]> www.ginac.de Git - ginac.git/blobdiff - ginac/indexed.cpp
* zeta(n,x) is now zetaderiv(n,s)
[ginac.git] / ginac / indexed.cpp
index 2d6419d6fcb0d4cdc5878bfdd5a103fae1d7da72..edbc730037e9f10036e8fbadea2462af57bb85f0 100644 (file)
 /** @file indexed.cpp
  *
- *  Implementation of GiNaC's index carrying objects. */
+ *  Implementation of GiNaC's indexed expressions. */
 
-#include <string>
+/*
+ *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, write to the Free Software
+ *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <iostream>
+#include <sstream>
+#include <stdexcept>
 
-#include "ginac.h"
+#include "indexed.h"
+#include "idx.h"
+#include "add.h"
+#include "mul.h"
+#include "ncmul.h"
+#include "power.h"
+#include "relational.h"
+#include "symmetry.h"
+#include "operators.h"
+#include "lst.h"
+#include "archive.h"
+#include "utils.h"
+
+namespace GiNaC {
+
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(indexed, exprseq,
+  print_func<print_context>(&indexed::do_print).
+  print_func<print_latex>(&indexed::do_print_latex).
+  print_func<print_tree>(&indexed::do_print_tree))
 
 //////////
-// default constructor, destructor, copy constructor assignment operator and helpers
+// default constructor
 //////////
 
-// public
-
-indexed::indexed()
+indexed::indexed() : symtree(sy_none())
 {
-    debugmsg("indexed default constructor",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_INDEXED;
+       tinfo_key = TINFO_indexed;
 }
 
-indexed::~indexed()
+//////////
+// other constructors
+//////////
+
+indexed::indexed(const ex & b) : inherited(b), symtree(sy_none())
 {
-    debugmsg("indexed destructor",LOGLEVEL_DESTRUCT);
-    destroy(0);
+       tinfo_key = TINFO_indexed;
+       validate();
 }
 
-indexed::indexed(indexed const & other)
+indexed::indexed(const ex & b, const ex & i1) : inherited(b, i1), symtree(sy_none())
 {
-    debugmsg("indexed copy constructor",LOGLEVEL_CONSTRUCT);
-    copy (other);
+       tinfo_key = TINFO_indexed;
+       validate();
 }
 
-indexed const & indexed::operator=(indexed const & other)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(sy_none())
 {
-    debugmsg("indexed operator=",LOGLEVEL_ASSIGNMENT);
-    if (this != &other) {
-        destroy(1);
-        copy(other);
-    }
-    return *this;
+       tinfo_key = TINFO_indexed;
+       validate();
 }
 
-// protected
+indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(sy_none())
+{
+       tinfo_key = TINFO_indexed;
+       validate();
+}
 
-void indexed::copy(indexed const & other)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(sy_none())
 {
-    exprseq::copy(other);
+       tinfo_key = TINFO_indexed;
+       validate();
 }
 
-void indexed::destroy(bool call_parent)
+indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(symm)
 {
-    if (call_parent) {
-        exprseq::destroy(call_parent);
-    }
+       tinfo_key = TINFO_indexed;
+       validate();
 }
 
-//////////
-// other constructors
-//////////
+indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(symm)
+{
+       tinfo_key = TINFO_indexed;
+       validate();
+}
 
-// public
+indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(symm)
+{
+       tinfo_key = TINFO_indexed;
+       validate();
+}
 
-indexed::indexed(ex const & i1) : exprseq(i1)
+indexed::indexed(const ex & b, const exvector & v) : inherited(b), symtree(sy_none())
 {
-    debugmsg("indexed constructor from ex",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_INDEXED;
-    ASSERT(all_of_type_idx());
+       seq.insert(seq.end(), v.begin(), v.end());
+       tinfo_key = TINFO_indexed;
+       validate();
 }
 
-indexed::indexed(ex const & i1, ex const & i2) : exprseq(i1,i2)
+indexed::indexed(const ex & b, const symmetry & symm, const exvector & v) : inherited(b), symtree(symm)
 {
-    debugmsg("indexed constructor from ex,ex",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_INDEXED;
-    ASSERT(all_of_type_idx());
+       seq.insert(seq.end(), v.begin(), v.end());
+       tinfo_key = TINFO_indexed;
+       validate();
 }
 
-indexed::indexed(ex const & i1, ex const & i2, ex const & i3)
-    : exprseq(i1,i2,i3)
+indexed::indexed(const symmetry & symm, const exprseq & es) : inherited(es), symtree(symm)
 {
-    debugmsg("indexed constructor from ex,ex,ex",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_INDEXED;
-    ASSERT(all_of_type_idx());
+       tinfo_key = TINFO_indexed;
 }
 
-indexed::indexed(exvector const & iv) : exprseq(iv)
+indexed::indexed(const symmetry & symm, const exvector & v, bool discardable) : inherited(v, discardable), symtree(symm)
 {
-    debugmsg("indexed constructor from exvector",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_INDEXED;
-    ASSERT(all_of_type_idx());
+       tinfo_key = TINFO_indexed;
 }
 
-indexed::indexed(exvector * ivp) : exprseq(ivp)
+indexed::indexed(const symmetry & symm, std::auto_ptr<exvector> vp) : inherited(vp), symtree(symm)
 {
-    debugmsg("indexed constructor from exvector *",LOGLEVEL_CONSTRUCT);
-    tinfo_key=TINFO_INDEXED;
-    ASSERT(all_of_type_idx());
+       tinfo_key = TINFO_indexed;
 }
 
 //////////
-// functions overriding virtual functions from bases classes
+// archiving
 //////////
 
-// public
-
-basic * indexed::duplicate() const
+indexed::indexed(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst)
 {
-    debugmsg("indexed duplicate",LOGLEVEL_DUPLICATE);
-    return new indexed(*this);
+       if (!n.find_ex("symmetry", symtree, sym_lst)) {
+               // GiNaC versions <= 0.9.0 had an unsigned "symmetry" property
+               unsigned symm = 0;
+               n.find_unsigned("symmetry", symm);
+               switch (symm) {
+                       case 1:
+                               symtree = sy_symm();
+                               break;
+                       case 2:
+                               symtree = sy_anti();
+                               break;
+                       default:
+                               symtree = sy_none();
+                               break;
+               }
+               const_cast<symmetry &>(ex_to<symmetry>(symtree)).validate(seq.size() - 1);
+       }
 }
 
-void indexed::printraw(ostream & os) const
+void indexed::archive(archive_node &n) const
 {
-    debugmsg("indexed printraw",LOGLEVEL_PRINT);
-    os << "indexed(indices=";
-    printrawindices(os);
-    os << ",hash=" << hashvalue << ",flags=" << flags << ")";
+       inherited::archive(n);
+       n.add_ex("symmetry", symtree);
 }
 
-void indexed::printtree(ostream & os, unsigned indent) const
+DEFAULT_UNARCHIVE(indexed)
+
+//////////
+// functions overriding virtual functions from base classes
+//////////
+
+void indexed::printindices(const print_context & c, unsigned level) const
 {
-    debugmsg("indexed printtree",LOGLEVEL_PRINT);
-    os << string(indent,' ') << "indexed: " << seq.size() << " indices";
-    os << ",hash=" << hashvalue << ",flags=" << flags << endl;
-    printtreeindices(os,indent);
+       if (seq.size() > 1) {
+
+               exvector::const_iterator it=seq.begin() + 1, itend = seq.end();
+
+               if (is_a<print_latex>(c)) {
+
+                       // TeX output: group by variance
+                       bool first = true;
+                       bool covariant = true;
+
+                       while (it != itend) {
+                               bool cur_covariant = (is_a<varidx>(*it) ? ex_to<varidx>(*it).is_covariant() : true);
+                               if (first || cur_covariant != covariant) { // Variance changed
+                                       // The empty {} prevents indices from ending up on top of each other
+                                       if (!first)
+                                               c.s << "}{}";
+                                       covariant = cur_covariant;
+                                       if (covariant)
+                                               c.s << "_{";
+                                       else
+                                               c.s << "^{";
+                               }
+                               it->print(c, level);
+                               c.s << " ";
+                               first = false;
+                               it++;
+                       }
+                       c.s << "}";
+
+               } else {
+
+                       // Ordinary output
+                       while (it != itend) {
+                               it->print(c, level);
+                               it++;
+                       }
+               }
+       }
 }
 
-void indexed::print(ostream & os, unsigned upper_precedence) const
+void indexed::print_indexed(const print_context & c, const char *openbrace, const char *closebrace, unsigned level) const
 {
-    debugmsg("indexed print",LOGLEVEL_PRINT);
-    os << "UNNAMEDINDEX";
-    printindices(os);
+       if (precedence() <= level)
+               c.s << openbrace << '(';
+       c.s << openbrace;
+       seq[0].print(c, precedence());
+       c.s << closebrace;
+       printindices(c, level);
+       if (precedence() <= level)
+               c.s << ')' << closebrace;
 }
 
-void indexed::printcsrc(ostream & os, unsigned type,
-                        unsigned upper_precedence) const
+void indexed::do_print(const print_context & c, unsigned level) const
 {
-    debugmsg("indexed print csrc",LOGLEVEL_PRINT);
-    print(os,upper_precedence);
+       print_indexed(c, "", "", level);
 }
 
-bool indexed::info(unsigned inf) const
+void indexed::do_print_latex(const print_latex & c, unsigned level) const
 {
-    if (inf==info_flags::indexed) return true;
-    if (inf==info_flags::has_indices) return seq.size()!=0;
-    return exprseq::info(inf);
+       print_indexed(c, "{", "}", level);
 }
 
-exvector indexed::get_indices(void) const
+void indexed::do_print_tree(const print_tree & c, unsigned level) const
 {
-    return seq;
+       c.s << std::string(level, ' ') << class_name() << " @" << this
+           << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
+           << ", " << seq.size()-1 << " indices"
+           << ", symmetry=" << symtree << std::endl;
+       seq[0].print(c, level + c.delta_indent);
+       printindices(c, level + c.delta_indent);
+}
 
-    /*
-    idxvector filtered_indices;
-    filtered_indices.reserve(indices.size());
-    for (idxvector::const_iterator cit=indices.begin(); cit!=indices.end(); ++cit) {
-        if ((*cit).get_type()==t) {
-            filtered_indices.push_back(*cit);
-        }
-    }
-    return filtered_indices;
-    */
+bool indexed::info(unsigned inf) const
+{
+       if (inf == info_flags::indexed) return true;
+       if (inf == info_flags::has_indices) return seq.size() > 1;
+       return inherited::info(inf);
 }
 
-// protected
+struct idx_is_not : public std::binary_function<ex, unsigned, bool> {
+       bool operator() (const ex & e, unsigned inf) const {
+               return !(ex_to<idx>(e).get_value().info(inf));
+       }
+};
 
-int indexed::compare_same_type(basic const & other) const
+bool indexed::all_index_values_are(unsigned inf) const
 {
-    ASSERT(is_of_type(other,indexed));
-    return exprseq::compare_same_type(other);
+       // No indices? Then no property can be fulfilled
+       if (seq.size() < 2)
+               return false;
+
+       // Check all indices
+       return find_if(seq.begin() + 1, seq.end(), bind2nd(idx_is_not(), inf)) == seq.end();
 }
 
-bool indexed::is_equal_same_type(basic const & other) const
+int indexed::compare_same_type(const basic & other) const
 {
-    ASSERT(is_of_type(other,indexed));
-    return exprseq::is_equal_same_type(other);
+       GINAC_ASSERT(is_a<indexed>(other));
+       return inherited::compare_same_type(other);
 }
 
-unsigned indexed::return_type(void) const
+ex indexed::eval(int level) const
 {
-    return return_types::noncommutative;
+       // First evaluate children, then we will end up here again
+       if (level > 1)
+               return indexed(ex_to<symmetry>(symtree), evalchildren(level));
+
+       const ex &base = seq[0];
+
+       // If the base object is 0, the whole object is 0
+       if (base.is_zero())
+               return _ex0;
+
+       // If the base object is a product, pull out the numeric factor
+       if (is_exactly_a<mul>(base) && is_exactly_a<numeric>(base.op(base.nops() - 1))) {
+               exvector v(seq);
+               ex f = ex_to<numeric>(base.op(base.nops() - 1));
+               v[0] = seq[0] / f;
+               return f * thiscontainer(v);
+       }
+
+       // Canonicalize indices according to the symmetry properties
+       if (seq.size() > 2) {
+               exvector v = seq;
+               GINAC_ASSERT(is_exactly_a<symmetry>(symtree));
+               int sig = canonicalize(v.begin() + 1, ex_to<symmetry>(symtree));
+               if (sig != INT_MAX) {
+                       // Something has changed while sorting indices, more evaluations later
+                       if (sig == 0)
+                               return _ex0;
+                       return ex(sig) * thiscontainer(v);
+               }
+       }
+
+       // Let the class of the base object perform additional evaluations
+       return ex_to<basic>(base).eval_indexed(*this);
 }
-   
-unsigned indexed::return_type_tinfo(void) const
+
+ex indexed::thiscontainer(const exvector & v) const
 {
-    return tinfo_key;
+       return indexed(ex_to<symmetry>(symtree), v);
 }
 
-ex indexed::thisexprseq(exvector const & v) const
+ex indexed::thiscontainer(std::auto_ptr<exvector> vp) const
 {
-    return indexed(v);
+       return indexed(ex_to<symmetry>(symtree), vp);
 }
 
-ex indexed::thisexprseq(exvector * vp) const
+ex indexed::expand(unsigned options) const
 {
-    return indexed(vp);
+       GINAC_ASSERT(seq.size() > 0);
+
+       if ((options & expand_options::expand_indexed) && is_exactly_a<add>(seq[0])) {
+
+               // expand_indexed expands (a+b).i -> a.i + b.i
+               const ex & base = seq[0];
+               ex sum = _ex0;
+               for (size_t i=0; i<base.nops(); i++) {
+                       exvector s = seq;
+                       s[0] = base.op(i);
+                       sum += thiscontainer(s).expand();
+               }
+               return sum;
+
+       } else
+               return inherited::expand(options);
 }
 
 //////////
@@ -205,67 +351,900 @@ ex indexed::thisexprseq(exvector * vp) const
 // non-virtual functions in this class
 //////////
 
-// protected
+/** Check whether all indices are of class idx and validate the symmetry
+ *  tree. This function is used internally to make sure that all constructed
+ *  indexed objects really carry indices and not some other classes. */
+void indexed::validate() const
+{
+       GINAC_ASSERT(seq.size() > 0);
+       exvector::const_iterator it = seq.begin() + 1, itend = seq.end();
+       while (it != itend) {
+               if (!is_a<idx>(*it))
+                       throw(std::invalid_argument("indices of indexed object must be of type idx"));
+               it++;
+       }
+
+       if (!symtree.is_zero()) {
+               if (!is_exactly_a<symmetry>(symtree))
+                       throw(std::invalid_argument("symmetry of indexed object must be of type symmetry"));
+               const_cast<symmetry &>(ex_to<symmetry>(symtree)).validate(seq.size() - 1);
+       }
+}
 
-void indexed::printrawindices(ostream & os) const
+/** Implementation of ex::diff() for an indexed object always returns 0.
+ *
+ *  @see ex::diff */
+ex indexed::derivative(const symbol & s) const
 {
-    if (seq.size()!=0) {
-        for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) {
-            (*cit).printraw(os);
-            os << ",";
-        }
-    }
+       return _ex0;
 }
 
-void indexed::printtreeindices(ostream & os, unsigned indent) const
+//////////
+// global functions
+//////////
+
+struct idx_is_equal_ignore_dim : public std::binary_function<ex, ex, bool> {
+       bool operator() (const ex &lh, const ex &rh) const
+       {
+               if (lh.is_equal(rh))
+                       return true;
+               else
+                       try {
+                               // Replacing the dimension might cause an error (e.g. with
+                               // index classes that only work in a fixed number of dimensions)
+                               return lh.is_equal(ex_to<idx>(rh).replace_dim(ex_to<idx>(lh).get_dim()));
+                       } catch (...) {
+                               return false;
+                       }
+       }
+};
+
+/** Check whether two sorted index vectors are consistent (i.e. equal). */
+static bool indices_consistent(const exvector & v1, const exvector & v2)
 {
-    if (seq.size()!=0) {
-        for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) {
-            os << string(indent+delta_indent,' ');
-            (*cit).printraw(os);
-            os << endl;
-        }
-    }
+       // Number of indices must be the same
+       if (v1.size() != v2.size())
+               return false;
+
+       return equal(v1.begin(), v1.end(), v2.begin(), idx_is_equal_ignore_dim());
 }
 
-void indexed::printindices(ostream & os) const
+exvector indexed::get_indices() const
 {
-    if (seq.size()!=0) {
-        if (seq.size()>1) {
-            os << "{";
-        }
-        exvector::const_iterator last=seq.end()-1;
-        exvector::const_iterator cit=seq.begin();
-        for (; cit!=last; ++cit) {
-            (*cit).print(os);
-            os << ",";
-        }
-        (*cit).print(os);
-        if (seq.size()>1) {
-            os << "}";
-        }
-    }
+       GINAC_ASSERT(seq.size() >= 1);
+       return exvector(seq.begin() + 1, seq.end());
 }
 
-bool indexed::all_of_type_idx(void) const
+exvector indexed::get_dummy_indices() const
 {
-    // used only inside of ASSERTs
-    for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) {
-        if (!is_ex_of_type(*cit,idx)) return false;
-    }
-    return true;
+       exvector free_indices, dummy_indices;
+       find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices);
+       return dummy_indices;
 }
 
-//////////
-// static member variables
-//////////
+exvector indexed::get_dummy_indices(const indexed & other) const
+{
+       exvector indices = get_free_indices();
+       exvector other_indices = other.get_free_indices();
+       indices.insert(indices.end(), other_indices.begin(), other_indices.end());
+       exvector dummy_indices;
+       find_dummy_indices(indices, dummy_indices);
+       return dummy_indices;
+}
 
-// none
+bool indexed::has_dummy_index_for(const ex & i) const
+{
+       exvector::const_iterator it = seq.begin() + 1, itend = seq.end();
+       while (it != itend) {
+               if (is_dummy_pair(*it, i))
+                       return true;
+               it++;
+       }
+       return false;
+}
+
+exvector indexed::get_free_indices() const
+{
+       exvector free_indices, dummy_indices;
+       find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices);
+       return free_indices;
+}
+
+exvector add::get_free_indices() const
+{
+       exvector free_indices;
+       for (size_t i=0; i<nops(); i++) {
+               if (i == 0)
+                       free_indices = op(i).get_free_indices();
+               else {
+                       exvector free_indices_of_term = op(i).get_free_indices();
+                       if (!indices_consistent(free_indices, free_indices_of_term))
+                               throw (std::runtime_error("add::get_free_indices: inconsistent indices in sum"));
+               }
+       }
+       return free_indices;
+}
+
+exvector mul::get_free_indices() const
+{
+       // Concatenate free indices of all factors
+       exvector un;
+       for (size_t i=0; i<nops(); i++) {
+               exvector free_indices_of_factor = op(i).get_free_indices();
+               un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end());
+       }
+
+       // And remove the dummy indices
+       exvector free_indices, dummy_indices;
+       find_free_and_dummy(un, free_indices, dummy_indices);
+       return free_indices;
+}
+
+exvector ncmul::get_free_indices() const
+{
+       // Concatenate free indices of all factors
+       exvector un;
+       for (size_t i=0; i<nops(); i++) {
+               exvector free_indices_of_factor = op(i).get_free_indices();
+               un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end());
+       }
+
+       // And remove the dummy indices
+       exvector free_indices, dummy_indices;
+       find_free_and_dummy(un, free_indices, dummy_indices);
+       return free_indices;
+}
+
+exvector power::get_free_indices() const
+{
+       // Return free indices of basis
+       return basis.get_free_indices();
+}
+
+/** Rename dummy indices in an expression.
+ *
+ *  @param e Expression to work on
+ *  @param local_dummy_indices The set of dummy indices that appear in the
+ *    expression "e"
+ *  @param global_dummy_indices The set of dummy indices that have appeared
+ *    before and which we would like to use in "e", too. This gets updated
+ *    by the function */
+static ex rename_dummy_indices(const ex & e, exvector & global_dummy_indices, exvector & local_dummy_indices)
+{
+       size_t global_size = global_dummy_indices.size(),
+              local_size = local_dummy_indices.size();
+
+       // Any local dummy indices at all?
+       if (local_size == 0)
+               return e;
+
+       if (global_size < local_size) {
+
+               // More local indices than we encountered before, add the new ones
+               // to the global set
+               size_t old_global_size = global_size;
+               int remaining = local_size - global_size;
+               exvector::const_iterator it = local_dummy_indices.begin(), itend = local_dummy_indices.end();
+               while (it != itend && remaining > 0) {
+                       if (find_if(global_dummy_indices.begin(), global_dummy_indices.end(), bind2nd(op0_is_equal(), *it)) == global_dummy_indices.end()) {
+                               global_dummy_indices.push_back(*it);
+                               global_size++;
+                               remaining--;
+                       }
+                       it++;
+               }
+
+               // If this is the first set of local indices, do nothing
+               if (old_global_size == 0)
+                       return e;
+       }
+       GINAC_ASSERT(local_size <= global_size);
+
+       // Construct vectors of index symbols
+       exvector local_syms, global_syms;
+       local_syms.reserve(local_size);
+       global_syms.reserve(local_size);
+       for (size_t i=0; i<local_size; i++)
+               local_syms.push_back(local_dummy_indices[i].op(0));
+       shaker_sort(local_syms.begin(), local_syms.end(), ex_is_less(), ex_swap());
+       for (size_t i=0; i<local_size; i++) // don't use more global symbols than necessary
+               global_syms.push_back(global_dummy_indices[i].op(0));
+       shaker_sort(global_syms.begin(), global_syms.end(), ex_is_less(), ex_swap());
+
+       // Remove common indices
+       exvector local_uniq, global_uniq;
+       set_difference(local_syms.begin(), local_syms.end(), global_syms.begin(), global_syms.end(), std::back_insert_iterator<exvector>(local_uniq), ex_is_less());
+       set_difference(global_syms.begin(), global_syms.end(), local_syms.begin(), local_syms.end(), std::back_insert_iterator<exvector>(global_uniq), ex_is_less());
+
+       // Replace remaining non-common local index symbols by global ones
+       if (local_uniq.empty())
+               return e;
+       else {
+               while (global_uniq.size() > local_uniq.size())
+                       global_uniq.pop_back();
+               return e.subs(lst(local_uniq.begin(), local_uniq.end()), lst(global_uniq.begin(), global_uniq.end()), subs_options::no_pattern);
+       }
+}
+
+/** Given a set of indices, extract those of class varidx. */
+static void find_variant_indices(const exvector & v, exvector & variant_indices)
+{
+       exvector::const_iterator it1, itend;
+       for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) {
+               if (is_exactly_a<varidx>(*it1))
+                       variant_indices.push_back(*it1);
+       }
+}
+
+/** Raise/lower dummy indices in a single indexed objects to canonicalize their
+ *  variance.
+ *
+ *  @param e Object to work on
+ *  @param variant_dummy_indices The set of indices that might need repositioning (will be changed by this function)
+ *  @param moved_indices The set of indices that have been repositioned (will be changed by this function)
+ *  @return true if 'e' was changed */
+bool reposition_dummy_indices(ex & e, exvector & variant_dummy_indices, exvector & moved_indices)
+{
+       bool something_changed = false;
+
+       // If a dummy index is encountered for the first time in the
+       // product, pull it up, otherwise, pull it down
+       exvector::const_iterator it2, it2start, it2end;
+       for (it2start = ex_to<indexed>(e).seq.begin(), it2end = ex_to<indexed>(e).seq.end(), it2 = it2start + 1; it2 != it2end; ++it2) {
+               if (!is_exactly_a<varidx>(*it2))
+                       continue;
+
+               exvector::iterator vit, vitend;
+               for (vit = variant_dummy_indices.begin(), vitend = variant_dummy_indices.end(); vit != vitend; ++vit) {
+                       if (it2->op(0).is_equal(vit->op(0))) {
+                               if (ex_to<varidx>(*it2).is_covariant()) {
+                                       e = e.subs(lst(
+                                               *it2 == ex_to<varidx>(*it2).toggle_variance(),
+                                               ex_to<varidx>(*it2).toggle_variance() == *it2
+                                       ), subs_options::no_pattern);
+                                       something_changed = true;
+                                       it2 = ex_to<indexed>(e).seq.begin() + (it2 - it2start);
+                                       it2start = ex_to<indexed>(e).seq.begin();
+                                       it2end = ex_to<indexed>(e).seq.end();
+                               }
+                               moved_indices.push_back(*vit);
+                               variant_dummy_indices.erase(vit);
+                               goto next_index;
+                       }
+               }
+
+               for (vit = moved_indices.begin(), vitend = moved_indices.end(); vit != vitend; ++vit) {
+                       if (it2->op(0).is_equal(vit->op(0))) {
+                               if (ex_to<varidx>(*it2).is_contravariant()) {
+                                       e = e.subs(*it2 == ex_to<varidx>(*it2).toggle_variance(), subs_options::no_pattern);
+                                       something_changed = true;
+                                       it2 = ex_to<indexed>(e).seq.begin() + (it2 - it2start);
+                                       it2start = ex_to<indexed>(e).seq.begin();
+                                       it2end = ex_to<indexed>(e).seq.end();
+                               }
+                               goto next_index;
+                       }
+               }
+
+next_index: ;
+       }
+
+       return something_changed;
+}
+
+/* Ordering that only compares the base expressions of indexed objects. */
+struct ex_base_is_less : public std::binary_function<ex, ex, bool> {
+       bool operator() (const ex &lh, const ex &rh) const
+       {
+               return (is_a<indexed>(lh) ? lh.op(0) : lh).compare(is_a<indexed>(rh) ? rh.op(0) : rh) < 0;
+       }
+};
+
+/** Simplify product of indexed expressions (commutative, noncommutative and
+ *  simple squares), return list of free indices. */
+ex simplify_indexed_product(const ex & e, exvector & free_indices, exvector & dummy_indices, const scalar_products & sp)
+{
+       // Remember whether the product was commutative or noncommutative
+       // (because we chop it into factors and need to reassemble later)
+       bool non_commutative = is_exactly_a<ncmul>(e);
+
+       // Collect factors in an exvector, store squares twice
+       exvector v;
+       v.reserve(e.nops() * 2);
+
+       if (is_exactly_a<power>(e)) {
+               // We only get called for simple squares, split a^2 -> a*a
+               GINAC_ASSERT(e.op(1).is_equal(_ex2));
+               v.push_back(e.op(0));
+               v.push_back(e.op(0));
+       } else {
+               for (size_t i=0; i<e.nops(); i++) {
+                       ex f = e.op(i);
+                       if (is_exactly_a<power>(f) && f.op(1).is_equal(_ex2)) {
+                               v.push_back(f.op(0));
+                   v.push_back(f.op(0));
+                       } else if (is_exactly_a<ncmul>(f)) {
+                               // Noncommutative factor found, split it as well
+                               non_commutative = true; // everything becomes noncommutative, ncmul will sort out the commutative factors later
+                               for (size_t j=0; j<f.nops(); j++)
+                                       v.push_back(f.op(j));
+                       } else
+                               v.push_back(f);
+               }
+       }
+
+       // Perform contractions
+       bool something_changed = false;
+       GINAC_ASSERT(v.size() > 1);
+       exvector::iterator it1, itend = v.end(), next_to_last = itend - 1;
+       for (it1 = v.begin(); it1 != next_to_last; it1++) {
+
+try_again:
+               if (!is_a<indexed>(*it1))
+                       continue;
+
+               bool first_noncommutative = (it1->return_type() != return_types::commutative);
+
+               // Indexed factor found, get free indices and look for contraction
+               // candidates
+               exvector free1, dummy1;
+               find_free_and_dummy(ex_to<indexed>(*it1).seq.begin() + 1, ex_to<indexed>(*it1).seq.end(), free1, dummy1);
+
+               exvector::iterator it2;
+               for (it2 = it1 + 1; it2 != itend; it2++) {
+
+                       if (!is_a<indexed>(*it2))
+                               continue;
+
+                       bool second_noncommutative = (it2->return_type() != return_types::commutative);
+
+                       // Find free indices of second factor and merge them with free
+                       // indices of first factor
+                       exvector un;
+                       find_free_and_dummy(ex_to<indexed>(*it2).seq.begin() + 1, ex_to<indexed>(*it2).seq.end(), un, dummy1);
+                       un.insert(un.end(), free1.begin(), free1.end());
+
+                       // Check whether the two factors share dummy indices
+                       exvector free, dummy;
+                       find_free_and_dummy(un, free, dummy);
+                       size_t num_dummies = dummy.size();
+                       if (num_dummies == 0)
+                               continue;
+
+                       // At least one dummy index, is it a defined scalar product?
+                       bool contracted = false;
+                       if (free.empty()) {
+
+                               // Find minimal dimension of all indices of both factors
+                               exvector::const_iterator dit = ex_to<indexed>(*it1).seq.begin() + 1, ditend = ex_to<indexed>(*it1).seq.end();
+                               ex dim = ex_to<idx>(*dit).get_dim();
+                               ++dit;
+                               for (; dit != ditend; ++dit) {
+                                       dim = minimal_dim(dim, ex_to<idx>(*dit).get_dim());
+                               }
+                               dit = ex_to<indexed>(*it2).seq.begin() + 1;
+                               ditend = ex_to<indexed>(*it2).seq.end();
+                               for (; dit != ditend; ++dit) {
+                                       dim = minimal_dim(dim, ex_to<idx>(*dit).get_dim());
+                               }
+
+                               // User-defined scalar product?
+                               if (sp.is_defined(*it1, *it2, dim)) {
+
+                                       // Yes, substitute it
+                                       *it1 = sp.evaluate(*it1, *it2, dim);
+                                       *it2 = _ex1;
+                                       goto contraction_done;
+                               }
+                       }
+
+                       // Try to contract the first one with the second one
+                       contracted = ex_to<basic>(it1->op(0)).contract_with(it1, it2, v);
+                       if (!contracted) {
+
+                               // That didn't work; maybe the second object knows how to
+                               // contract itself with the first one
+                               contracted = ex_to<basic>(it2->op(0)).contract_with(it2, it1, v);
+                       }
+                       if (contracted) {
+contraction_done:
+                               if (first_noncommutative || second_noncommutative
+                                || is_exactly_a<add>(*it1) || is_exactly_a<add>(*it2)
+                                || is_exactly_a<mul>(*it1) || is_exactly_a<mul>(*it2)
+                                || is_exactly_a<ncmul>(*it1) || is_exactly_a<ncmul>(*it2)) {
+
+                                       // One of the factors became a sum or product:
+                                       // re-expand expression and run again
+                                       // Non-commutative products are always re-expanded to give
+                                       // eval_ncmul() the chance to re-order and canonicalize
+                                       // the product
+                                       ex r = (non_commutative ? ex(ncmul(v, true)) : ex(mul(v)));
+                                       return simplify_indexed(r, free_indices, dummy_indices, sp);
+                               }
+
+                               // Both objects may have new indices now or they might
+                               // even not be indexed objects any more, so we have to
+                               // start over
+                               something_changed = true;
+                               goto try_again;
+                       }
+               }
+       }
+
+       // Find free indices (concatenate them all and call find_free_and_dummy())
+       // and all dummy indices that appear
+       exvector un, individual_dummy_indices;
+       for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) {
+               exvector free_indices_of_factor;
+               if (is_a<indexed>(*it1)) {
+                       exvector dummy_indices_of_factor;
+                       find_free_and_dummy(ex_to<indexed>(*it1).seq.begin() + 1, ex_to<indexed>(*it1).seq.end(), free_indices_of_factor, dummy_indices_of_factor);
+                       individual_dummy_indices.insert(individual_dummy_indices.end(), dummy_indices_of_factor.begin(), dummy_indices_of_factor.end());
+               } else
+                       free_indices_of_factor = it1->get_free_indices();
+               un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end());
+       }
+       exvector local_dummy_indices;
+       find_free_and_dummy(un, free_indices, local_dummy_indices);
+       local_dummy_indices.insert(local_dummy_indices.end(), individual_dummy_indices.begin(), individual_dummy_indices.end());
+
+       // Filter out the dummy indices with variance
+       exvector variant_dummy_indices;
+       find_variant_indices(local_dummy_indices, variant_dummy_indices);
+
+       // Any indices with variance present at all?
+       if (!variant_dummy_indices.empty()) {
+
+               // Yes, bring the product into a canonical order that only depends on
+               // the base expressions of indexed objects
+               if (!non_commutative)
+                       std::sort(v.begin(), v.end(), ex_base_is_less());
+
+               exvector moved_indices;
+
+               // Iterate over all indexed objects in the product
+               for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) {
+                       if (!is_a<indexed>(*it1))
+                               continue;
+
+                       if (reposition_dummy_indices(*it1, variant_dummy_indices, moved_indices))
+                               something_changed = true;
+               }
+       }
+
+       ex r;
+       if (something_changed)
+               r = non_commutative ? ex(ncmul(v, true)) : ex(mul(v));
+       else
+               r = e;
+
+       // The result should be symmetric with respect to exchange of dummy
+       // indices, so if the symmetrization vanishes, the whole expression is
+       // zero. This detects things like eps.i.j.k * p.j * p.k = 0.
+       if (local_dummy_indices.size() >= 2) {
+               exvector dummy_syms;
+               dummy_syms.reserve(local_dummy_indices.size());
+               for (exvector::const_iterator it = local_dummy_indices.begin(); it != local_dummy_indices.end(); ++it)
+                       dummy_syms.push_back(it->op(0));
+               if (symmetrize(r, dummy_syms).is_zero()) {
+                       free_indices.clear();
+                       return _ex0;
+               }
+       }
+
+       // Dummy index renaming
+       r = rename_dummy_indices(r, dummy_indices, local_dummy_indices);
+
+       // Product of indexed object with a scalar?
+       if (is_exactly_a<mul>(r) && r.nops() == 2
+        && is_exactly_a<numeric>(r.op(1)) && is_a<indexed>(r.op(0)))
+               return ex_to<basic>(r.op(0).op(0)).scalar_mul_indexed(r.op(0), ex_to<numeric>(r.op(1)));
+       else
+               return r;
+}
+
+/** This structure stores the original and symmetrized versions of terms
+ *  obtained during the simplification of sums. */
+class terminfo {
+public:
+       terminfo(const ex & orig_, const ex & symm_) : orig(orig_), symm(symm_) {}
+
+       ex orig; /**< original term */
+       ex symm; /**< symmtrized term */
+};
+
+class terminfo_is_less {
+public:
+       bool operator() (const terminfo & ti1, const terminfo & ti2) const
+       {
+               return (ti1.symm.compare(ti2.symm) < 0);
+       }
+};
+
+/** This structure stores the individual symmetrized terms obtained during
+ *  the simplification of sums. */
+class symminfo {
+public:
+       symminfo() : num(0) {}
+
+       symminfo(const ex & symmterm_, const ex & orig_, size_t num_) : orig(orig_), num(num_)
+       {
+               if (is_exactly_a<mul>(symmterm_) && is_exactly_a<numeric>(symmterm_.op(symmterm_.nops()-1))) {
+                       coeff = symmterm_.op(symmterm_.nops()-1);
+                       symmterm = symmterm_ / coeff;
+               } else {
+                       coeff = 1;
+                       symmterm = symmterm_;
+               }
+       }
+
+       ex symmterm;  /**< symmetrized term */
+       ex coeff;     /**< coefficient of symmetrized term */
+       ex orig;      /**< original term */
+       size_t num; /**< how many symmetrized terms resulted from the original term */
+};
+
+class symminfo_is_less_by_symmterm {
+public:
+       bool operator() (const symminfo & si1, const symminfo & si2) const
+       {
+               return (si1.symmterm.compare(si2.symmterm) < 0);
+       }
+};
+
+class symminfo_is_less_by_orig {
+public:
+       bool operator() (const symminfo & si1, const symminfo & si2) const
+       {
+               return (si1.orig.compare(si2.orig) < 0);
+       }
+};
+
+/** Simplify indexed expression, return list of free indices. */
+ex simplify_indexed(const ex & e, exvector & free_indices, exvector & dummy_indices, const scalar_products & sp)
+{
+       // Expand the expression
+       ex e_expanded = e.expand();
+
+       // Simplification of single indexed object: just find the free indices
+       // and perform dummy index renaming/repositioning
+       if (is_a<indexed>(e_expanded)) {
+
+               // Find the dummy indices
+               const indexed &i = ex_to<indexed>(e_expanded);
+               exvector local_dummy_indices;
+               find_free_and_dummy(i.seq.begin() + 1, i.seq.end(), free_indices, local_dummy_indices);
+
+               // Filter out the dummy indices with variance
+               exvector variant_dummy_indices;
+               find_variant_indices(local_dummy_indices, variant_dummy_indices);
+
+               // Any indices with variance present at all?
+               if (!variant_dummy_indices.empty()) {
+
+                       // Yes, reposition them
+                       exvector moved_indices;
+                       reposition_dummy_indices(e_expanded, variant_dummy_indices, moved_indices);
+               }
+
+               // Rename the dummy indices
+               return rename_dummy_indices(e_expanded, dummy_indices, local_dummy_indices);
+       }
+
+       // Simplification of sum = sum of simplifications, check consistency of
+       // free indices in each term
+       if (is_exactly_a<add>(e_expanded)) {
+               bool first = true;
+               ex sum;
+               free_indices.clear();
+
+               for (size_t i=0; i<e_expanded.nops(); i++) {
+                       exvector free_indices_of_term;
+                       ex term = simplify_indexed(e_expanded.op(i), free_indices_of_term, dummy_indices, sp);
+                       if (!term.is_zero()) {
+                               if (first) {
+                                       free_indices = free_indices_of_term;
+                                       sum = term;
+                                       first = false;
+                               } else {
+                                       if (!indices_consistent(free_indices, free_indices_of_term)) {
+                                               std::ostringstream s;
+                                               s << "simplify_indexed: inconsistent indices in sum: ";
+                                               s << exprseq(free_indices) << " vs. " << exprseq(free_indices_of_term);
+                                               throw (std::runtime_error(s.str()));
+                                       }
+                                       if (is_a<indexed>(sum) && is_a<indexed>(term))
+                                               sum = ex_to<basic>(sum.op(0)).add_indexed(sum, term);
+                                       else
+                                               sum += term;
+                               }
+                       }
+               }
+
+               // If the sum turns out to be zero, we are finished
+               if (sum.is_zero()) {
+                       free_indices.clear();
+                       return sum;
+               }
+
+               // More than one term and more than one dummy index?
+               size_t num_terms_orig = (is_exactly_a<add>(sum) ? sum.nops() : 1);
+               if (num_terms_orig < 2 || dummy_indices.size() < 2)
+                       return sum;
+
+               // Yes, construct vector of all dummy index symbols
+               exvector dummy_syms;
+               dummy_syms.reserve(dummy_indices.size());
+               for (exvector::const_iterator it = dummy_indices.begin(); it != dummy_indices.end(); ++it)
+                       dummy_syms.push_back(it->op(0));
+
+               // Chop the sum into terms and symmetrize each one over the dummy
+               // indices
+               std::vector<terminfo> terms;
+               for (size_t i=0; i<sum.nops(); i++) {
+                       const ex & term = sum.op(i);
+                       ex term_symm = symmetrize(term, dummy_syms);
+                       if (term_symm.is_zero())
+                               continue;
+                       terms.push_back(terminfo(term, term_symm));
+               }
+
+               // Sort by symmetrized terms
+               std::sort(terms.begin(), terms.end(), terminfo_is_less());
+
+               // Combine equal symmetrized terms
+               std::vector<terminfo> terms_pass2;
+               for (std::vector<terminfo>::const_iterator i=terms.begin(); i!=terms.end(); ) {
+                       size_t num = 1;
+                       std::vector<terminfo>::const_iterator j = i + 1;
+                       while (j != terms.end() && j->symm == i->symm) {
+                               num++;
+                               j++;
+                       }
+                       terms_pass2.push_back(terminfo(i->orig * num, i->symm * num));
+                       i = j;
+               }
+
+               // If there is only one term left, we are finished
+               if (terms_pass2.size() == 1)
+                       return terms_pass2[0].orig;
+
+               // Chop the symmetrized terms into subterms
+               std::vector<symminfo> sy;
+               for (std::vector<terminfo>::const_iterator i=terms_pass2.begin(); i!=terms_pass2.end(); ++i) {
+                       if (is_exactly_a<add>(i->symm)) {
+                               size_t num = i->symm.nops();
+                               for (size_t j=0; j<num; j++)
+                                       sy.push_back(symminfo(i->symm.op(j), i->orig, num));
+                       } else
+                               sy.push_back(symminfo(i->symm, i->orig, 1));
+               }
+
+               // Sort by symmetrized subterms
+               std::sort(sy.begin(), sy.end(), symminfo_is_less_by_symmterm());
+
+               // Combine equal symmetrized subterms
+               std::vector<symminfo> sy_pass2;
+               exvector result;
+               for (std::vector<symminfo>::const_iterator i=sy.begin(); i!=sy.end(); ) {
+
+                       // Combine equal terms
+                       std::vector<symminfo>::const_iterator j = i + 1;
+                       if (j != sy.end() && j->symmterm == i->symmterm) {
+
+                               // More than one term, collect the coefficients
+                               ex coeff = i->coeff;
+                               while (j != sy.end() && j->symmterm == i->symmterm) {
+                                       coeff += j->coeff;
+                                       j++;
+                               }
+
+                               // Add combined term to result
+                               if (!coeff.is_zero())
+                                       result.push_back(coeff * i->symmterm);
+
+                       } else {
+
+                               // Single term, store for second pass
+                               sy_pass2.push_back(*i);
+                       }
+
+                       i = j;
+               }
+
+               // Were there any remaining terms that didn't get combined?
+               if (sy_pass2.size() > 0) {
+
+                       // Yes, sort by their original terms
+                       std::sort(sy_pass2.begin(), sy_pass2.end(), symminfo_is_less_by_orig());
+
+                       for (std::vector<symminfo>::const_iterator i=sy_pass2.begin(); i!=sy_pass2.end(); ) {
+
+                               // How many symmetrized terms of this original term are left?
+                               size_t num = 1;
+                               std::vector<symminfo>::const_iterator j = i + 1;
+                               while (j != sy_pass2.end() && j->orig == i->orig) {
+                                       num++;
+                                       j++;
+                               }
+
+                               if (num == i->num) {
+
+                                       // All terms left, then add the original term to the result
+                                       result.push_back(i->orig);
+
+                               } else {
+
+                                       // Some terms were combined with others, add up the remaining symmetrized terms
+                                       std::vector<symminfo>::const_iterator k;
+                                       for (k=i; k!=j; k++)
+                                               result.push_back(k->coeff * k->symmterm);
+                               }
+
+                               i = j;
+                       }
+               }
+
+               // Add all resulting terms
+               ex sum_symm = (new add(result))->setflag(status_flags::dynallocated);
+               if (sum_symm.is_zero())
+                       free_indices.clear();
+               return sum_symm;
+       }
+
+       // Simplification of products
+       if (is_exactly_a<mul>(e_expanded)
+        || is_exactly_a<ncmul>(e_expanded)
+        || (is_exactly_a<power>(e_expanded) && is_a<indexed>(e_expanded.op(0)) && e_expanded.op(1).is_equal(_ex2)))
+               return simplify_indexed_product(e_expanded, free_indices, dummy_indices, sp);
+
+       // Cannot do anything
+       free_indices.clear();
+       return e_expanded;
+}
+
+/** Simplify/canonicalize expression containing indexed objects. This
+ *  performs contraction of dummy indices where possible and checks whether
+ *  the free indices in sums are consistent.
+ *
+ *  @return simplified expression */
+ex ex::simplify_indexed(unsigned options) const
+{
+       exvector free_indices, dummy_indices;
+       scalar_products sp;
+       return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp);
+}
+
+/** Simplify/canonicalize expression containing indexed objects. This
+ *  performs contraction of dummy indices where possible, checks whether
+ *  the free indices in sums are consistent, and automatically replaces
+ *  scalar products by known values if desired.
+ *
+ *  @param sp Scalar products to be replaced automatically
+ *  @return simplified expression */
+ex ex::simplify_indexed(const scalar_products & sp, unsigned options) const
+{
+       exvector free_indices, dummy_indices;
+       return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp);
+}
+
+/** Symmetrize expression over its free indices. */
+ex ex::symmetrize() const
+{
+       return GiNaC::symmetrize(*this, get_free_indices());
+}
+
+/** Antisymmetrize expression over its free indices. */
+ex ex::antisymmetrize() const
+{
+       return GiNaC::antisymmetrize(*this, get_free_indices());
+}
+
+/** Symmetrize expression by cyclic permutation over its free indices. */
+ex ex::symmetrize_cyclic() const
+{
+       return GiNaC::symmetrize_cyclic(*this, get_free_indices());
+}
 
 //////////
-// global constants
+// helper classes
 //////////
 
-const indexed some_indexed;
-type_info const & typeid_indexed=typeid(some_indexed);
+spmapkey::spmapkey(const ex & v1_, const ex & v2_, const ex & dim_) : dim(dim_)
+{
+       // If indexed, extract base objects
+       ex s1 = is_a<indexed>(v1_) ? v1_.op(0) : v1_;
+       ex s2 = is_a<indexed>(v2_) ? v2_.op(0) : v2_;
+
+       // Enforce canonical order in pair
+       if (s1.compare(s2) > 0) {
+               v1 = s2;
+               v2 = s1;
+       } else {
+               v1 = s1;
+               v2 = s2;
+       }
+}
+
+bool spmapkey::operator==(const spmapkey &other) const
+{
+       if (!v1.is_equal(other.v1))
+               return false;
+       if (!v2.is_equal(other.v2))
+               return false;
+       if (is_a<wildcard>(dim) || is_a<wildcard>(other.dim))
+               return true;
+       else
+               return dim.is_equal(other.dim);
+}
+
+bool spmapkey::operator<(const spmapkey &other) const
+{
+       int cmp = v1.compare(other.v1);
+       if (cmp)
+               return cmp < 0;
+       cmp = v2.compare(other.v2);
+       if (cmp)
+               return cmp < 0;
+
+       // Objects are equal, now check dimensions
+       if (is_a<wildcard>(dim) || is_a<wildcard>(other.dim))
+               return false;
+       else
+               return dim.compare(other.dim) < 0;
+}
+
+void spmapkey::debugprint() const
+{
+       std::cerr << "(" << v1 << "," << v2 << "," << dim << ")";
+}
+
+void scalar_products::add(const ex & v1, const ex & v2, const ex & sp)
+{
+       spm[spmapkey(v1, v2)] = sp;
+}
+
+void scalar_products::add(const ex & v1, const ex & v2, const ex & dim, const ex & sp)
+{
+       spm[spmapkey(v1, v2, dim)] = sp;
+}
+
+void scalar_products::add_vectors(const lst & l, const ex & dim)
+{
+       // Add all possible pairs of products
+       for (lst::const_iterator it1 = l.begin(); it1 != l.end(); ++it1)
+               for (lst::const_iterator it2 = l.begin(); it2 != l.end(); ++it2)
+                       add(*it1, *it2, *it1 * *it2);
+}
+
+void scalar_products::clear()
+{
+       spm.clear();
+}
+
+/** Check whether scalar product pair is defined. */
+bool scalar_products::is_defined(const ex & v1, const ex & v2, const ex & dim) const
+{
+       return spm.find(spmapkey(v1, v2, dim)) != spm.end();
+}
+
+/** Return value of defined scalar product pair. */
+ex scalar_products::evaluate(const ex & v1, const ex & v2, const ex & dim) const
+{
+       return spm.find(spmapkey(v1, v2, dim))->second;
+}
+
+void scalar_products::debugprint() const
+{
+       std::cerr << "map size=" << spm.size() << std::endl;
+       spmap::const_iterator i = spm.begin(), end = spm.end();
+       while (i != end) {
+               const spmapkey & k = i->first;
+               std::cerr << "item key=";
+               k.debugprint();
+               std::cerr << ", value=" << i->second << std::endl;
+               ++i;
+       }
+}
 
+} // namespace GiNaC