]> www.ginac.de Git - ginac.git/blobdiff - ginac/indexed.cpp
- dummy index renaming works better
[ginac.git] / ginac / indexed.cpp
index acbf7d489967445a4d1e2d52f79cf5d91f06d850..56fd0b6b4080ebaafa72845978bfea39d5198ae9 100644 (file)
@@ -29,6 +29,7 @@
 #include "mul.h"
 #include "ncmul.h"
 #include "power.h"
+#include "symmetry.h"
 #include "lst.h"
 #include "print.h"
 #include "archive.h"
@@ -43,7 +44,7 @@ GINAC_IMPLEMENT_REGISTERED_CLASS(indexed, exprseq)
 // default constructor, destructor, copy constructor assignment operator and helpers
 //////////
 
-indexed::indexed() : symmetry(unknown)
+indexed::indexed() : symtree(sy_none())
 {
        debugmsg("indexed default constructor", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
@@ -52,7 +53,7 @@ indexed::indexed() : symmetry(unknown)
 void indexed::copy(const indexed & other)
 {
        inherited::copy(other);
-       symmetry = other.symmetry;
+       symtree = other.symtree;
 }
 
 DEFAULT_DESTROY(indexed)
@@ -61,97 +62,94 @@ DEFAULT_DESTROY(indexed)
 // other constructors
 //////////
 
-indexed::indexed(const ex & b) : inherited(b), symmetry(unknown)
+indexed::indexed(const ex & b) : inherited(b), symtree(sy_none())
 {
        debugmsg("indexed constructor from ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const ex & i1) : inherited(b, i1), symmetry(unknown)
+indexed::indexed(const ex & b, const ex & i1) : inherited(b, i1), symtree(sy_none())
 {
        debugmsg("indexed constructor from ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const ex & i1, const ex & i2) : inherited(b, i1, i2), symmetry(unknown)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(sy_none())
 {
        debugmsg("indexed constructor from ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symmetry(unknown)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(sy_none())
 {
        debugmsg("indexed constructor from ex,ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symmetry(unknown)
+indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(sy_none())
 {
        debugmsg("indexed constructor from ex,ex,ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, symmetry_type symm, const ex & i1, const ex & i2) : inherited(b, i1, i2), symmetry(symm)
+indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(symm)
 {
        debugmsg("indexed constructor from ex,symmetry,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, symmetry_type symm, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symmetry(symm)
+indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(symm)
 {
        debugmsg("indexed constructor from ex,symmetry,ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, symmetry_type symm, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symmetry(symm)
+indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(symm)
 {
        debugmsg("indexed constructor from ex,symmetry,ex,ex,ex,ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, const exvector & v) : inherited(b), symmetry(unknown)
+indexed::indexed(const ex & b, const exvector & v) : inherited(b), symtree(sy_none())
 {
        debugmsg("indexed constructor from ex,exvector", LOGLEVEL_CONSTRUCT);
        seq.insert(seq.end(), v.begin(), v.end());
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(const ex & b, symmetry_type symm, const exvector & v) : inherited(b), symmetry(symm)
+indexed::indexed(const ex & b, const symmetry & symm, const exvector & v) : inherited(b), symtree(symm)
 {
        debugmsg("indexed constructor from ex,symmetry,exvector", LOGLEVEL_CONSTRUCT);
        seq.insert(seq.end(), v.begin(), v.end());
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
+       validate();
 }
 
-indexed::indexed(symmetry_type symm, const exprseq & es) : inherited(es), symmetry(symm)
+indexed::indexed(const symmetry & symm, const exprseq & es) : inherited(es), symtree(symm)
 {
        debugmsg("indexed constructor from symmetry,exprseq", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
 }
 
-indexed::indexed(symmetry_type symm, const exvector & v, bool discardable) : inherited(v, discardable), symmetry(symm)
+indexed::indexed(const symmetry & symm, const exvector & v, bool discardable) : inherited(v, discardable), symtree(symm)
 {
        debugmsg("indexed constructor from symmetry,exvector", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
 }
 
-indexed::indexed(symmetry_type symm, exvector * vp) : inherited(vp), symmetry(symm)
+indexed::indexed(const symmetry & symm, exvector * vp) : inherited(vp), symtree(symm)
 {
        debugmsg("indexed constructor from symmetry,exvector *", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_indexed;
-       assert_all_indices_of_type_idx();
 }
 
 //////////
@@ -161,21 +159,35 @@ indexed::indexed(symmetry_type symm, exvector * vp) : inherited(vp), symmetry(sy
 indexed::indexed(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
 {
        debugmsg("indexed constructor from archive_node", LOGLEVEL_CONSTRUCT);
-       unsigned int symm;
-       if (!(n.find_unsigned("symmetry", symm)))
-               throw (std::runtime_error("unknown indexed symmetry type in archive"));
+       if (!n.find_ex("symmetry", symtree, sym_lst)) {
+               // GiNaC versions <= 0.9.0 had an unsigned "symmetry" property
+               unsigned symm = 0;
+               n.find_unsigned("symmetry", symm);
+               switch (symm) {
+                       case 1:
+                               symtree = sy_symm();
+                               break;
+                       case 2:
+                               symtree = sy_anti();
+                               break;
+                       default:
+                               symtree = sy_none();
+                               break;
+               }
+               ex_to_nonconst_symmetry(symtree).validate(seq.size() - 1);
+       }
 }
 
 void indexed::archive(archive_node &n) const
 {
        inherited::archive(n);
-       n.add_unsigned("symmetry", symmetry);
+       n.add_ex("symmetry", symtree);
 }
 
 DEFAULT_UNARCHIVE(indexed)
 
 //////////
-// functions overriding virtual functions from bases classes
+// functions overriding virtual functions from base classes
 //////////
 
 void indexed::print(const print_context & c, unsigned level) const
@@ -187,13 +199,8 @@ void indexed::print(const print_context & c, unsigned level) const
 
                c.s << std::string(level, ' ') << class_name()
                    << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
-                   << ", " << seq.size()-1 << " indices";
-               switch (symmetry) {
-                       case symmetric: c.s << ", symmetric"; break;
-                       case antisymmetric: c.s << ", antisymmetric"; break;
-                       default: break;
-               }
-               c.s << std::endl;
+                   << ", " << seq.size()-1 << " indices"
+                   << ", symmetry=" << symtree << std::endl;
                unsigned delta_indent = static_cast<const print_tree &>(c).delta_indent;
                seq[0].print(c, level + delta_indent);
                printindices(c, level + delta_indent);
@@ -225,9 +232,9 @@ bool indexed::info(unsigned inf) const
        return inherited::info(inf);
 }
 
-struct idx_is_not : public binary_function<ex, unsigned, bool> {
+struct idx_is_not : public std::binary_function<ex, unsigned, bool> {
        bool operator() (const ex & e, unsigned inf) const {
-               return !(ex_to_idx(e).get_value().info(inf));
+               return !(ex_to<idx>(e).get_value().info(inf));
        }
 };
 
@@ -247,57 +254,11 @@ int indexed::compare_same_type(const basic & other) const
        return inherited::compare_same_type(other);
 }
 
-// The main difference between sort_index_vector() and canonicalize_indices()
-// is that the latter takes the symmetry of the object into account. Once we
-// implement mixed symmetries, canonicalize_indices() will only be able to
-// reorder index pairs with known symmetry properties, while sort_index_vector()
-// always sorts the whole vector.
-
-/** Bring a vector of indices into a canonic order. This operation only makes
- *  sense if the object carrying these indices is either symmetric or totally
- *  antisymmetric with respect to the indices.
- *
- *  @param itbegin Start of index vector
- *  @param itend End of index vector
- *  @param antisymm Whether the object is antisymmetric
- *  @return the sign introduced by the reordering of the indices if the object
- *          is antisymmetric (or 0 if two equal indices are encountered). For
- *          symmetric objects, this is always +1. If the index vector was
- *          already in a canonic order this function returns INT_MAX. */
-static int canonicalize_indices(exvector::iterator itbegin, exvector::iterator itend, bool antisymm)
-{
-       bool something_changed = false;
-       int sig = 1;
-
-       // Simple bubble sort algorithm should be sufficient for the small
-       // number of indices expected
-       exvector::iterator it1 = itbegin, next_to_last_idx = itend - 1;
-       while (it1 != next_to_last_idx) {
-               exvector::iterator it2 = it1 + 1;
-               while (it2 != itend) {
-                       int cmpval = it1->compare(*it2);
-                       if (cmpval == 1) {
-                               it1->swap(*it2);
-                               something_changed = true;
-                               if (antisymm)
-                                       sig = -sig;
-                       } else if (cmpval == 0 && antisymm) {
-                               something_changed = true;
-                               sig = 0;
-                       }
-                       it2++;
-               }
-               it1++;
-       }
-
-       return something_changed ? sig : INT_MAX;
-}
-
 ex indexed::eval(int level) const
 {
        // First evaluate children, then we will end up here again
        if (level > 1)
-               return indexed(symmetry, evalchildren(level));
+               return indexed(ex_to<symmetry>(symtree), evalchildren(level));
 
        const ex &base = seq[0];
 
@@ -307,16 +268,17 @@ ex indexed::eval(int level) const
 
        // If the base object is a product, pull out the numeric factor
        if (is_ex_exactly_of_type(base, mul) && is_ex_exactly_of_type(base.op(base.nops() - 1), numeric)) {
-               exvector v = seq;
-               ex f = ex_to_numeric(base.op(base.nops() - 1));
+               exvector v(seq);
+               ex f = ex_to<numeric>(base.op(base.nops() - 1));
                v[0] = seq[0] / f;
                return f * thisexprseq(v);
        }
 
        // Canonicalize indices according to the symmetry properties
-       if (seq.size() > 2 && (symmetry != unknown && symmetry != mixed)) {
+       if (seq.size() > 2) {
                exvector v = seq;
-               int sig = canonicalize_indices(v.begin() + 1, v.end(), symmetry == antisymmetric);
+               GINAC_ASSERT(is_ex_exactly_of_type(symtree, symmetry));
+               int sig = canonicalize(v.begin() + 1, ex_to<symmetry>(symtree));
                if (sig != INT_MAX) {
                        // Something has changed while sorting indices, more evaluations later
                        if (sig == 0)
@@ -349,12 +311,12 @@ ex indexed::coeff(const ex & s, int n) const
 
 ex indexed::thisexprseq(const exvector & v) const
 {
-       return indexed(symmetry, v);
+       return indexed(ex_to<symmetry>(symtree), v);
 }
 
 ex indexed::thisexprseq(exvector * vp) const
 {
-       return indexed(symmetry, vp);
+       return indexed(ex_to<symmetry>(symtree), vp);
 }
 
 ex indexed::expand(unsigned options) const
@@ -400,7 +362,7 @@ void indexed::printindices(const print_context & c, unsigned level) const
                        bool covariant = true;
 
                        while (it != itend) {
-                               bool cur_covariant = (is_ex_of_type(*it, varidx) ? ex_to_varidx(*it).is_covariant() : true);
+                               bool cur_covariant = (is_ex_of_type(*it, varidx) ? ex_to<varidx>(*it).is_covariant() : true);
                                if (first || cur_covariant != covariant) {
                                        if (!first)
                                                c.s << "}";
@@ -428,10 +390,10 @@ void indexed::printindices(const print_context & c, unsigned level) const
        }
 }
 
-/** Check whether all indices are of class idx. This function is used
- *  internally to make sure that all constructed indexed objects really
- *  carry indices and not some other classes. */
-void indexed::assert_all_indices_of_type_idx(void) const
+/** Check whether all indices are of class idx and validate the symmetry
+ *  tree. This function is used internally to make sure that all constructed
+ *  indexed objects really carry indices and not some other classes. */
+void indexed::validate(void) const
 {
        GINAC_ASSERT(seq.size() > 0);
        exvector::const_iterator it = seq.begin() + 1, itend = seq.end();
@@ -440,6 +402,20 @@ void indexed::assert_all_indices_of_type_idx(void) const
                        throw(std::invalid_argument("indices of indexed object must be of type idx"));
                it++;
        }
+
+       if (!symtree.is_zero()) {
+               if (!is_ex_exactly_of_type(symtree, symmetry))
+                       throw(std::invalid_argument("symmetry of indexed object must be of type symmetry"));
+               ex_to_nonconst_symmetry(symtree).validate(seq.size() - 1);
+       }
+}
+
+/** Implementation of ex::diff() for an indexed object always returns 0.
+ *
+ *  @see ex::diff */
+ex indexed::derivative(const symbol & s) const
+{
+       return _ex0();
 }
 
 //////////
@@ -558,8 +534,8 @@ exvector power::get_free_indices(void) const
  *    by the function */
 static ex rename_dummy_indices(const ex & e, exvector & global_dummy_indices, exvector & local_dummy_indices)
 {
-       int global_size = global_dummy_indices.size(),
-           local_size = local_dummy_indices.size();
+       unsigned global_size = global_dummy_indices.size(),
+                local_size = local_dummy_indices.size();
 
        // Any local dummy indices at all?
        if (local_size == 0)
@@ -569,6 +545,7 @@ static ex rename_dummy_indices(const ex & e, exvector & global_dummy_indices, ex
 
                // More local indices than we encountered before, add the new ones
                // to the global set
+               int old_global_size = global_size;
                int remaining = local_size - global_size;
                exvector::const_iterator it = local_dummy_indices.begin(), itend = local_dummy_indices.end();
                while (it != itend && remaining > 0) {
@@ -579,25 +556,35 @@ static ex rename_dummy_indices(const ex & e, exvector & global_dummy_indices, ex
                        }
                        it++;
                }
-       }
+               shaker_sort(global_dummy_indices.begin(), global_dummy_indices.end(), ex_is_less(), ex_swap());
 
-       // Replace index symbols in expression
-       GINAC_ASSERT(local_size <= global_size);
-       bool all_equal = true;
-       lst local_syms, global_syms;
-       for (unsigned i=0; i<local_size; i++) {
-               ex loc_sym = local_dummy_indices[i].op(0);
-               ex glob_sym = global_dummy_indices[i].op(0);
-               if (!loc_sym.is_equal(glob_sym)) {
-                       all_equal = false;
-                       local_syms.append(loc_sym);
-                       global_syms.append(glob_sym);
-               }
+               // If this is the first set of local indices, do nothing
+               if (old_global_size == 0)
+                       return e;
        }
-       if (all_equal)
+       GINAC_ASSERT(local_size <= global_size);
+
+       // Construct lists of index symbols
+       exlist local_syms, global_syms;
+       for (unsigned i=0; i<local_size; i++)
+               local_syms.push_back(local_dummy_indices[i].op(0));
+       shaker_sort(local_syms.begin(), local_syms.end(), ex_is_less(), ex_swap());
+       for (unsigned i=0; i<global_size; i++)
+               global_syms.push_back(global_dummy_indices[i].op(0));
+
+       // Remove common indices
+       exlist local_uniq, global_uniq;
+       set_difference(local_syms.begin(), local_syms.end(), global_syms.begin(), global_syms.end(), std::back_insert_iterator<exlist>(local_uniq), ex_is_less());
+       set_difference(global_syms.begin(), global_syms.end(), local_syms.begin(), local_syms.end(), std::back_insert_iterator<exlist>(global_uniq), ex_is_less());
+
+       // Replace remaining non-common local index symbols by global ones
+       if (local_uniq.empty())
                return e;
-       else
-               return e.subs(local_syms, global_syms);
+       else {
+               while (global_uniq.size() > local_uniq.size())
+                       global_uniq.pop_back();
+               return e.subs(lst(local_uniq), lst(global_uniq));
+       }
 }
 
 /** Simplify product of indexed expressions (commutative, noncommutative and
@@ -618,7 +605,7 @@ ex simplify_indexed_product(const ex & e, exvector & free_indices, exvector & du
                v.push_back(e.op(0));
                v.push_back(e.op(0));
        } else {
-               for (int i=0; i<e.nops(); i++) {
+               for (unsigned i=0; i<e.nops(); i++) {
                        ex f = e.op(i);
                        if (is_ex_exactly_of_type(f, power) && f.op(1).is_equal(_ex2())) {
                                v.push_back(f.op(0));
@@ -626,7 +613,7 @@ ex simplify_indexed_product(const ex & e, exvector & free_indices, exvector & du
                        } else if (is_ex_exactly_of_type(f, ncmul)) {
                                // Noncommutative factor found, split it as well
                                non_commutative = true; // everything becomes noncommutative, ncmul will sort out the commutative factors later
-                               for (int j=0; j<f.nops(); j++)
+                               for (unsigned j=0; j<f.nops(); j++)
                                        v.push_back(f.op(j));
                        } else
                                v.push_back(f);
@@ -648,7 +635,7 @@ try_again:
                // Indexed factor found, get free indices and look for contraction
                // candidates
                exvector free1, dummy1;
-               find_free_and_dummy(ex_to_indexed(*it1).seq.begin() + 1, ex_to_indexed(*it1).seq.end(), free1, dummy1);
+               find_free_and_dummy(ex_to<indexed>(*it1).seq.begin() + 1, ex_to<indexed>(*it1).seq.end(), free1, dummy1);
 
                exvector::iterator it2;
                for (it2 = it1 + 1; it2 != itend; it2++) {
@@ -661,18 +648,19 @@ try_again:
                        // Find free indices of second factor and merge them with free
                        // indices of first factor
                        exvector un;
-                       find_free_and_dummy(ex_to_indexed(*it2).seq.begin() + 1, ex_to_indexed(*it2).seq.end(), un, dummy1);
+                       find_free_and_dummy(ex_to<indexed>(*it2).seq.begin() + 1, ex_to<indexed>(*it2).seq.end(), un, dummy1);
                        un.insert(un.end(), free1.begin(), free1.end());
 
                        // Check whether the two factors share dummy indices
                        exvector free, dummy;
                        find_free_and_dummy(un, free, dummy);
-                       if (dummy.size() == 0)
+                       unsigned num_dummies = dummy.size();
+                       if (num_dummies == 0)
                                continue;
 
                        // At least one dummy index, is it a defined scalar product?
                        bool contracted = false;
-                       if (free.size() == 0) {
+                       if (free.empty()) {
                                if (sp.is_defined(*it1, *it2)) {
                                        *it1 = sp.evaluate(*it1, *it2);
                                        *it2 = _ex1();
@@ -681,13 +669,26 @@ try_again:
                        }
 
                        // Contraction of symmetric with antisymmetric object is zero
-                       if ((ex_to_indexed(*it1).symmetry == indexed::symmetric &&
-                            ex_to_indexed(*it2).symmetry == indexed::antisymmetric
-                         || ex_to_indexed(*it1).symmetry == indexed::antisymmetric &&
-                            ex_to_indexed(*it2).symmetry == indexed::symmetric)
-                        && dummy.size() > 1) {
-                               free_indices.clear();
-                               return _ex0();
+                       if (num_dummies > 1
+                        && ex_to<symmetry>(ex_to<indexed>(*it1).symtree).has_symmetry()
+                        && ex_to<symmetry>(ex_to<indexed>(*it2).symtree).has_symmetry()) {
+
+                               // Check all pairs of dummy indices
+                               for (unsigned idx1=0; idx1<num_dummies-1; idx1++) {
+                                       for (unsigned idx2=idx1+1; idx2<num_dummies; idx2++) {
+
+                                               // Try and swap the index pair and check whether the
+                                               // relative sign changed
+                                               lst subs_lst(dummy[idx1].op(0), dummy[idx2].op(0)), repl_lst(dummy[idx2].op(0), dummy[idx1].op(0));
+                                               ex swapped1 = it1->subs(subs_lst, repl_lst);
+                                               ex swapped2 = it2->subs(subs_lst, repl_lst);
+                                               if (it1->is_equal(swapped1) && it2->is_equal(-swapped2)
+                                                || it1->is_equal(-swapped1) && it2->is_equal(swapped2)) {
+                                                       free_indices.clear();
+                                                       return _ex0();
+                                               }
+                                       }
+                               }
                        }
 
                        // Try to contract the first one with the second one
@@ -710,7 +711,7 @@ contraction_done:
                                        // Non-commutative products are always re-expanded to give
                                        // simplify_ncmul() the chance to re-order and canonicalize
                                        // the product
-                                       ex r = (non_commutative ? ex(ncmul(v)) : ex(mul(v)));
+                                       ex r = (non_commutative ? ex(ncmul(v, true)) : ex(mul(v)));
                                        return simplify_indexed(r, free_indices, dummy_indices, sp);
                                }
 
@@ -731,7 +732,7 @@ contraction_done:
                exvector free_indices_of_factor;
                if (is_ex_of_type(*it1, indexed)) {
                        exvector dummy_indices_of_factor;
-                       find_free_and_dummy(ex_to_indexed(*it1).seq.begin() + 1, ex_to_indexed(*it1).seq.end(), free_indices_of_factor, dummy_indices_of_factor);
+                       find_free_and_dummy(ex_to<indexed>(*it1).seq.begin() + 1, ex_to<indexed>(*it1).seq.end(), free_indices_of_factor, dummy_indices_of_factor);
                        individual_dummy_indices.insert(individual_dummy_indices.end(), dummy_indices_of_factor.begin(), dummy_indices_of_factor.end());
                } else
                        free_indices_of_factor = it1->get_free_indices();
@@ -744,7 +745,7 @@ contraction_done:
 
        ex r;
        if (something_changed)
-               r = non_commutative ? ex(ncmul(v)) : ex(mul(v));
+               r = non_commutative ? ex(ncmul(v, true)) : ex(mul(v));
        else
                r = e;
 
@@ -754,7 +755,7 @@ contraction_done:
        // Product of indexed object with a scalar?
        if (is_ex_exactly_of_type(r, mul) && r.nops() == 2
         && is_ex_exactly_of_type(r.op(1), numeric) && is_ex_of_type(r.op(0), indexed))
-               return r.op(0).op(0).bp->scalar_mul_indexed(r.op(0), ex_to_numeric(r.op(1)));
+               return r.op(0).op(0).bp->scalar_mul_indexed(r.op(0), ex_to<numeric>(r.op(1)));
        else
                return r;
 }
@@ -768,7 +769,7 @@ ex simplify_indexed(const ex & e, exvector & free_indices, exvector & dummy_indi
        // Simplification of single indexed object: just find the free indices
        // and perform dummy index renaming
        if (is_ex_of_type(e_expanded, indexed)) {
-               const indexed &i = ex_to_indexed(e_expanded);
+               const indexed &i = ex_to<indexed>(e_expanded);
                exvector local_dummy_indices;
                find_free_and_dummy(i.seq.begin() + 1, i.seq.end(), free_indices, local_dummy_indices);
                return rename_dummy_indices(e_expanded, dummy_indices, local_dummy_indices);
@@ -814,17 +815,47 @@ ex simplify_indexed(const ex & e, exvector & free_indices, exvector & dummy_indi
        return e_expanded;
 }
 
-ex simplify_indexed(const ex & e)
+/** Simplify/canonicalize expression containing indexed objects. This
+ *  performs contraction of dummy indices where possible and checks whether
+ *  the free indices in sums are consistent.
+ *
+ *  @return simplified expression */
+ex ex::simplify_indexed(void) const
 {
        exvector free_indices, dummy_indices;
        scalar_products sp;
-       return simplify_indexed(e, free_indices, dummy_indices, sp);
+       return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp);
 }
 
-ex simplify_indexed(const ex & e, const scalar_products & sp)
+/** Simplify/canonicalize expression containing indexed objects. This
+ *  performs contraction of dummy indices where possible, checks whether
+ *  the free indices in sums are consistent, and automatically replaces
+ *  scalar products by known values if desired.
+ *
+ *  @param sp Scalar products to be replaced automatically
+ *  @return simplified expression */
+ex ex::simplify_indexed(const scalar_products & sp) const
 {
        exvector free_indices, dummy_indices;
-       return simplify_indexed(e, free_indices, dummy_indices, sp);
+       return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp);
+}
+
+/** Symmetrize expression over its free indices. */
+ex ex::symmetrize(void) const
+{
+       return GiNaC::symmetrize(*this, get_free_indices());
+}
+
+/** Antisymmetrize expression over its free indices. */
+ex ex::antisymmetrize(void) const
+{
+       return GiNaC::antisymmetrize(*this, get_free_indices());
+}
+
+/** Symmetrize expression by cyclic permutation over its free indices. */
+ex ex::symmetrize_cyclic(void) const
+{
+       return GiNaC::symmetrize_cyclic(*this, get_free_indices());
 }
 
 //////////
@@ -869,10 +900,12 @@ ex scalar_products::evaluate(const ex & v1, const ex & v2) const
 void scalar_products::debugprint(void) const
 {
        std::cerr << "map size=" << spm.size() << std::endl;
-       for (spmap::const_iterator cit=spm.begin(); cit!=spm.end(); ++cit) {
-               const spmapkey & k = cit->first;
+       spmap::const_iterator i = spm.begin(), end = spm.end();
+       while (i != end) {
+               const spmapkey & k = i->first;
                std::cerr << "item key=(" << k.first << "," << k.second;
-               std::cerr << "), value=" << cit->second << std::endl;
+               std::cerr << "), value=" << i->second << std::endl;
+               ++i;
        }
 }