]> www.ginac.de Git - ginac.git/blobdiff - ginac/factor.cpp
Changed code from using cl_UP_MI to using umodpoly. The cl_UP_MI interface was
[ginac.git] / ginac / factor.cpp
index 3a012405ffc2934ae9d91358261a039101343e2e..5ea0520d268f513c9f5d16832bac4a117ce988c2 100644 (file)
@@ -1,7 +1,12 @@
 /** @file factor.cpp
  *
- *  Polynomial factorization routines.
- *  Only univariate at the moment and completely non-optimized!
+ *  Polynomial factorization code (implementation).
+ *
+ *  Algorithms used can be found in
+ *    [W1]  An Improved Multivariate Polynomial Factoring Algorithm,
+ *          P.S.Wang, Mathematics of Computation, Vol. 32, No. 144 (1978) 1215--1231.
+ *    [GCL] Algorithms for Computer Algebra,
+ *          K.O.Geddes, S.R.Czapor, G.Labahn, Springer Verlag, 1992.
  */
 
 /*
  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
+#define DEBUGFACTOR
+
+#ifdef DEBUGFACTOR
+#include <ostream>
+#include <ginac/ginac.h>
+using namespace GiNaC;
+#else
 #include "factor.h"
 
 #include "ex.h"
 #include "mul.h"
 #include "normal.h"
 #include "add.h"
+#endif
 
 #include <algorithm>
+#include <cmath>
+#include <limits>
 #include <list>
 #include <vector>
 using namespace std;
@@ -43,23 +58,34 @@ using namespace std;
 #include <cln/cln.h>
 using namespace cln;
 
-//#define DEBUGFACTOR
-
 #ifdef DEBUGFACTOR
-#include <ostream>
-#endif // def DEBUGFACTOR
-
+namespace Factor {
+#else
 namespace GiNaC {
+#endif
 
+#ifdef DEBUGFACTOR
+#define DCOUT(str) cout << #str << endl
+#define DCOUTVAR(var) cout << #var << ": " << var << endl
+#define DCOUT2(str,var) cout << #str << ": " << var << endl
+#else
+#define DCOUT(str)
+#define DCOUTVAR(var)
+#define DCOUT2(str,var)
+#endif
+
+// forward declaration
+ex factor(const ex& poly, unsigned options);
+
+// anonymous namespace to hide all utility functions
 namespace {
 
-typedef vector<cl_MI> Vec;
-typedef vector<Vec> VecVec;
+typedef vector<cl_MI> mvec;
 
 #ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const Vec& v)
+ostream& operator<<(ostream& o, const mvec& v)
 {
-       Vec::const_iterator i = v.begin(), end = v.end();
+       mvec::const_iterator i = v.begin(), end = v.end();
        while ( i != end ) {
                o << *i++ << " ";
        }
@@ -68,9 +94,9 @@ ostream& operator<<(ostream& o, const Vec& v)
 #endif // def DEBUGFACTOR
 
 #ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const VecVec& v)
+ostream& operator<<(ostream& o, const vector<mvec>& v)
 {
-       VecVec::const_iterator i = v.begin(), end = v.end();
+       vector<mvec>::const_iterator i = v.begin(), end = v.end();
        while ( i != end ) {
                o << *i++ << endl;
        }
@@ -78,545 +104,423 @@ ostream& operator<<(ostream& o, const VecVec& v)
 }
 #endif // def DEBUGFACTOR
 
-struct Term
+////////////////////////////////////////////////////////////////////////////////
+// modular univariate polynomial code
+
+//typedef cl_UP_MI umod;
+typedef std::vector<cln::cl_MI> umodpoly;
+//typedef vector<umod> umodvec;
+typedef vector<umodpoly> upvec;
+
+// COPY FROM UPOLY.HPP
+
+// CHANGED size_t -> int !!!
+template<typename T> static int degree(const T& p)
 {
-       cl_MI c;          // coefficient
-       unsigned int exp; // exponent >=0
-};
+       return p.size() - 1;
+}
 
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const Term& t)
+template<typename T> static typename T::value_type lcoeff(const T& p)
 {
-       if ( t.exp ) {
-               o << "(" << t.c << ")x^" << t.exp;
-       }
-       else {
-               o << "(" << t.c << ")";
-       }
-       return o;
+       return p[p.size() - 1];
 }
-#endif // def DEBUGFACTOR
 
-struct UniPoly
+static bool normalize_in_field(umodpoly& a)
 {
-       cl_modint_ring R;
-       list<Term> terms;  // highest exponent first
-
-       UniPoly(const cl_modint_ring& ring) : R(ring) { }
-       UniPoly(const cl_modint_ring& ring, const ex& poly, const ex& x) : R(ring)
-       { 
-               // assert: poly is in Z[x]
-               Term t;
-               for ( int i=poly.degree(x); i>=poly.ldegree(x); --i ) {
-                       int coeff = ex_to<numeric>(poly.coeff(x,i)).to_int();
-                       if ( coeff ) {
-                               t.c = R->canonhom(coeff);
-                               if ( !zerop(t.c) ) {
-                                       t.exp = i;
-                                       terms.push_back(t);
-                               }
-                       }
-               }
-       }
-       UniPoly(const cl_modint_ring& ring, const Vec& v) : R(ring)
-       {
-               Term t;
-               for ( unsigned int i=0; i<v.size(); ++i ) {
-                       if ( !zerop(v[i]) ) {
-                               t.c = v[i];
-                               t.exp = i;
-                               terms.push_front(t);
-                       }
-               }
-       }
-       unsigned int degree() const
-       {
-               if ( terms.size() ) {
-                       return terms.front().exp;
-               }
-               else {
-                       return 0;
-               }
-       }
-       bool zero() const { return (terms.size() == 0); }
-       const cl_MI operator[](unsigned int deg) const
-       {
-               list<Term>::const_iterator i = terms.begin(), end = terms.end();
-               for ( ; i != end; ++i ) {
-                       if ( i->exp == deg ) {
-                               return i->c;
-                       }
-                       if ( i->exp < deg ) {
-                               break;
-                       }
-               }
-               return R->zero();
+       if (a.size() == 0)
+               return true;
+       if ( lcoeff(a) == a[0].ring()->one() ) {
+               return true;
        }
-       void set(unsigned int deg, const cl_MI& c)
-       {
-               list<Term>::iterator i = terms.begin(), end = terms.end();
-               while ( i != end ) {
-                       if ( i->exp == deg ) {
-                               if ( !zerop(c) ) {
-                                       i->c = c;
-                               }
-                               else {
-                                       terms.erase(i);
-                               }
-                               return;
-                       }
-                       if ( i->exp < deg ) {
-                               break;
-                       }
+
+       const cln::cl_MI lc_1 = recip(lcoeff(a));
+       for (std::size_t k = a.size(); k-- != 0; )
+               a[k] = a[k]*lc_1;
+       return false;
+}
+
+template<typename T> static void
+canonicalize(T& p, const typename T::size_type hint = std::numeric_limits<typename T::size_type>::max())
+{
+       if (p.empty())
+               return;
+
+       std::size_t i = p.size() - 1;
+       // Be fast if the polynomial is already canonicalized
+       if (!zerop(p[i]))
+               return;
+
+       if (hint < p.size())
+               i = hint;
+
+       bool is_zero = false;
+       do {
+               if (!zerop(p[i])) {
                        ++i;
+                       break;
                }
-               if ( !zerop(c) ) {
-                       Term t;
-                       t.c = c;
-                       t.exp = deg;
-                       terms.insert(i, t);
+               if (i == 0) {
+                       is_zero = true;
+                       break;
                }
+               --i;
+       } while (true);
+
+       if (is_zero) {
+               p.clear();
+               return;
        }
-       ex to_ex(const ex& x, bool symmetric = true) const
-       {
-               ex r;
-               list<Term>::const_iterator i = terms.begin(), end = terms.end();
-               if ( symmetric ) {
-                       numeric mod(R->modulus);
-                       numeric halfmod = (mod-1)/2;
-                       for ( ; i != end; ++i ) {
-                               numeric n(R->retract(i->c));
-                               if ( n > halfmod ) {
-                                       r += pow(x, i->exp) * (n-mod);
-                               }
-                               else {
-                                       r += pow(x, i->exp) * n;
-                               }
-                       }
+
+       p.erase(p.begin() + i, p.end());
+}
+
+// END COPY FROM UPOLY.HPP
+
+static void expt_pos(const umodpoly& a, unsigned int q, umodpoly& b)
+{
+       throw runtime_error("expt_pos: not implemented!");
+       // code below is not correct!
+//     b.clear();
+//     if ( a.empty() ) return;
+//     b.resize(degree(a)*q+1, a[0].ring()->zero());
+//     cl_MI norm = recip(a[0]);
+//     umodpoly an = a;
+//     for ( size_t i=0; i<an.size(); ++i ) {
+//             an[i] = an[i] * norm;
+//     }
+//     b[0] = a[0].ring()->one();
+//     for ( size_t i=1; i<b.size(); ++i ) {
+//             for ( size_t j=1; j<i; ++j ) {
+//                     b[i] = b[i] + ((i-j+1)*q-i-1) * a[i-j] * b[j-1];
+//             }
+//             b[i] = b[i] / i;
+//     }
+//     cl_MI corr = expt_pos(a[0], q);
+//     for ( size_t i=0; i<b.size(); ++i ) {
+//             b[i] = b[i] * corr;
+//     }
+}
+
+static umodpoly operator+(const umodpoly& a, const umodpoly& b)
+{
+       int sa = a.size();
+       int sb = b.size();
+       if ( sa >= sb ) {
+               umodpoly r(sa);
+               int i = 0;
+               for ( ; i<sb; ++i ) {
+                       r[i] = a[i] + b[i];
                }
-               else {
-                       for ( ; i != end; ++i ) {
-                               r += pow(x, i->exp) * numeric(R->retract(i->c));
-                       }
+               for ( ; i<sa; ++i ) {
+                       r[i] = a[i];
                }
+               canonicalize(r);
                return r;
        }
-       void unit_normal()
-       {
-               if ( terms.size() ) {
-                       if ( terms.front().c != R->one() ) {
-                               list<Term>::iterator i = terms.begin(), end = terms.end();
-                               cl_MI cont = i->c;
-                               i->c = R->one();
-                               while ( ++i != end ) {
-                                       i->c = div(i->c, cont);
-                                       if ( zerop(i->c) ) {
-                                               terms.erase(i);
-                                       }
-                               }
-                       }
-               }
-       }
-       cl_MI unit() const
-       {
-               return terms.front().c;
-       }
-       void divide(const cl_MI& x)
-       {
-               list<Term>::iterator i = terms.begin(), end = terms.end();
-               for ( ; i != end; ++i ) {
-                       i->c = div(i->c, x);
-                       if ( zerop(i->c) ) {
-                               terms.erase(i);
-                       }
+       else {
+               umodpoly r(sb);
+               int i = 0;
+               for ( ; i<sa; ++i ) {
+                       r[i] = a[i] + b[i];
                }
-       }
-       void reduce_exponents(unsigned int prime)
-       {
-               list<Term>::iterator i = terms.begin(), end = terms.end();
-               while ( i != end ) {
-                       if ( i->exp > 0 ) {
-                               // assert: i->exp is multiple of prime
-                               i->exp /= prime;
-                       }
-                       ++i;
+               for ( ; i<sb; ++i ) {
+                       r[i] = b[i];
                }
+               canonicalize(r);
+               return r;
        }
-       void deriv(UniPoly& d) const
-       {
-               list<Term>::const_iterator i = terms.begin(), end = terms.end();
-               while ( i != end ) {
-                       if ( i->exp ) {
-                               cl_MI newc = i->c * i->exp;
-                               if ( !zerop(newc) ) {
-                                       Term t;
-                                       t.c = newc;
-                                       t.exp = i->exp-1;
-                                       d.terms.push_back(t);
-                               }
-                       }
-                       ++i;
+}
+
+static umodpoly operator-(const umodpoly& a, const umodpoly& b)
+{
+       int sa = a.size();
+       int sb = b.size();
+       if ( sa >= sb ) {
+               umodpoly r(sa);
+               int i = 0;
+               for ( ; i<sb; ++i ) {
+                       r[i] = a[i] - b[i];
                }
-       }
-       bool operator<(const UniPoly& o) const
-       {
-               if ( terms.size() != o.terms.size() ) {
-                       return terms.size() < o.terms.size();
-               }
-               list<Term>::const_iterator i1 = terms.begin(), end = terms.end();
-               list<Term>::const_iterator i2 = o.terms.begin();
-               while ( i1 != end ) {
-                       if ( i1->exp != i2->exp ) {
-                               return i1->exp < i2->exp;
-                       }
-                       if ( i1->c != i2->c ) {
-                               return R->retract(i1->c) < R->retract(i2->c);
-                       }
-                       ++i1; ++i2;
+               for ( ; i<sa; ++i ) {
+                       r[i] = a[i];
                }
-               return true;
+               canonicalize(r);
+               return r;
        }
-       bool operator==(const UniPoly& o) const
-       {
-               if ( terms.size() != o.terms.size() ) {
-                       return false;
+       else {
+               umodpoly r(sb);
+               int i = 0;
+               for ( ; i<sa; ++i ) {
+                       r[i] = a[i] - b[i];
                }
-               list<Term>::const_iterator i1 = terms.begin(), end = terms.end();
-               list<Term>::const_iterator i2 = o.terms.begin();
-               while ( i1 != end ) {
-                       if ( i1->exp != i2->exp ) {
-                               return false;
-                       }
-                       if ( i1->c != i2->c ) {
-                               return false;
-                       }
-                       ++i1; ++i2;
+               for ( ; i<sb; ++i ) {
+                       r[i] = -b[i];
                }
-               return true;
-       }
-       bool operator!=(const UniPoly& o) const
-       {
-               bool res = !(*this == o);
-               return res;
+               canonicalize(r);
+               return r;
        }
-};
+}
 
-static UniPoly operator*(const UniPoly& a, const UniPoly& b)
+static umodpoly operator*(const umodpoly& a, const umodpoly& b)
 {
-       unsigned int n = a.degree()+b.degree();
-       UniPoly c(a.R);
-       Term t;
-       for ( unsigned int i=0 ; i<=n; ++i ) {
-               t.c = a.R->zero();
-               for ( unsigned int j=0 ; j<=i; ++j ) {
-                       t.c = t.c + a[j] * b[i-j];
-               }
-               if ( !zerop(t.c) ) {
-                       t.exp = i;
-                       c.terms.push_front(t);
+       umodpoly c;
+       if ( a.empty() || b.empty() ) return c;
+
+       int n = degree(a) + degree(b);
+       c.resize(n+1, a[0].ring()->zero());
+       for ( int i=0 ; i<=n; ++i ) {
+               for ( int j=0 ; j<=i; ++j ) {
+                       if ( j > degree(a) || (i-j) > degree(b) ) continue; // TODO optimize!
+                       c[i] = c[i] + a[j] * b[i-j];
                }
        }
+       canonicalize(c);
        return c;
 }
 
-static UniPoly operator-(const UniPoly& a, const UniPoly& b)
+static umodpoly operator*(const umodpoly& a, const cl_MI& x)
 {
-       list<Term>::const_iterator ia = a.terms.begin(), aend = a.terms.end();
-       list<Term>::const_iterator ib = b.terms.begin(), bend = b.terms.end();
-       UniPoly c(a.R);
-       while ( ia != aend && ib != bend ) {
-               if ( ia->exp > ib->exp ) {
-                       c.terms.push_back(*ia);
-                       ++ia;
-               }
-               else if ( ia->exp < ib->exp ) {
-                       c.terms.push_back(*ib);
-                       c.terms.back().c = -c.terms.back().c;
-                       ++ib;
-               }
-               else {
-                       Term t;
-                       t.exp = ia->exp;
-                       t.c = ia->c - ib->c;
-                       if ( !zerop(t.c) ) {
-                               c.terms.push_back(t);
-                       }
-                       ++ia; ++ib;
-               }
-       }
-       while ( ia != aend ) {
-               c.terms.push_back(*ia);
-               ++ia;
-       }
-       while ( ib != bend ) {
-               c.terms.push_back(*ib);
-               c.terms.back().c = -c.terms.back().c;
-               ++ib;
+       umodpoly r(a.size());
+       for ( size_t i=0; i<a.size(); ++i ) {
+               r[i] = a[i] * x;
        }
-       return c;
+       canonicalize(r);
+       return r;
 }
 
-static UniPoly operator-(const UniPoly& a)
+static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_modint_ring& R)
 {
-       list<Term>::const_iterator ia = a.terms.begin(), aend = a.terms.end();
-       UniPoly c(a.R);
-       while ( ia != aend ) {
-               c.terms.push_back(*ia);
-               c.terms.back().c = -c.terms.back().c;
-               ++ia;
-       }
-       return c;
+       // assert: e is in Z[x]
+       int deg = e.degree(x);
+       ump.resize(deg+1);
+       int ldeg = e.ldegree(x);
+       for ( ; deg>=ldeg; --deg ) {
+               cl_I coeff = the<cl_I>(ex_to<numeric>(e.coeff(x, deg)).to_cl_N());
+               ump[deg] = R->canonhom(coeff);
+       }
+       for ( ; deg>=0; --deg ) {
+               ump[deg] = R->zero();
+       }
+       canonicalize(ump);
 }
 
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const UniPoly& t)
+static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_I& modulus)
 {
-       list<Term>::const_iterator i = t.terms.begin(), end = t.terms.end();
-       if ( i == end ) {
-               o << "0";
-               return o;
-       }
-       for ( ; i != end; ) {
-               o << *i++;
-               if ( i != end ) {
-                       o << " + ";
-               }
-       }
-       return o;
+       umodpoly_from_ex(ump, e, x, find_modint_ring(modulus));
 }
-#endif // def DEBUGFACTOR
 
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const list<UniPoly>& t)
+static ex umod_to_ex(const umodpoly& a, const ex& x)
 {
-       list<UniPoly>::const_iterator i = t.begin(), end = t.end();
-       o << "{" << endl;
-       for ( ; i != end; ) {
-               o << *i++ << endl;
+       if ( a.empty() ) return 0;
+       cl_modint_ring R = a[0].ring();
+       cl_I mod = R->modulus;
+       cl_I halfmod = (mod-1) >> 1;
+       ex e;
+       for ( int i=degree(a); i>=0; --i ) {
+               cl_I n = R->retract(a[i]);
+               if ( n > halfmod ) {
+                       e += numeric(n-mod) * pow(x, i);
+               } else {
+                       e += numeric(n) * pow(x, i);
+               }
        }
-       o << "}" << endl;
-       return o;
+       return e;
 }
-#endif // def DEBUGFACTOR
-
-typedef vector<UniPoly> UniPolyVec;
 
-struct UniFactor
+/** Divides all coefficients of the polynomial a by the integer x.
+ *  All coefficients are supposed to be divisible by x. If they are not, the
+ *  the<cl_I> cast will raise an exception.
+ *
+ *  @param[in,out] a  polynomial of which the coefficients will be reduced by x
+ *  @param[in]     x  integer that divides the coefficients
+ */
+static void reduce_coeff(umodpoly& a, const cl_I& x)
 {
-       UniPoly p;
-       unsigned int exp;
+       if ( a.empty() ) return;
 
-       UniFactor(const cl_modint_ring& ring) : p(ring) { }
-       UniFactor(const UniPoly& p_, unsigned int exp_) : p(p_), exp(exp_) { }
-       bool operator<(const UniFactor& o) const
-       {
-               return p < o.p;
+       cl_modint_ring R = a[0].ring();
+       umodpoly::iterator i = a.begin(), end = a.end();
+       for ( ; i!=end; ++i ) {
+               // cln cannot perform this division in the modular field
+               cl_I c = R->retract(*i);
+               *i = cl_MI(R, the<cl_I>(c / x));
        }
-};
+}
 
-struct UniFactorVec
+/** Calculates remainder of a/b.
+ *  Assertion: a and b not empty.
+ *
+ *  @param[in]  a  polynomial dividend
+ *  @param[in]  b  polynomial divisor
+ *  @param[out] r  polynomial remainder
+ */
+static void rem(const umodpoly& a, const umodpoly& b, umodpoly& r)
 {
-       vector<UniFactor> factors;
-
-       void unique()
-       {
-               sort(factors.begin(), factors.end());
-               if ( factors.size() > 1 ) {
-                       vector<UniFactor>::iterator i = factors.begin();
-                       vector<UniFactor>::const_iterator cmp = factors.begin()+1;
-                       vector<UniFactor>::iterator end = factors.end();
-                       while ( cmp != end ) {
-                               if ( i->p != cmp->p ) {
-                                       ++i;
-                                       ++cmp;
-                               }
-                               else {
-                                       i->exp += cmp->exp;
-                                       ++cmp;
-                               }
-                       }
-                       if ( i != end-1 ) {
-                               factors.erase(i+1, end);
+       int k, n;
+       n = degree(b);
+       k = degree(a) - n;
+       r = a;
+       if ( k < 0 ) return;
+
+       do {
+               cl_MI qk = div(r[n+k], b[n]);
+               if ( !zerop(qk) ) {
+                       for ( int i=0; i<n; ++i ) {
+                               unsigned int j = n + k - 1 - i;
+                               r[j] = r[j] - qk * b[j-k];
                        }
                }
-       }
-};
+       } while ( k-- );
 
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const UniFactorVec& ufv)
-{
-       for ( size_t i=0; i<ufv.factors.size(); ++i ) {
-               if ( i != ufv.factors.size()-1 ) {
-                       o << "*";
-               }
-               else {
-                       o << " ";
-               }
-               o << "[ " << ufv.factors[i].p << " ]^" << ufv.factors[i].exp << endl;
-       }
-       return o;
+       fill(r.begin()+n, r.end(), a[0].ring()->zero());
+       canonicalize(r);
 }
-#endif // def DEBUGFACTOR
 
-static void rem(const UniPoly& a_, const UniPoly& b, UniPoly& c)
+/** Calculates quotient of a/b.
+ *  Assertion: a and b not empty.
+ *
+ *  @param[in]  a  polynomial dividend
+ *  @param[in]  b  polynomial divisor
+ *  @param[out] q  polynomial quotient
+ */
+static void div(const umodpoly& a, const umodpoly& b, umodpoly& q)
 {
-       if ( a_.degree() < b.degree() ) {
-               c = a_;
-               return;
-       }
-
-       unsigned int k, n;
-       n = b.degree();
-       k = a_.degree() - n;
-
-       if ( n == 0 ) {
-               c.terms.clear();
-               return;
-       }
-
-       c = a_;
-       Term termbuf;
-
-       while ( true ) {
-               cl_MI qk = div(c[n+k], b[n]);
+       int k, n;
+       n = degree(b);
+       k = degree(a) - n;
+       q.clear();
+       if ( k < 0 ) return;
+
+       umodpoly r = a;
+       q.resize(k+1, a[0].ring()->zero());
+       do {
+               cl_MI qk = div(r[n+k], b[n]);
                if ( !zerop(qk) ) {
-                       unsigned int j;
-                       for ( unsigned int i=0; i<n; ++i ) {
-                               j = n + k - 1 - i;
-                               c.set(j, c[j] - qk*b[j-k]);
+                       q[k] = qk;
+                       for ( int i=0; i<n; ++i ) {
+                               unsigned int j = n + k - 1 - i;
+                               r[j] = r[j] - qk * b[j-k];
                        }
                }
-               if ( k == 0 ) break;
-               --k;
-       }
-       list<Term>::iterator i = c.terms.begin(), end = c.terms.end();
-       while ( i != end ) {
-               if ( i->exp <= n-1 ) {
-                       break;
-               }
-               ++i;
-       }
-       c.terms.erase(c.terms.begin(), i);
+       } while ( k-- );
+
+       canonicalize(q);
 }
 
-static void div(const UniPoly& a_, const UniPoly& b, UniPoly& q)
+/** Calculates quotient and remainder of a/b.
+ *  Assertion: a and b not empty.
+ *
+ *  @param[in]  a  polynomial dividend
+ *  @param[in]  b  polynomial divisor
+ *  @param[out] r  polynomial remainder
+ *  @param[out] q  polynomial quotient
+ */
+static void remdiv(const umodpoly& a, const umodpoly& b, umodpoly& r, umodpoly& q)
 {
-       if ( a_.degree() < b.degree() ) {
-               q.terms.clear();
-               return;
-       }
-
-       unsigned int k, n;
-       n = b.degree();
-       k = a_.degree() - n;
-
-       UniPoly c = a_;
-       Term termbuf;
-
-       while ( true ) {
-               cl_MI qk = div(c[n+k], b[n]);
+       int k, n;
+       n = degree(b);
+       k = degree(a) - n;
+       q.clear();
+       r = a;
+       if ( k < 0 ) return;
+
+       q.resize(k+1, a[0].ring()->zero());
+       do {
+               cl_MI qk = div(r[n+k], b[n]);
                if ( !zerop(qk) ) {
-                       Term t;
-                       t.c = qk;
-                       t.exp = k;
-                       q.terms.push_back(t);
-                       unsigned int j;
-                       for ( unsigned int i=0; i<n; ++i ) {
-                               j = n + k - 1 - i;
-                               c.set(j, c[j] - qk*b[j-k]);
+                       q[k] = qk;
+                       for ( int i=0; i<n; ++i ) {
+                               unsigned int j = n + k - 1 - i;
+                               r[j] = r[j] - qk * b[j-k];
                        }
                }
-               if ( k == 0 ) break;
-               --k;
-       }
+       } while ( k-- );
+
+       fill(r.begin()+n, r.end(), a[0].ring()->zero());
+       canonicalize(r);
+       canonicalize(q);
 }
 
-static void gcd(const UniPoly& a, const UniPoly& b, UniPoly& c)
+/** Calculates the GCD of polynomial a and b.
+ *
+ *  @param[in]  a  polynomial
+ *  @param[in]  b  polynomial
+ *  @param[out] c  GCD
+ */
+static void gcd(const umodpoly& a, const umodpoly& b, umodpoly& c)
 {
-       c = a;
-       c.unit_normal();
-       UniPoly d = b;
-       d.unit_normal();
-
-       if ( c.degree() < d.degree() ) {
-               gcd(b, a, c);
-               return;
-       }
+       if ( degree(a) < degree(b) ) return gcd(b, a, c);
 
-       while ( !d.zero() ) {
-               UniPoly r(a.R);
+       c = a;
+       normalize_in_field(c);
+       umodpoly d = b;
+       normalize_in_field(d);
+       umodpoly r;
+       while ( !d.empty() ) {
                rem(c, d, r);
                c = d;
                d = r;
        }
-       c.unit_normal();
+       normalize_in_field(c);
 }
 
-static bool is_one(const UniPoly& w)
+/** Calculates the derivative of the polynomial a.
+ *  
+ *  @param[in]  a  polynomial of which to take the derivative
+ *  @param[out] d  result/derivative
+ */
+static void deriv(const umodpoly& a, umodpoly& d)
 {
-       if ( w.terms.size() == 1 && w[0] == w.R->one() ) {
-               return true;
+       d.clear();
+       if ( a.size() <= 1 ) return;
+
+       d.insert(d.begin(), a.begin()+1, a.end());
+       int max = d.size();
+       for ( int i=1; i<max; ++i ) {
+               d[i] = d[i] * (i+1);
        }
-       return false;
+       canonicalize(d);
 }
 
-static void sqrfree_main(const UniPoly& a, UniFactorVec& fvec)
+static bool unequal_one(const umodpoly& a)
 {
-       unsigned int i = 1;
-       UniPoly b(a.R);
-       a.deriv(b);
-       if ( !b.zero() ) {
-               UniPoly c(a.R), w(a.R);
-               gcd(a, b, c);
-               div(a, c, w);
-               while ( !is_one(w) ) {
-                       UniPoly y(a.R), z(a.R);
-                       gcd(w, c, y);
-                       div(w, y, z);
-                       if ( !is_one(z) ) {
-                               UniFactor uf(z, i++);
-                               fvec.factors.push_back(uf);
-                       }
-                       w = y;
-                       UniPoly cbuf(a.R);
-                       div(c, y, cbuf);
-                       c = cbuf;
-               }
-               if ( !is_one(c) ) {
-                       unsigned int prime = cl_I_to_uint(c.R->modulus);
-                       c.reduce_exponents(prime);
-                       unsigned int pos = fvec.factors.size();
-                       sqrfree_main(c, fvec);
-                       for ( unsigned int p=pos; p<fvec.factors.size(); ++p ) {
-                               fvec.factors[p].exp *= prime;
-                       }
-                       return;
-               }
-       }
-       else {
-               unsigned int prime = cl_I_to_uint(a.R->modulus);
-               UniPoly amod = a;
-               amod.reduce_exponents(prime);
-               unsigned int pos = fvec.factors.size();
-               sqrfree_main(amod, fvec);
-               for ( unsigned int p=pos; p<fvec.factors.size(); ++p ) {
-                       fvec.factors[p].exp *= prime;
-               }
-               return;
-       }
+       if ( a.empty() ) return true;
+       return ( a.size() != 1 || a[0] != a[0].ring()->one() );
+}
+
+static bool equal_one(const umodpoly& a)
+{
+       return ( a.size() == 1 && a[0] == a[0].ring()->one() );
 }
 
-static void squarefree(const UniPoly& a, UniFactorVec& fvec)
+/** Returns true if polynomial a is square free.
+ *
+ *  @param[in] a  polynomial to check
+ *  @return       true if polynomial is square free, false otherwise
+ */
+static bool squarefree(const umodpoly& a)
 {
-       sqrfree_main(a, fvec);
-       fvec.unique();
+       umodpoly b;
+       deriv(a, b);
+       if ( b.empty() ) {
+               return true;
+       }
+       umodpoly c;
+       gcd(a, b, c);
+       return equal_one(c);
 }
 
-class Matrix
+// END modular univariate polynomial code
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+// modular matrix
+
+class modular_matrix
 {
-       friend ostream& operator<<(ostream& o, const Matrix& m);
+       friend ostream& operator<<(ostream& o, const modular_matrix& m);
 public:
-       Matrix(size_t r_, size_t c_, const cl_MI& init) : r(r_), c(c_)
+       modular_matrix(size_t r_, size_t c_, const cl_MI& init) : r(r_), c(c_)
        {
                m.resize(c*r, init);
        }
@@ -626,7 +530,7 @@ public:
        cl_MI operator()(size_t row, size_t col) const { return m[row*c + col]; }
        void mul_col(size_t col, const cl_MI x)
        {
-               Vec::iterator i = m.begin() + col;
+               mvec::iterator i = m.begin() + col;
                for ( size_t rc=0; rc<r; ++rc ) {
                        *i = *i * x;
                        i += c;
@@ -634,8 +538,8 @@ public:
        }
        void sub_col(size_t col1, size_t col2, const cl_MI fac)
        {
-               Vec::iterator i1 = m.begin() + col1;
-               Vec::iterator i2 = m.begin() + col2;
+               mvec::iterator i1 = m.begin() + col1;
+               mvec::iterator i2 = m.begin() + col2;
                for ( size_t rc=0; rc<r; ++rc ) {
                        *i1 = *i1 - *i2 * fac;
                        i1 += c;
@@ -645,17 +549,57 @@ public:
        void switch_col(size_t col1, size_t col2)
        {
                cl_MI buf;
-               Vec::iterator i1 = m.begin() + col1;
-               Vec::iterator i2 = m.begin() + col2;
+               mvec::iterator i1 = m.begin() + col1;
+               mvec::iterator i2 = m.begin() + col2;
                for ( size_t rc=0; rc<r; ++rc ) {
                        buf = *i1; *i1 = *i2; *i2 = buf;
                        i1 += c;
                        i2 += c;
                }
        }
+       void mul_row(size_t row, const cl_MI x)
+       {
+               vector<cl_MI>::iterator i = m.begin() + row*c;
+               for ( size_t cc=0; cc<c; ++cc ) {
+                       *i = *i * x;
+                       ++i;
+               }
+       }
+       void sub_row(size_t row1, size_t row2, const cl_MI fac)
+       {
+               vector<cl_MI>::iterator i1 = m.begin() + row1*c;
+               vector<cl_MI>::iterator i2 = m.begin() + row2*c;
+               for ( size_t cc=0; cc<c; ++cc ) {
+                       *i1 = *i1 - *i2 * fac;
+                       ++i1;
+                       ++i2;
+               }
+       }
+       void switch_row(size_t row1, size_t row2)
+       {
+               cl_MI buf;
+               vector<cl_MI>::iterator i1 = m.begin() + row1*c;
+               vector<cl_MI>::iterator i2 = m.begin() + row2*c;
+               for ( size_t cc=0; cc<c; ++cc ) {
+                       buf = *i1; *i1 = *i2; *i2 = buf;
+                       ++i1;
+                       ++i2;
+               }
+       }
+       bool is_col_zero(size_t col) const
+       {
+               mvec::const_iterator i = m.begin() + col;
+               for ( size_t rr=0; rr<r; ++rr ) {
+                       if ( !zerop(*i) ) {
+                               return false;
+                       }
+                       i += c;
+               }
+               return true;
+       }
        bool is_row_zero(size_t row) const
        {
-               Vec::const_iterator i = m.begin() + row*c;
+               mvec::const_iterator i = m.begin() + row*c;
                for ( size_t cc=0; cc<c; ++cc ) {
                        if ( !zerop(*i) ) {
                                return false;
@@ -666,27 +610,46 @@ public:
        }
        void set_row(size_t row, const vector<cl_MI>& newrow)
        {
-               Vec::iterator i1 = m.begin() + row*c;
-               Vec::const_iterator i2 = newrow.begin(), end = newrow.end();
+               mvec::iterator i1 = m.begin() + row*c;
+               mvec::const_iterator i2 = newrow.begin(), end = newrow.end();
                for ( ; i2 != end; ++i1, ++i2 ) {
                        *i1 = *i2;
                }
        }
-       Vec::const_iterator row_begin(size_t row) const { return m.begin()+row*c; }
-       Vec::const_iterator row_end(size_t row) const { return m.begin()+row*c+r; }
+       mvec::const_iterator row_begin(size_t row) const { return m.begin()+row*c; }
+       mvec::const_iterator row_end(size_t row) const { return m.begin()+row*c+r; }
 private:
        size_t r, c;
-       Vec m;
+       mvec m;
 };
 
 #ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const Matrix& m)
+modular_matrix operator*(const modular_matrix& m1, const modular_matrix& m2)
 {
-       vector<cl_MI>::const_iterator i = m.m.begin(), end = m.m.end();
-       size_t wrap = 1;
-       for ( ; i != end; ++i ) {
-               o << *i << " ";
-               if ( !(wrap++ % m.c) ) {
+       const unsigned int r = m1.rowsize();
+       const unsigned int c = m2.colsize();
+       modular_matrix o(r,c,m1(0,0));
+
+       for ( size_t i=0; i<r; ++i ) {
+               for ( size_t j=0; j<c; ++j ) {
+                       cl_MI buf;
+                       buf = m1(i,0) * m2(0,j);
+                       for ( size_t k=1; k<c; ++k ) {
+                               buf = buf + m1(i,k)*m2(k,j);
+                       }
+                       o(i,j) = buf;
+               }
+       }
+       return o;
+}
+
+ostream& operator<<(ostream& o, const modular_matrix& m)
+{
+       vector<cl_MI>::const_iterator i = m.m.begin(), end = m.m.end();
+       size_t wrap = 1;
+       for ( ; i != end; ++i ) {
+               o << *i << " ";
+               if ( !(wrap++ % m.c) ) {
                        o << endl;
                }
        }
@@ -695,27 +658,45 @@ ostream& operator<<(ostream& o, const Matrix& m)
 }
 #endif // def DEBUGFACTOR
 
-static void q_matrix(const UniPoly& a, Matrix& Q)
+// END modular matrix
+////////////////////////////////////////////////////////////////////////////////
+
+static void q_matrix(const umodpoly& a, modular_matrix& Q)
 {
-       unsigned int n = a.degree();
-       unsigned int q = cl_I_to_uint(a.R->modulus);
-       vector<cl_MI> r(n, a.R->zero());
-       r[0] = a.R->one();
-       Q.set_row(0, r);
-       unsigned int max = (n-1) * q;
-       for ( size_t m=1; m<=max; ++m ) {
-               cl_MI rn_1 = r.back();
-               for ( size_t i=n-1; i>0; --i ) {
-                       r[i] = r[i-1] - rn_1 * a[i];
-               }
-               r[0] = -rn_1 * a[0];
-               if ( (m % q) == 0 ) {
-                       Q.set_row(m/q, r);
+       int n = degree(a);
+       unsigned int q = cl_I_to_uint(a[0].ring()->modulus);
+// fast and buggy
+//     vector<cl_MI> r(n, a.R->zero());
+//     r[0] = a.R->one();
+//     Q.set_row(0, r);
+//     unsigned int max = (n-1) * q;
+//     for ( size_t m=1; m<=max; ++m ) {
+//             cl_MI rn_1 = r.back();
+//             for ( size_t i=n-1; i>0; --i ) {
+//                     r[i] = r[i-1] - rn_1 * a[i];
+//             }
+//             r[0] = -rn_1 * a[0];
+//             if ( (m % q) == 0 ) {
+//                     Q.set_row(m/q, r);
+//             }
+//     }
+// slow and (hopefully) correct
+       cl_MI one = a[0].ring()->one();
+       cl_MI zero = a[0].ring()->zero();
+       for ( int i=0; i<n; ++i ) {
+               umodpoly qk(i*q+1, zero);
+               qk[i*q] = one;
+               umodpoly r;
+               rem(qk, a, r);
+               mvec rvec(n, zero);
+               for ( int j=0; j<=degree(r); ++j ) {
+                       rvec[j] = r[j];
                }
+               Q.set_row(i, rvec);
        }
 }
 
-static void nullspace(Matrix& M, vector<Vec>& basis)
+static void nullspace(modular_matrix& M, vector<mvec>& basis)
 {
        const size_t n = M.rowsize();
        const cl_MI one = M(0,0).ring()->one();
@@ -753,58 +734,64 @@ static void nullspace(Matrix& M, vector<Vec>& basis)
        }
        for ( size_t i=0; i<n; ++i ) {
                if ( !M.is_row_zero(i) ) {
-                       Vec nu(M.row_begin(i), M.row_end(i));
+                       mvec nu(M.row_begin(i), M.row_end(i));
                        basis.push_back(nu);
                }
        }
 }
 
-static void berlekamp(const UniPoly& a, UniPolyVec& upv)
+static void berlekamp(const umodpoly& a, upvec& upv)
 {
-       Matrix Q(a.degree(), a.degree(), a.R->zero());
+       cl_modint_ring R = a[0].ring();
+       umodpoly one(1, R->one());
+
+       modular_matrix Q(degree(a), degree(a), R->zero());
        q_matrix(a, Q);
-       VecVec nu;
+       vector<mvec> nu;
        nullspace(Q, nu);
        const unsigned int k = nu.size();
        if ( k == 1 ) {
                return;
        }
 
-       list<UniPoly> factors;
+       list<umodpoly> factors;
        factors.push_back(a);
        unsigned int size = 1;
        unsigned int r = 1;
-       unsigned int q = cl_I_to_uint(a.R->modulus);
+       unsigned int q = cl_I_to_uint(R->modulus);
 
-       list<UniPoly>::iterator u = factors.begin();
+       list<umodpoly>::iterator u = factors.begin();
 
        while ( true ) {
                for ( unsigned int s=0; s<q; ++s ) {
-                       UniPoly g(a.R);
-                       UniPoly nur(a.R, nu[r]);
-                       nur.set(0, nur[0] - cl_MI(a.R, s));
+                       umodpoly nur = nu[r];
+                       nur[0] = nur[0] - cl_MI(R, s);
+                       canonicalize(nur);
+                       umodpoly g;
                        gcd(nur, *u, g);
-                       if ( !is_one(g) && g != *u ) {
-                               UniPoly uo(a.R);
+                       if ( unequal_one(g) && g != *u ) {
+                               umodpoly uo;
                                div(*u, g, uo);
-                               if ( is_one(uo) ) {
+                               if ( equal_one(uo) ) {
                                        throw logic_error("berlekamp: unexpected divisor.");
                                }
                                else {
                                        *u = uo;
                                }
                                factors.push_back(g);
-                               ++size;
+                               size = 0;
+                               list<umodpoly>::const_iterator i = factors.begin(), end = factors.end();
+                               while ( i != end ) {
+                                       if ( degree(*i) ) ++size; 
+                                       ++i;
+                               }
                                if ( size == k ) {
-                                       list<UniPoly>::const_iterator i = factors.begin(), end = factors.end();
+                                       list<umodpoly>::const_iterator i = factors.begin(), end = factors.end();
                                        while ( i != end ) {
                                                upv.push_back(*i++);
                                        }
                                        return;
                                }
-                               if ( u->degree() < nur.degree() ) {
-                                       break;
-                               }
                        }
                }
                if ( ++r == k ) {
@@ -814,29 +801,191 @@ static void berlekamp(const UniPoly& a, UniPolyVec& upv)
        }
 }
 
-static void factor_modular(const UniPoly& p, UniPolyVec& upv)
+static void rem_xq(int q, const umodpoly& b, umodpoly& c)
 {
+       cl_modint_ring R = b[0].ring();
+
+       int n = degree(b);
+       if ( n > q ) {
+               c.resize(q+1, R->zero());
+               c[q] = R->one();
+               return;
+       }
+
+       c.clear();
+       c.resize(n+1, R->zero());
+       int k = q-n;
+       c[n] = R->one();
+
+       int ofs = 0;
+       do {
+               cl_MI qk = div(c[n-ofs], b[n]);
+               if ( !zerop(qk) ) {
+                       for ( int i=1; i<=n; ++i ) {
+                               c[n-i+ofs] = c[n-i] - qk * b[n-i];
+                       }
+                       ofs = ofs ? 0 : 1;
+               }
+       } while ( k-- );
+
+       if ( ofs ) {
+               c.pop_back();
+       }
+       else {
+               c.erase(c.begin());
+       }
+       canonicalize(c);
+}
+
+static void distinct_degree_factor(const umodpoly& a_, upvec& result)
+{
+       umodpoly a = a_;
+
+       cl_modint_ring R = a[0].ring();
+       int q = cl_I_to_int(R->modulus);
+       int n = degree(a);
+       size_t nhalf = n/2;
+
+       size_t i = 1;
+       umodpoly w(1, R->one());
+       umodpoly x = w;
+
+       upvec ai;
+
+       while ( i <= nhalf ) {
+               expt_pos(w, q, w);
+               rem(w, a, w);
+
+               umodpoly buf;
+               gcd(a, w-x, buf);
+               ai.push_back(buf);
+
+               if ( unequal_one(ai.back()) ) {
+                       div(a, ai.back(), a);
+                       rem(w, a, w);
+               }
+
+               ++i;
+       }
+
+       result = ai;
+}
+
+static void same_degree_factor(const umodpoly& a, upvec& result)
+{
+       cl_modint_ring R = a[0].ring();
+       int deg = degree(a);
+
+       upvec buf;
+       distinct_degree_factor(a, buf);
+       int degsum = 0;
+
+       for ( size_t i=0; i<buf.size(); ++i ) {
+               if ( unequal_one(buf[i]) ) {
+                       degsum += degree(buf[i]);
+                       upvec upv;
+                       berlekamp(buf[i], upv);
+                       for ( size_t j=0; j<upv.size(); ++j ) {
+                               result.push_back(upv[j]);
+                       }
+               }
+       }
+
+       if ( degsum < deg ) {
+               result.push_back(a);
+       }
+}
+
+static void distinct_degree_factor_BSGS(const umodpoly& a, upvec& result)
+{
+       cl_modint_ring R = a[0].ring();
+       int q = cl_I_to_int(R->modulus);
+       int n = degree(a);
+
+       cl_N pm = 0.3;
+       int l = cl_I_to_int(ceiling1(the<cl_F>(expt(n, pm))));
+       upvec h(l+1);
+       umodpoly qk(1, R->one());
+       h[0] = qk;
+       for ( int i=1; i<=l; ++i ) {
+               expt_pos(h[i-1], q, qk);
+               rem(qk, a, h[i]);
+       }
+
+       int m = std::ceil(((double)n)/2/l);
+       upvec H(m);
+       int ql = std::pow(q, l);
+       H[0] = h[l];
+       for ( int i=1; i<m; ++i ) {
+               expt_pos(H[i-1], ql, qk);
+               rem(qk, a, H[i]);
+       }
+
+       upvec I(m);
+       umodpoly one(1, R->one());
+       for ( int i=0; i<m; ++i ) {
+               I[i] = one;
+               for ( int j=0; j<l; ++j ) {
+                       I[i] = I[i] * (H[i] - h[j]);
+               }
+               rem(I[i], a, I[i]);
+       }
+
+       upvec F(m, one);
+       umodpoly f = a;
+       for ( int i=0; i<m; ++i ) {
+               umodpoly g;
+               gcd(f, I[i], g); 
+               if ( g == one ) continue;
+               F[i] = g;
+               div(f, g, f);
+       }
+
+       result.resize(n, one);
+       if ( unequal_one(f) ) {
+               result[n] = f;
+       }
+       for ( int i=0; i<m; ++i ) {
+               umodpoly f = F[i];
+               for ( int j=l-1; j>=0; --j ) {
+                       umodpoly g;
+                       gcd(f, H[i]-h[j], g);
+                       result[l*(i+1)-j-1] = g;
+                       div(f, g, f);
+               }
+       }
+}
+
+static void cantor_zassenhaus(const umodpoly& a, upvec& result)
+{
+}
+
+static void factor_modular(const umodpoly& p, upvec& upv)
+{
+       //same_degree_factor(p, upv);
        berlekamp(p, upv);
        return;
 }
 
-static void exteuclid(const UniPoly& a, const UniPoly& b, UniPoly& g, UniPoly& s, UniPoly& t)
+static void exteuclid(const umodpoly& a, const umodpoly& b, umodpoly& g, umodpoly& s, umodpoly& t)
 {
-       if ( a.degree() < b.degree() ) {
+       if ( degree(a) < degree(b) ) {
                exteuclid(b, a, g, t, s);
                return;
        }
-       UniPoly c1(a.R), c2(a.R), d1(a.R), d2(a.R), q(a.R), r(a.R), r1(a.R), r2(a.R);
-       UniPoly c = a; c.unit_normal();
-       UniPoly d = b; d.unit_normal();
-       c1.set(0, a.R->one());
-       d2.set(0, a.R->one());
-       while ( !d.zero() ) {
-               q.terms.clear();
+       umodpoly one(1, a[0].ring()->one());
+       umodpoly c = a; normalize_in_field(c);
+       umodpoly d = b; normalize_in_field(d);
+       umodpoly c1 = one;
+       umodpoly c2;
+       umodpoly d1;
+       umodpoly d2 = one;
+       while ( !d.empty() ) {
+               umodpoly q;
                div(c, d, q);
-               r = c - q * d;
-               r1 = c1 - q * d1;
-               r2 = c2 - q * d2;
+               umodpoly r = c - q * d;
+               umodpoly r1 = c1 - q * d1;
+               umodpoly r2 = c2 - q * d2;
                c = d;
                c1 = d1;
                c2 = d2;
@@ -844,13 +993,19 @@ static void exteuclid(const UniPoly& a, const UniPoly& b, UniPoly& g, UniPoly& s
                d1 = r1;
                d2 = r2;
        }
-       g = c; g.unit_normal();
+       g = c; normalize_in_field(g);
        s = c1;
-       s.divide(a.unit());
-       s.divide(c.unit());
+       for ( int i=0; i<=degree(s); ++i ) {
+               s[i] = s[i] * recip(a[degree(a)] * c[degree(c)]);
+       }
+       canonicalize(s);
+       s = s * g;
        t = c2;
-       t.divide(b.unit());
-       t.divide(c.unit());
+       for ( int i=0; i<=degree(t); ++i ) {
+               t[i] = t[i] * recip(b[degree(b)] * c[degree(c)]);
+       }
+       canonicalize(t);
+       t = t * g;
 }
 
 static ex replace_lc(const ex& poly, const ex& x, const ex& lc)
@@ -859,19 +1014,19 @@ static ex replace_lc(const ex& poly, const ex& x, const ex& lc)
        return r;
 }
 
-static ex hensel_univar(const ex& a_, const ex& x, unsigned int p, const UniPoly& u1_, const UniPoly& w1_, const ex& gamma_ = 0)
+static ex hensel_univar(const ex& a_, const ex& x, unsigned int p, const umodpoly& u1_, const umodpoly& w1_, const ex& gamma_ = 0)
 {
        ex a = a_;
-       const cl_modint_ring& R = u1_.R;
+       const cl_modint_ring& R = u1_[0].ring();
 
        // calc bound B
        ex maxcoeff;
        for ( int i=a.degree(x); i>=a.ldegree(x); --i ) {
                maxcoeff += pow(abs(a.coeff(x, i)),2);
        }
-       cl_I normmc = ceiling1(the<cl_F>(cln::sqrt(ex_to<numeric>(maxcoeff).to_cl_N())));
-       unsigned int maxdegree = (u1_.degree() > w1_.degree()) ? u1_.degree() : w1_.degree();
-       unsigned int B = cl_I_to_uint(normmc * expt_pos(cl_I(2), maxdegree));
+       cl_I normmc = ceiling1(the<cl_R>(cln::sqrt(ex_to<numeric>(maxcoeff).to_cl_N())));
+       cl_I maxdegree = (degree(u1_) > degree(w1_)) ? degree(u1_) : degree(w1_);
+       cl_I B = normmc * expt_pos(cl_I(2), maxdegree);
 
        // step 1
        ex alpha = a.lcoeff(x);
@@ -879,43 +1034,53 @@ static ex hensel_univar(const ex& a_, const ex& x, unsigned int p, const UniPoly
        if ( gamma == 0 ) {
                gamma = alpha;
        }
-       unsigned int gamma_ui = ex_to<numeric>(abs(gamma)).to_int();
+       numeric gamma_ui = ex_to<numeric>(abs(gamma));
        a = a * gamma;
-       UniPoly nu1 = u1_;
-       nu1.unit_normal();
-       UniPoly nw1 = w1_;
-       nw1.unit_normal();
+       umodpoly nu1 = u1_;
+       normalize_in_field(nu1);
+       umodpoly nw1 = w1_;
+       normalize_in_field(nw1);
        ex phi;
-       phi = expand(gamma * nu1.to_ex(x));
-       UniPoly u1(R, phi, x);
-       phi = expand(alpha * nw1.to_ex(x));
-       UniPoly w1(R, phi, x);
+       phi = gamma * umod_to_ex(nu1, x);
+       umodpoly u1;
+       umodpoly_from_ex(u1, phi, x, R);
+       phi = alpha * umod_to_ex(nw1, x);
+       umodpoly w1;
+       umodpoly_from_ex(w1, phi, x, R);
 
        // step 2
-       UniPoly s(R), t(R), g(R);
+       umodpoly g;
+       umodpoly s;
+       umodpoly t;
        exteuclid(u1, w1, g, s, t);
+       if ( unequal_one(g) ) {
+               throw logic_error("gcd(u1,w1) != 1");
+       }
 
        // step 3
-       ex u = replace_lc(u1.to_ex(x), x, gamma);
-       ex w = replace_lc(w1.to_ex(x), x, alpha);
+       ex u = replace_lc(umod_to_ex(u1, x), x, gamma);
+       ex w = replace_lc(umod_to_ex(w1, x), x, alpha);
        ex e = expand(a - u * w);
-       unsigned int modulus = p;
+       numeric modulus = p;
+       const numeric maxmodulus = 2*numeric(B)*gamma_ui;
 
        // step 4
-       while ( !e.is_zero() && modulus < 2*B*gamma_ui ) {
+       while ( !e.is_zero() && modulus < maxmodulus ) {
                ex c = e / modulus;
-               phi = expand(s.to_ex(x)*c);
-               UniPoly sigmatilde(R, phi, x);
-               phi = expand(t.to_ex(x)*c);
-               UniPoly tautilde(R, phi, x);
-               UniPoly q(R), r(R);
-               div(sigmatilde, w1, q);
-               rem(sigmatilde, w1, r);
-               UniPoly sigma = r;
-               phi = expand(tautilde.to_ex(x) + q.to_ex(x) * u1.to_ex(x));
-               UniPoly tau(R, phi, x);
-               u = expand(u + tau.to_ex(x) * modulus);
-               w = expand(w + sigma.to_ex(x) * modulus);
+               phi = expand(umod_to_ex(s, x) * c);
+               umodpoly sigmatilde;
+               umodpoly_from_ex(sigmatilde, phi, x, R);
+               phi = expand(umod_to_ex(t, x) * c);
+               umodpoly tautilde;
+               umodpoly_from_ex(tautilde, phi, x, R);
+               umodpoly r, q;
+               remdiv(sigmatilde, w1, r, q);
+               umodpoly sigma = r;
+               phi = expand(umod_to_ex(tautilde, x) + umod_to_ex(q, x) * umod_to_ex(u1, x));
+               umodpoly tau;
+               umodpoly_from_ex(tau, phi, x, R);
+               u = expand(u + umod_to_ex(tau, x) * modulus);
+               w = expand(w + umod_to_ex(sigma, x) * modulus);
                e = expand(a - u * w);
                modulus = modulus * p;
        }
@@ -975,6 +1140,15 @@ public:
        size_t size() const { return n; }
        size_t size_first() const { return n-sum; }
        size_t size_second() const { return sum; }
+#ifdef DEBUGFACTOR
+       void get() const
+       {
+               for ( size_t i=0; i<k.size(); ++i ) {
+                       cout << k[i] << " ";
+               }
+               cout << endl;
+       }
+#endif
        bool next()
        {
                for ( size_t i=n-1; i>=1; --i ) {
@@ -993,10 +1167,11 @@ private:
        vector<int> k;
 };
 
-static void split(const UniPolyVec& factors, const Partition& part, UniPoly& a, UniPoly& b)
+static void split(const upvec& factors, const Partition& part, umodpoly& a, umodpoly& b)
 {
-       a.set(0, a.R->one());
-       b.set(0, a.R->one());
+       umodpoly one(1, factors.front()[0].ring()->one());
+       a = one;
+       b = one;
        for ( size_t i=0; i<part.size(); ++i ) {
                if ( part[i] ) {
                        b = b * factors[i];
@@ -1010,7 +1185,7 @@ static void split(const UniPolyVec& factors, const Partition& part, UniPoly& a,
 struct ModFactors
 {
        ex poly;
-       UniPolyVec factors;
+       upvec factors;
 };
 
 static ex factor_univariate(const ex& poly, const ex& x)
@@ -1018,28 +1193,47 @@ static ex factor_univariate(const ex& poly, const ex& x)
        ex unit, cont, prim;
        poly.unitcontprim(x, unit, cont, prim);
 
-       // determine proper prime
-       unsigned int p = 3;
-       cl_modint_ring R = find_modint_ring(p);
-       while ( true ) {
-               if ( irem(ex_to<numeric>(prim.lcoeff(x)), p) != 0 ) {
-                       UniPoly modpoly(R, prim, x);
-                       UniFactorVec sqrfree_ufv;
-                       squarefree(modpoly, sqrfree_ufv);
-                       if ( sqrfree_ufv.factors.size() == 1 ) break;
-               }
-               p = next_prime(p);
-               R = find_modint_ring(p);
-       }
-
-       // do modular factorization
-       UniPoly modpoly(R, prim, x);
-       UniPolyVec factors;
-       factor_modular(modpoly, factors);
-       if ( factors.size() <= 1 ) {
-               // irreducible for sure
-               return poly;
+       // determine proper prime and minimize number of modular factors
+       unsigned int p = 3, lastp = 3;
+       cl_modint_ring R;
+       unsigned int trials = 0;
+       unsigned int minfactors = 0;
+       numeric lcoeff = ex_to<numeric>(prim.lcoeff(x));
+       upvec factors;
+       while ( trials < 2 ) {
+               while ( true ) {
+                       p = next_prime(p);
+                       if ( irem(lcoeff, p) != 0 ) {
+                               R = find_modint_ring(p);
+                               umodpoly modpoly;
+                               umodpoly_from_ex(modpoly, prim, x, R);
+                               if ( squarefree(modpoly) ) break;
+                       }
+               }
+
+               // do modular factorization
+               umodpoly modpoly;
+               umodpoly_from_ex(modpoly, prim, x, R);
+               upvec trialfactors;
+               factor_modular(modpoly, trialfactors);
+               if ( trialfactors.size() <= 1 ) {
+                       // irreducible for sure
+                       return poly;
+               }
+
+               if ( minfactors == 0 || trialfactors.size() < minfactors ) {
+                       factors = trialfactors;
+                       minfactors = factors.size();
+                       lastp = p;
+                       trials = 1;
+               }
+               else {
+                       ++trials;
+               }
        }
+       p = lastp;
+       R = find_modint_ring(p);
+       cl_univpoly_modint_ring UPR = find_univpoly_ring(R);
 
        // lift all factor combinations
        stack<ModFactors> tocheck;
@@ -1052,7 +1246,7 @@ static ex factor_univariate(const ex& poly, const ex& x)
                const size_t n = tocheck.top().factors.size();
                Partition part(n);
                while ( true ) {
-                       UniPoly a(R), b(R);
+                       umodpoly a, b;
                        split(tocheck.top().factors, part, a, b);
 
                        ex answer = hensel_univar(tocheck.top().poly, x, p, a, b);
@@ -1090,8 +1284,8 @@ static ex factor_univariate(const ex& poly, const ex& x)
                                        break;
                                }
                                else {
-                                       UniPolyVec newfactors1(part.size_first(), R), newfactors2(part.size_second(), R);
-                                       UniPolyVec::iterator i1 = newfactors1.begin(), i2 = newfactors2.begin();
+                                       upvec newfactors1(part.size_first()), newfactors2(part.size_second());
+                                       upvec::iterator i1 = newfactors1.begin(), i2 = newfactors2.begin();
                                        for ( size_t i=0; i<n; ++i ) {
                                                if ( part[i] ) {
                                                        *i2++ = tocheck.top().factors[i];
@@ -1106,6 +1300,7 @@ static ex factor_univariate(const ex& poly, const ex& x)
                                        mf.factors = newfactors2;
                                        mf.poly = answer.op(1);
                                        tocheck.push(mf);
+                                       break;
                                }
                        }
                        else {
@@ -1121,7 +1316,804 @@ static ex factor_univariate(const ex& poly, const ex& x)
        return unit * cont * result;
 }
 
-struct FindSymbolsMap : public map_function {
+struct EvalPoint
+{
+       ex x;
+       int evalpoint;
+};
+
+// forward declaration
+vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, const vector<EvalPoint>& I, unsigned int d, unsigned int p, unsigned int k);
+
+upvec multiterm_eea_lift(const upvec& a, const ex& x, unsigned int p, unsigned int k)
+{
+       const size_t r = a.size();
+       cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k));
+       upvec q(r-1);
+       q[r-2] = a[r-1];
+       for ( size_t j=r-2; j>=1; --j ) {
+               q[j-1] = a[j] * q[j];
+       }
+       umodpoly beta(1, R->one());
+       upvec s;
+       for ( size_t j=1; j<r; ++j ) {
+               vector<ex> mdarg(2);
+               mdarg[0] = umod_to_ex(q[j-1], x);
+               mdarg[1] = umod_to_ex(a[j-1], x);
+               vector<EvalPoint> empty;
+               vector<ex> exsigma = multivar_diophant(mdarg, x, umod_to_ex(beta, x), empty, 0, p, k);
+               umodpoly sigma1;
+               umodpoly_from_ex(sigma1, exsigma[0], x, R);
+               umodpoly sigma2;
+               umodpoly_from_ex(sigma2, exsigma[1], x, R);
+               beta = sigma1;
+               s.push_back(sigma2);
+       }
+       s.push_back(beta);
+       return s;
+}
+
+/**
+ *  Assert: a not empty.
+ */
+void change_modulus(const cl_modint_ring& R, umodpoly& a)
+{
+       if ( a.empty() ) return;
+       cl_modint_ring oldR = a[0].ring();
+       umodpoly::iterator i = a.begin(), end = a.end();
+       for ( ; i!=end; ++i ) {
+               *i = R->canonhom(oldR->retract(*i));
+       }
+       canonicalize(a);
+}
+
+void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned int p, unsigned int k, umodpoly& s_, umodpoly& t_)
+{
+       cl_modint_ring R = find_modint_ring(p);
+       umodpoly amod = a;
+       change_modulus(R, amod);
+       umodpoly bmod = b;
+       change_modulus(R, bmod);
+
+       umodpoly g;
+       umodpoly smod;
+       umodpoly tmod;
+       exteuclid(amod, bmod, g, smod, tmod);
+       if ( unequal_one(g) ) {
+               throw logic_error("gcd(amod,bmod) != 1");
+       }
+
+       cl_modint_ring Rpk = find_modint_ring(expt_pos(cl_I(p),k));
+       umodpoly s = smod;
+       change_modulus(Rpk, s);
+       umodpoly t = tmod;
+       change_modulus(Rpk, t);
+
+       cl_I modulus(p);
+       umodpoly one(1, Rpk->one());
+       for ( size_t j=1; j<k; ++j ) {
+               umodpoly e = one - a * s - b * t;
+               reduce_coeff(e, modulus);
+               umodpoly c = e;
+               change_modulus(R, c);
+               umodpoly sigmabar = smod * c;
+               umodpoly taubar = tmod * c;
+               umodpoly sigma, q;
+               remdiv(sigmabar, bmod, sigma, q);
+               umodpoly tau = taubar + q * amod;
+               umodpoly sadd = sigma;
+               change_modulus(Rpk, sadd);
+               cl_MI modmodulus(Rpk, modulus);
+               s = s + sadd * modmodulus;
+               umodpoly tadd = tau;
+               change_modulus(Rpk, tadd);
+               t = t + tadd * modmodulus;
+               modulus = modulus * p;
+       }
+
+       s_ = s; t_ = t;
+}
+
+upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsigned int p, unsigned int k)
+{
+       cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k));
+
+       const size_t r = a.size();
+       upvec result;
+       if ( r > 2 ) {
+               upvec s = multiterm_eea_lift(a, x, p, k);
+               for ( size_t j=0; j<r; ++j ) {
+                       ex phi = expand(pow(x,m) * umod_to_ex(s[j], x));
+                       umodpoly bmod;
+                       umodpoly_from_ex(bmod, phi, x, R);
+                       umodpoly buf;
+                       rem(bmod, a[j], buf);
+                       result.push_back(buf);
+               }
+       }
+       else {
+               umodpoly s;
+               umodpoly t;
+               eea_lift(a[1], a[0], x, p, k, s, t);
+               ex phi = expand(pow(x,m) * umod_to_ex(s, x));
+               umodpoly bmod;
+               umodpoly_from_ex(bmod, phi, x, R);
+               umodpoly buf, q;
+               remdiv(bmod, a[0], buf, q);
+               result.push_back(buf);
+               phi = expand(pow(x,m) * umod_to_ex(t, x));
+               umodpoly t1mod;
+               umodpoly_from_ex(t1mod, phi, x, R);
+               umodpoly buf2 = t1mod + q * a[1];
+               result.push_back(buf2);
+       }
+
+       return result;
+}
+
+struct make_modular_map : public map_function {
+       cl_modint_ring R;
+       make_modular_map(const cl_modint_ring& R_) : R(R_) { }
+       ex operator()(const ex& e)
+       {
+               if ( is_a<add>(e) || is_a<mul>(e) ) {
+                       return e.map(*this);
+               }
+               else if ( is_a<numeric>(e) ) {
+                       numeric mod(R->modulus);
+                       numeric halfmod = (mod-1)/2;
+                       cl_MI emod = R->canonhom(the<cl_I>(ex_to<numeric>(e).to_cl_N()));
+                       numeric n(R->retract(emod));
+                       if ( n > halfmod ) {
+                               return n-mod;
+                       }
+                       else {
+                               return n;
+                       }
+               }
+               return e;
+       }
+};
+
+static ex make_modular(const ex& e, const cl_modint_ring& R)
+{
+       make_modular_map map(R);
+       return map(e.expand());
+}
+
+vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, const vector<EvalPoint>& I, unsigned int d, unsigned int p, unsigned int k)
+{
+       vector<ex> a = a_;
+
+       const cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k));
+       const size_t r = a.size();
+       const size_t nu = I.size() + 1;
+
+       vector<ex> sigma;
+       if ( nu > 1 ) {
+               ex xnu = I.back().x;
+               int alphanu = I.back().evalpoint;
+
+               ex A = 1;
+               for ( size_t i=0; i<r; ++i ) {
+                       A *= a[i];
+               }
+               vector<ex> b(r);
+               for ( size_t i=0; i<r; ++i ) {
+                       b[i] = normal(A / a[i]);
+               }
+
+               vector<ex> anew = a;
+               for ( size_t i=0; i<r; ++i ) {
+                       anew[i] = anew[i].subs(xnu == alphanu);
+               }
+               ex cnew = c.subs(xnu == alphanu);
+               vector<EvalPoint> Inew = I;
+               Inew.pop_back();
+               sigma = multivar_diophant(anew, x, cnew, Inew, d, p, k);
+
+               ex buf = c;
+               for ( size_t i=0; i<r; ++i ) {
+                       buf -= sigma[i] * b[i];
+               }
+               ex e = make_modular(buf, R);
+
+               ex monomial = 1;
+               for ( size_t m=1; m<=d; ++m ) {
+                       while ( !e.is_zero() && e.has(xnu) ) {
+                               monomial *= (xnu - alphanu);
+                               monomial = expand(monomial);
+                               ex cm = e.diff(ex_to<symbol>(xnu), m).subs(xnu==alphanu) / factorial(m);
+                               cm = make_modular(cm, R);
+                               if ( !cm.is_zero() ) {
+                                       vector<ex> delta_s = multivar_diophant(anew, x, cm, Inew, d, p, k);
+                                       ex buf = e;
+                                       for ( size_t j=0; j<delta_s.size(); ++j ) {
+                                               delta_s[j] *= monomial;
+                                               sigma[j] += delta_s[j];
+                                               buf -= delta_s[j] * b[j];
+                                       }
+                                       e = make_modular(buf, R);
+                               }
+                       }
+               }
+       }
+       else {
+               upvec amod;
+               for ( size_t i=0; i<a.size(); ++i ) {
+                       umodpoly up;
+                       umodpoly_from_ex(up, a[i], x, R);
+                       amod.push_back(up);
+               }
+
+               sigma.insert(sigma.begin(), r, 0);
+               size_t nterms;
+               ex z;
+               if ( is_a<add>(c) ) {
+                       nterms = c.nops();
+                       z = c.op(0);
+               }
+               else {
+                       nterms = 1;
+                       z = c;
+               }
+               for ( size_t i=0; i<nterms; ++i ) {
+                       int m = z.degree(x);
+                       cl_I cm = the<cl_I>(ex_to<numeric>(z.lcoeff(x)).to_cl_N());
+                       upvec delta_s = univar_diophant(amod, x, m, p, k);
+                       cl_MI modcm;
+                       cl_I poscm = cm;
+                       while ( poscm < 0 ) {
+                               poscm = poscm + expt_pos(cl_I(p),k);
+                       }
+                       modcm = cl_MI(R, poscm);
+                       for ( size_t j=0; j<delta_s.size(); ++j ) {
+                               delta_s[j] = delta_s[j] * modcm;
+                               sigma[j] = sigma[j] + umod_to_ex(delta_s[j], x);
+                       }
+                       if ( nterms > 1 ) {
+                               z = c.op(i+1);
+                       }
+               }
+       }
+
+       for ( size_t i=0; i<sigma.size(); ++i ) {
+               sigma[i] = make_modular(sigma[i], R);
+       }
+
+       return sigma;
+}
+
+#ifdef DEBUGFACTOR
+ostream& operator<<(ostream& o, const vector<EvalPoint>& v)
+{
+       for ( size_t i=0; i<v.size(); ++i ) {
+               o << "(" << v[i].x << "==" << v[i].evalpoint << ") ";
+       }
+       return o;
+}
+#endif // def DEBUGFACTOR
+
+
+ex hensel_multivar(const ex& a, const ex& x, const vector<EvalPoint>& I, unsigned int p, const cl_I& l, const upvec& u, const vector<ex>& lcU)
+{
+       const size_t nu = I.size() + 1;
+       const cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),l));
+
+       vector<ex> A(nu);
+       A[nu-1] = a;
+
+       for ( size_t j=nu; j>=2; --j ) {
+               ex x = I[j-2].x;
+               int alpha = I[j-2].evalpoint;
+               A[j-2] = A[j-1].subs(x==alpha);
+               A[j-2] = make_modular(A[j-2], R);
+       }
+
+       int maxdeg = a.degree(I.front().x);
+       for ( size_t i=1; i<I.size(); ++i ) {
+               int maxdeg2 = a.degree(I[i].x);
+               if ( maxdeg2 > maxdeg ) maxdeg = maxdeg2;
+       }
+
+       const size_t n = u.size();
+       vector<ex> U(n);
+       for ( size_t i=0; i<n; ++i ) {
+               U[i] = umod_to_ex(u[i], x);
+       }
+
+       for ( size_t j=2; j<=nu; ++j ) {
+               vector<ex> U1 = U;
+               ex monomial = 1;
+               for ( size_t m=0; m<n; ++m) {
+                       if ( lcU[m] != 1 ) {
+                               ex coef = lcU[m];
+                               for ( size_t i=j-1; i<nu-1; ++i ) {
+                                       coef = coef.subs(I[i].x == I[i].evalpoint);
+                               }
+                               coef = make_modular(coef, R);
+                               int deg = U[m].degree(x);
+                               U[m] = U[m] - U[m].lcoeff(x) * pow(x,deg) + coef * pow(x,deg);
+                       }
+               }
+               ex Uprod = 1;
+               for ( size_t i=0; i<n; ++i ) {
+                       Uprod *= U[i];
+               }
+               ex e = expand(A[j-1] - Uprod);
+
+               vector<EvalPoint> newI;
+               for ( size_t i=1; i<=j-2; ++i ) {
+                       newI.push_back(I[i-1]);
+               }
+
+               ex xj = I[j-2].x;
+               int alphaj = I[j-2].evalpoint;
+               size_t deg = A[j-1].degree(xj);
+               for ( size_t k=1; k<=deg; ++k ) {
+                       if ( !e.is_zero() ) {
+                               monomial *= (xj - alphaj);
+                               monomial = expand(monomial);
+                               ex dif = e.diff(ex_to<symbol>(xj), k);
+                               ex c = dif.subs(xj==alphaj) / factorial(k);
+                               if ( !c.is_zero() ) {
+                                       vector<ex> deltaU = multivar_diophant(U1, x, c, newI, maxdeg, p, cl_I_to_uint(l));
+                                       for ( size_t i=0; i<n; ++i ) {
+                                               deltaU[i] *= monomial;
+                                               U[i] += deltaU[i];
+                                               U[i] = make_modular(U[i], R);
+                                       }
+                                       ex Uprod = 1;
+                                       for ( size_t i=0; i<n; ++i ) {
+                                               Uprod *= U[i];
+                                       }
+                                       e = A[j-1] - Uprod;
+                                       e = make_modular(e, R);
+                               }
+                       }
+               }
+       }
+
+       ex acand = 1;
+       for ( size_t i=0; i<U.size(); ++i ) {
+               acand *= U[i];
+       }
+       if ( expand(a-acand).is_zero() ) {
+               lst res;
+               for ( size_t i=0; i<U.size(); ++i ) {
+                       res.append(U[i]);
+               }
+               return res;
+       }
+       else {
+               lst res;
+               return lst();
+       }
+}
+
+static ex put_factors_into_lst(const ex& e)
+{
+       lst result;
+
+       if ( is_a<numeric>(e) ) {
+               result.append(e);
+               return result;
+       }
+       if ( is_a<power>(e) ) {
+               result.append(1);
+               result.append(e.op(0));
+               result.append(e.op(1));
+               return result;
+       }
+       if ( is_a<symbol>(e) || is_a<add>(e) ) {
+               result.append(1);
+               result.append(e);
+               result.append(1);
+               return result;
+       }
+       if ( is_a<mul>(e) ) {
+               ex nfac = 1;
+               for ( size_t i=0; i<e.nops(); ++i ) {
+                       ex op = e.op(i);
+                       if ( is_a<numeric>(op) ) {
+                               nfac = op;
+                       }
+                       if ( is_a<power>(op) ) {
+                               result.append(op.op(0));
+                               result.append(op.op(1));
+                       }
+                       if ( is_a<symbol>(op) || is_a<add>(op) ) {
+                               result.append(op);
+                               result.append(1);
+                       }
+               }
+               result.prepend(nfac);
+               return result;
+       }
+       throw runtime_error("put_factors_into_lst: bad term.");
+}
+
+#ifdef DEBUGFACTOR
+ostream& operator<<(ostream& o, const vector<numeric>& v)
+{
+       for ( size_t i=0; i<v.size(); ++i ) {
+               o << v[i] << " ";
+       }
+       return o;
+}
+#endif // def DEBUGFACTOR
+
+static bool checkdivisors(const lst& f, vector<numeric>& d)
+{
+       const int k = f.nops()-2;
+       numeric q, r;
+       d[0] = ex_to<numeric>(f.op(0) * f.op(f.nops()-1));
+       if ( d[0] == 1 && k == 1 && abs(f.op(1)) != 1 ) {
+               return false;
+       }
+       for ( int i=1; i<=k; ++i ) {
+               q = ex_to<numeric>(abs(f.op(i)));
+               for ( int j=i-1; j>=0; --j ) {
+                       r = d[j];
+                       do {
+                               r = gcd(r, q);
+                               q = q/r;
+                       } while ( r != 1 );
+                       if ( q == 1 ) {
+                               return true;
+                       }
+               }
+               d[i] = q;
+       }
+       return false;
+}
+
+static bool generate_set(const ex& u, const ex& vn, const exset& syms, const ex& f, const numeric& modulus, vector<numeric>& a, vector<numeric>& d)
+{
+       // computation of d is actually not necessary
+       const ex& x = *syms.begin();
+       bool trying = true;
+       do {
+               ex u0 = u;
+               ex vna = vn;
+               ex vnatry;
+               exset::const_iterator s = syms.begin();
+               ++s;
+               for ( size_t i=0; i<a.size(); ++i ) {
+                       do {
+                               a[i] = mod(numeric(rand()), 2*modulus) - modulus;
+                               vnatry = vna.subs(*s == a[i]);
+                       } while ( vnatry == 0 );
+                       vna = vnatry;
+                       u0 = u0.subs(*s == a[i]);
+                       ++s;
+               }
+               if ( gcd(u0,u0.diff(ex_to<symbol>(x))) != 1 ) {
+                       continue;
+               }
+               if ( is_a<numeric>(vn) ) {
+                       trying = false;
+               }
+               else {
+                       lst fnum;
+                       lst::const_iterator i = ex_to<lst>(f).begin();
+                       fnum.append(*i++);
+                       bool problem = false;
+                       while ( i!=ex_to<lst>(f).end() ) {
+                               ex fs = *i;
+                               if ( !is_a<numeric>(fs) ) {
+                                       s = syms.begin();
+                                       ++s;
+                                       for ( size_t j=0; j<a.size(); ++j ) {
+                                               fs = fs.subs(*s == a[j]);
+                                               ++s;
+                                       }
+                                       if ( abs(fs) == 1 ) {
+                                               problem = true;
+                                               break;
+                                       }
+                               }
+                               fnum.append(fs);
+                               ++i; ++i;
+                       }
+                       if ( problem ) {
+                               return true;
+                       }
+                       ex con = u0.content(x);
+                       fnum.append(con);
+                       trying = checkdivisors(fnum, d);
+               }
+       } while ( trying );
+       return false;
+}
+
+static ex factor_multivariate(const ex& poly, const exset& syms)
+{
+       exset::const_iterator s;
+       const ex& x = *syms.begin();
+
+       /* make polynomial primitive */
+       ex p = poly.expand().collect(x);
+       ex cont = p.lcoeff(x);
+       for ( numeric i=p.degree(x)-1; i>=p.ldegree(x); --i ) {
+               cont = gcd(cont, p.coeff(x,ex_to<numeric>(i).to_int()));
+               if ( cont == 1 ) break;
+       }
+       ex pp = expand(normal(p / cont));
+       if ( !is_a<numeric>(cont) ) {
+#ifdef DEBUGFACTOR
+               return ::factor(cont) * ::factor(pp);
+#else
+               return factor(cont) * factor(pp);
+#endif
+       }
+
+       /* factor leading coefficient */
+       pp = pp.collect(x);
+       ex vn = pp.lcoeff(x);
+       pp = pp.expand();
+       ex vnlst;
+       if ( is_a<numeric>(vn) ) {
+               vnlst = lst(vn);
+       }
+       else {
+#ifdef DEBUGFACTOR
+               ex vnfactors = ::factor(vn);
+#else
+               ex vnfactors = factor(vn);
+#endif
+               vnlst = put_factors_into_lst(vnfactors);
+       }
+
+       const numeric maxtrials = 3;
+       numeric modulus = (vnlst.nops()-1 > 3) ? vnlst.nops()-1 : 3;
+       numeric minimalr = -1;
+       vector<numeric> a(syms.size()-1, 0);
+       vector<numeric> d((vnlst.nops()-1)/2+1, 0);
+
+       while ( true ) {
+               numeric trialcount = 0;
+               ex u, delta;
+               unsigned int prime = 3;
+               size_t factor_count = 0;
+               ex ufac;
+               ex ufaclst;
+               while ( trialcount < maxtrials ) {
+                       bool problem = generate_set(pp, vn, syms, vnlst, modulus, a, d);
+                       if ( problem ) {
+                               ++modulus;
+                               continue;
+                       }
+                       u = pp;
+                       s = syms.begin();
+                       ++s;
+                       for ( size_t i=0; i<a.size(); ++i ) {
+                               u = u.subs(*s == a[i]);
+                               ++s;
+                       }
+                       delta = u.content(x);
+
+                       // determine proper prime
+                       prime = 3;
+                       cl_modint_ring R = find_modint_ring(prime);
+                       while ( true ) {
+                               if ( irem(ex_to<numeric>(u.lcoeff(x)), prime) != 0 ) {
+                                       umodpoly modpoly;
+                                       umodpoly_from_ex(modpoly, u, x, R);
+                                       if ( squarefree(modpoly) ) break;
+                               }
+                               prime = next_prime(prime);
+                               R = find_modint_ring(prime);
+                       }
+
+#ifdef DEBUGFACTOR
+                       ufac = ::factor(u);
+#else
+                       ufac = factor(u);
+#endif
+                       ufaclst = put_factors_into_lst(ufac);
+                       factor_count = (ufaclst.nops()-1)/2;
+
+                       // veto factorization for which gcd(u_i, u_j) != 1 for all i,j
+                       upvec tryu;
+                       for ( size_t i=0; i<(ufaclst.nops()-1)/2; ++i ) {
+                               umodpoly newu;
+                               umodpoly_from_ex(newu, ufaclst.op(i*2+1), x, R);
+                               tryu.push_back(newu);
+                       }
+                       bool veto = false;
+                       for ( size_t i=0; i<tryu.size()-1; ++i ) {
+                               for ( size_t j=i+1; j<tryu.size(); ++j ) {
+                                       umodpoly tryg;
+                                       gcd(tryu[i], tryu[j], tryg);
+                                       if ( unequal_one(tryg) ) {
+                                               veto = true;
+                                               goto escape_quickly;
+                                       }
+                               }
+                       }
+                       escape_quickly: ;
+                       if ( veto ) {
+                               continue;
+                       }
+
+                       if ( factor_count <= 1 ) {
+                               return poly;
+                       }
+
+                       if ( minimalr < 0 ) {
+                               minimalr = factor_count;
+                       }
+                       else if ( minimalr == factor_count ) {
+                               ++trialcount;
+                               ++modulus;
+                       }
+                       else if ( minimalr > factor_count ) {
+                               minimalr = factor_count;
+                               trialcount = 0;
+                       }
+                       if ( minimalr <= 1 ) {
+                               return poly;
+                       }
+               }
+
+               vector<numeric> ftilde((vnlst.nops()-1)/2+1);
+               ftilde[0] = ex_to<numeric>(vnlst.op(0));
+               for ( size_t i=1; i<ftilde.size(); ++i ) {
+                       ex ft = vnlst.op((i-1)*2+1);
+                       s = syms.begin();
+                       ++s;
+                       for ( size_t j=0; j<a.size(); ++j ) {
+                               ft = ft.subs(*s == a[j]);
+                               ++s;
+                       }
+                       ftilde[i] = ex_to<numeric>(ft);
+               }
+
+               vector<bool> used_flag((vnlst.nops()-1)/2+1, false);
+               vector<ex> D(factor_count, 1);
+               for ( size_t i=0; i<=factor_count; ++i ) {
+                       numeric prefac;
+                       if ( i == 0 ) {
+                               prefac = ex_to<numeric>(ufaclst.op(0));
+                               ftilde[0] = ftilde[0] / prefac;
+                               vnlst.let_op(0) = vnlst.op(0) / prefac;
+                               continue;
+                       }
+                       else {
+                               prefac = ex_to<numeric>(ufaclst.op(2*(i-1)+1).lcoeff(x));
+                       }
+                       for ( size_t j=(vnlst.nops()-1)/2+1; j>0; --j ) {
+                               if ( abs(ftilde[j-1]) == 1 ) {
+                                       used_flag[j-1] = true;
+                                       continue;
+                               }
+                               numeric g = gcd(prefac, ftilde[j-1]);
+                               if ( g != 1 ) {
+                                       prefac = prefac / g;
+                                       numeric count = abs(iquo(g, ftilde[j-1]));
+                                       used_flag[j-1] = true;
+                                       if ( i > 0 ) {
+                                               if ( j == 1 ) {
+                                                       D[i-1] = D[i-1] * pow(vnlst.op(0), count);
+                                               }
+                                               else {
+                                                       D[i-1] = D[i-1] * pow(vnlst.op(2*(j-2)+1), count);
+                                               }
+                                       }
+                                       else {
+                                               ftilde[j-1] = ftilde[j-1] / prefac;
+                                               break;
+                                       }
+                                       ++j;
+                               }
+                       }
+               }
+
+               bool some_factor_unused = false;
+               for ( size_t i=0; i<used_flag.size(); ++i ) {
+                       if ( !used_flag[i] ) {
+                               some_factor_unused = true;
+                               break;
+                       }
+               }
+               if ( some_factor_unused ) {
+                       continue;
+               }
+
+               vector<ex> C(factor_count);
+               if ( delta == 1 ) {
+                       for ( size_t i=0; i<D.size(); ++i ) {
+                               ex Dtilde = D[i];
+                               s = syms.begin();
+                               ++s;
+                               for ( size_t j=0; j<a.size(); ++j ) {
+                                       Dtilde = Dtilde.subs(*s == a[j]);
+                                       ++s;
+                               }
+                               C[i] = D[i] * (ufaclst.op(2*i+1).lcoeff(x) / Dtilde);
+                       }
+               }
+               else {
+                       for ( size_t i=0; i<D.size(); ++i ) {
+                               ex Dtilde = D[i];
+                               s = syms.begin();
+                               ++s;
+                               for ( size_t j=0; j<a.size(); ++j ) {
+                                       Dtilde = Dtilde.subs(*s == a[j]);
+                                       ++s;
+                               }
+                               ex ui;
+                               if ( i == 0 ) {
+                                       ui = ufaclst.op(0);
+                               }
+                               else {
+                                       ui = ufaclst.op(2*(i-1)+1);
+                               }
+                               while ( true ) {
+                                       ex d = gcd(ui.lcoeff(x), Dtilde);
+                                       C[i] = D[i] * ( ui.lcoeff(x) / d );
+                                       ui = ui * ( Dtilde[i] / d );
+                                       delta = delta / ( Dtilde[i] / d );
+                                       if ( delta == 1 ) break;
+                                       ui = delta * ui;
+                                       C[i] = delta * C[i];
+                                       pp = pp * pow(delta, D.size()-1);
+                               }
+                       }
+               }
+
+               EvalPoint ep;
+               vector<EvalPoint> epv;
+               s = syms.begin();
+               ++s;
+               for ( size_t i=0; i<a.size(); ++i ) {
+                       ep.x = *s++;
+                       ep.evalpoint = a[i].to_int();
+                       epv.push_back(ep);
+               }
+
+               // calc bound B
+               ex maxcoeff;
+               for ( int i=u.degree(x); i>=u.ldegree(x); --i ) {
+                       maxcoeff += pow(abs(u.coeff(x, i)),2);
+               }
+               cl_I normmc = ceiling1(the<cl_R>(cln::sqrt(ex_to<numeric>(maxcoeff).to_cl_N())));
+               unsigned int maxdegree = 0;
+               for ( size_t i=0; i<factor_count; ++i ) {
+                       if ( ufaclst[2*i+1].degree(x) > (int)maxdegree ) {
+                               maxdegree = ufaclst[2*i+1].degree(x);
+                       }
+               }
+               cl_I B = normmc * expt_pos(cl_I(2), maxdegree);
+               cl_I l = 1;
+               cl_I pl = prime;
+               while ( pl < B ) {
+                       l = l + 1;
+                       pl = pl * prime;
+               }
+
+               upvec uvec;
+               cl_modint_ring R = find_modint_ring(expt_pos(cl_I(prime),l));
+               for ( size_t i=0; i<(ufaclst.nops()-1)/2; ++i ) {
+                       umodpoly newu;
+                       umodpoly_from_ex(newu, ufaclst.op(i*2+1), x, R);
+                       uvec.push_back(newu);
+               }
+
+               ex res = hensel_multivar(ufaclst.op(0)*pp, x, epv, prime, l, uvec, C);
+               if ( res != lst() ) {
+                       ex result = cont * ufaclst.op(0);
+                       for ( size_t i=0; i<res.nops(); ++i ) {
+                               result *= res.op(i).content(x) * res.op(i).unit(x);
+                               result *= res.op(i).primpart(x);
+                       }
+                       return result;
+               }
+       }
+}
+
+struct find_symbols_map : public map_function {
        exset syms;
        ex operator()(const ex& e)
        {
@@ -1136,13 +2128,14 @@ struct FindSymbolsMap : public map_function {
 static ex factor_sqrfree(const ex& poly)
 {
        // determine all symbols in poly
-       FindSymbolsMap findsymbols;
+       find_symbols_map findsymbols;
        findsymbols(poly);
        if ( findsymbols.syms.size() == 0 ) {
                return poly;
        }
 
        if ( findsymbols.syms.size() == 1 ) {
+               // univariate case
                const ex& x = *(findsymbols.syms.begin());
                if ( poly.ldegree(x) > 0 ) {
                        int ld = poly.ldegree(x);
@@ -1155,16 +2148,65 @@ static ex factor_sqrfree(const ex& poly)
                }
        }
 
-       // multivariate case not yet implemented!
-       throw runtime_error("multivariate case not yet implemented!");
+       // multivariate case
+       ex res = factor_multivariate(poly, findsymbols.syms);
+       return res;
 }
 
+struct apply_factor_map : public map_function {
+       unsigned options;
+       apply_factor_map(unsigned options_) : options(options_) { }
+       ex operator()(const ex& e)
+       {
+               if ( e.info(info_flags::polynomial) ) {
+#ifdef DEBUGFACTOR
+                       return ::factor(e, options);
+#else
+                       return factor(e, options);
+#endif
+               }
+               if ( is_a<add>(e) ) {
+                       ex s1, s2;
+                       for ( size_t i=0; i<e.nops(); ++i ) {
+                               if ( e.op(i).info(info_flags::polynomial) ) {
+                                       s1 += e.op(i);
+                               }
+                               else {
+                                       s2 += e.op(i);
+                               }
+                       }
+                       s1 = s1.eval();
+                       s2 = s2.eval();
+#ifdef DEBUGFACTOR
+                       return ::factor(s1, options) + s2.map(*this);
+#else
+                       return factor(s1, options) + s2.map(*this);
+#endif
+               }
+               return e.map(*this);
+       }
+};
+
 } // anonymous namespace
 
-ex factor(const ex& poly)
+#ifdef DEBUGFACTOR
+ex factor(const ex& poly, unsigned options = 0)
+#else
+ex factor(const ex& poly, unsigned options)
+#endif
 {
+       // check arguments
+       if ( !poly.info(info_flags::polynomial) ) {
+               if ( options & factor_options::all ) {
+                       options &= ~factor_options::all;
+                       apply_factor_map factor_map(options);
+                       return factor_map(poly);
+               }
+               return poly;
+       }
+
        // determine all symbols in poly
-       FindSymbolsMap findsymbols;
+       find_symbols_map findsymbols;
        findsymbols(poly);
        if ( findsymbols.syms.size() == 0 ) {
                return poly;
@@ -1190,6 +2232,7 @@ ex factor(const ex& poly)
                return pow(f, sfpoly.op(1));
        }
        if ( is_a<mul>(sfpoly) ) {
+               // case: multiple factors
                ex res = 1;
                for ( size_t i=0; i<sfpoly.nops(); ++i ) {
                        const ex& t = sfpoly.op(i);
@@ -1213,6 +2256,9 @@ ex factor(const ex& poly)
                }
                return res;
        }
+       if ( is_a<symbol>(sfpoly) ) {
+               return poly;
+       }
        // case: (polynomial)
        ex f = factor_sqrfree(sfpoly);
        return f;