coeff += j->coeff;
+                                       j++;
+                               }
+
+                               // Add combined term to result
+                               if (!coeff.is_zero())
+                                       result.push_back(coeff * i->symmterm);
+
+                       } else {
+
+                               // Single term, store for second pass
+                               sy_pass2.push_back(*i);
+                       }
+
+                       i = j;
+               }
+
+               // Were there any remaining terms that didn't get combined?
+               if (sy_pass2.size() > 0) {
+
+                       // Yes, sort by their original terms
+                       std::sort(sy_pass2.begin(), sy_pass2.end(), symminfo_is_less_by_orig());
+
+                       for (std::vector<symminfo>::const_iterator i=sy_pass2.begin(); i!=sy_pass2.end(); ) {
+
+                               // How many symmetrized terms of this original term are left?
+                               size_t num = 1;
+                               std::vector<symminfo>::const_iterator j = i + 1;
+                               while (j != sy_pass2.end() && j->orig == i->orig) {
+                                       num++;
+                                       j++;
+                               }
+
+                               if (num == i->num) {
+
+                                       // All terms left, then add the original term to the result
+                                       result.push_back(i->orig);
+
+                               } else {
+
+                                       // Some terms were combined with others, add up the remaining symmetrized terms
+                                       std::vector<symminfo>::const_iterator k;
+                                       for (k=i; k!=j; k++)
+                                               result.push_back(k->coeff * k->symmterm);
+                               }
+
+                               i = j;
+                       }
+               }
+
+               // Add all resulting terms
+               ex sum_symm = (new add(result))->setflag(status_flags::dynallocated);
+               if (sum_symm.is_zero())
+                       free_indices.clear();
+               return sum_symm;
        }
 
        // Simplification of products
-       if (is_ex_exactly_of_type(e_expanded, mul)
-        || is_ex_exactly_of_type(e_expanded, ncmul)
-        || (is_ex_exactly_of_type(e_expanded, power) && is_ex_of_type(e_expanded.op(0), indexed) && e_expanded.op(1).is_equal(_ex2())))
-               return simplify_indexed_product(e_expanded, free_indices, sp);
+       if (is_exactly_a<mul>(e_expanded)
+        || is_exactly_a<ncmul>(e_expanded)
+        || (is_exactly_a<power>(e_expanded) && is_a<indexed>(e_expanded.op(0)) && e_expanded.op(1).is_equal(_ex2)))
+               return simplify_indexed_product(e_expanded, free_indices, dummy_indices, sp);
 
        // Cannot do anything
        free_indices.clear();
        return e_expanded;
 }
 
-ex simplify_indexed(const ex & e)
+/** Simplify/canonicalize expression containing indexed objects. This
+ *  performs contraction of dummy indices where possible and checks whether
+ *  the free indices in sums are consistent.
+ *
+ *  @return simplified expression */
+ex ex::simplify_indexed(unsigned options) const
 {
-       exvector free_indices;
+       exvector free_indices, dummy_indices;
        scalar_products sp;
-       return simplify_indexed(e, free_indices, sp);
+       return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp);
 }
 
-ex simplify_indexed(const ex & e, const scalar_products & sp)
+/** Simplify/canonicalize expression containing indexed objects. This
+ *  performs contraction of dummy indices where possible, checks whether
+ *  the free indices in sums are consistent, and automatically replaces
+ *  scalar products by known values if desired.
+ *
+ *  @param sp Scalar products to be replaced automatically
+ *  @return simplified expression */
+ex ex::simplify_indexed(const scalar_products & sp, unsigned options) const
 {
-       exvector free_indices;
-       return simplify_indexed(e, free_indices, sp);
+       exvector free_indices, dummy_indices;
+       return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp);
+}
+
+/** Symmetrize expression over its free indices. */
+ex ex::symmetrize() const
+{
+       return GiNaC::symmetrize(*this, get_free_indices());
+}
+
+/** Antisymmetrize expression over its free indices. */
+ex ex::antisymmetrize() const
+{
+       return GiNaC::antisymmetrize(*this, get_free_indices());
+}
+
+/** Symmetrize expression by cyclic permutation over its free indices. */
+ex ex::symmetrize_cyclic() const
+{
+       return GiNaC::symmetrize_cyclic(*this, get_free_indices());
 }
 
 //////////
 // helper classes
 //////////
 
+spmapkey::spmapkey(const ex & v1_, const ex & v2_, const ex & dim_) : dim(dim_)
+{
+       // If indexed, extract base objects
+       ex s1 = is_a<indexed>(v1_) ? v1_.op(0) : v1_;
+       ex s2 = is_a<indexed>(v2_) ? v2_.op(0) : v2_;
+
+       // Enforce canonical order in pair
+       if (s1.compare(s2) > 0) {
+               v1 = s2;
+               v2 = s1;
+       } else {
+               v1 = s1;
+               v2 = s2;
+       }
+}
+
+bool spmapkey::operator==(const spmapkey &other) const
+{
+       if (!v1.is_equal(other.v1))
+               return false;
+       if (!v2.is_equal(other.v2))
+               return false;
+       if (is_a<wildcard>(dim) || is_a<wildcard>(other.dim))
+               return true;
+       else
+               return dim.is_equal(other.dim);
+}
+
+bool spmapkey::operator<(const spmapkey &other) const
+{
+       int cmp = v1.compare(other.v1);
+       if (cmp)
+               return cmp < 0;
+       cmp = v2.compare(other.v2);
+       if (cmp)
+               return cmp < 0;
+
+       // Objects are equal, now check dimensions
+       if (is_a<wildcard>(dim) || is_a<wildcard>(other.dim))
+               return false;
+       else
+               return dim.compare(other.dim) < 0;
+}
+
+void spmapkey::debugprint() const
+{
+       std::cerr << "(" << v1 << "," << v2 << "," << dim << ")";
+}
+
 void scalar_products::add(const ex & v1, const ex & v2, const ex & sp)
 {
-       spm[make_key(v1, v2)] = sp;
+       spm[spmapkey(v1, v2)] = sp;
+}
+
+void scalar_products::add(const ex & v1, const ex & v2, const ex & dim, const ex & sp)
+{
+       spm[spmapkey(v1, v2, dim)] = sp;
+}
+
+void scalar_products::add_vectors(const lst & l, const ex & dim)
+{
+       // Add all possible pairs of products
+       for (lst::const_iterator it1 = l.begin(); it1 != l.end(); ++it1)
+               for (lst::const_iterator it2 = l.begin(); it2 != l.end(); ++it2)
+                       add(*it1, *it2, *it1 * *it2);
 }
 
-void scalar_products::clear(void)
+void scalar_products::clear()
 {
        spm.clear();
 }
 
 /** Check whether scalar product pair is defined. */
-bool scalar_products::is_defined(const ex & v1, const ex & v2) const
+bool scalar_products::is_defined(const ex & v1, const ex & v2, const ex & dim) const
 {
-       return spm.find(make_key(v1, v2)) != spm.end();
+       return spm.find(spmapkey(v1, v2, dim)) != spm.end();
 }
 
 /** Return value of defined scalar product pair. */
-ex scalar_products::evaluate(const ex & v1, const ex & v2) const
+ex scalar_products::evaluate(const ex & v1, const ex & v2, const ex & dim) const
 {
-       return spm.find(make_key(v1, v2))->second;
+       return spm.find(spmapkey(v1, v2, dim))->second;
 }
 
-void scalar_products::debugprint(void) const
+void scalar_products::debugprint() const
 {
        std::cerr << "map size=" << spm.size() << std::endl;
-       for (spmap::const_iterator cit=spm.begin(); cit!=spm.end(); ++cit) {
-               const spmapkey & k = cit->first;
-               std::cerr << "item key=(" << k.first << "," << k.second;
-               std::cerr << "), value=" << cit->second << std::endl;
+       spmap::const_iterator i = spm.begin(), end = spm.end();
+       while (i != end) {
+               const spmapkey & k = i->first;
+               std::cerr << "item key=";
+               k.debugprint();
+               std::cerr << ", value=" << i->second << std::endl;
+               ++i;
        }
 }
 
-/** Make key from object pair. */
-spmapkey scalar_products::make_key(const ex & v1, const ex & v2)
-{
-       // If indexed, extract base objects
-       ex s1 = is_ex_of_type(v1, indexed) ? v1.op(0) : v1;
-       ex s2 = is_ex_of_type(v2, indexed) ? v2.op(0) : v2;
-
-       // Enforce canonical order in pair
-       if (s1.compare(s2) > 0)
-               return spmapkey(s2, s1);
-       else
-               return spmapkey(s1, s2);
-}
-
 } // namespace GiNaC