]> www.ginac.de Git - ginac.git/blobdiff - ginac/factor.cpp
Fix an infinite loop in factor_multivariate.
[ginac.git] / ginac / factor.cpp
index f3b48fdb3c8a5cdb413f9326345b9fd0dcfa5ec9..4f11e5621e64475e286790a455fce2271504a3a2 100644 (file)
@@ -1,16 +1,39 @@
 /** @file factor.cpp
  *
- *  Polynomial factorization code (implementation).
+ *  Polynomial factorization (implementation).
+ *
+ *  The interface function factor() at the end of this file is defined in the
+ *  GiNaC namespace. All other utility functions and classes are defined in an
+ *  additional anonymous namespace.
+ *
+ *  Factorization starts by doing a square free factorization and making the
+ *  coefficients integer. Then, depending on the number of free variables it
+ *  proceeds either in dedicated univariate or multivariate factorization code.
+ *
+ *  Univariate factorization does a modular factorization via Berlekamp's
+ *  algorithm and distinct degree factorization. Hensel lifting is used at the
+ *  end.
+ *  
+ *  Multivariate factorization uses the univariate factorization (applying a
+ *  evaluation homomorphism first) and Hensel lifting raises the answer to the
+ *  multivariate domain. The Hensel lifting code is completely distinct from the
+ *  code used by the univariate factorization.
  *
  *  Algorithms used can be found in
- *    [W1]  An Improved Multivariate Polynomial Factoring Algorithm,
- *          P.S.Wang, Mathematics of Computation, Vol. 32, No. 144 (1978) 1215--1231.
+ *    [Wan] An Improved Multivariate Polynomial Factoring Algorithm,
+ *          P.S.Wang,
+ *          Mathematics of Computation, Vol. 32, No. 144 (1978) 1215--1231.
  *    [GCL] Algorithms for Computer Algebra,
- *          K.O.Geddes, S.R.Czapor, G.Labahn, Springer Verlag, 1992.
+ *          K.O.Geddes, S.R.Czapor, G.Labahn,
+ *          Springer Verlag, 1992.
+ *    [Mig] Some Useful Bounds,
+ *          M.Mignotte, 
+ *          In "Computer Algebra, Symbolic and Algebraic Computation" (B.Buchberger et al., eds.),
+ *          pp. 259-263, Springer-Verlag, New York, 1982.
  */
 
 /*
- *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -61,34 +84,56 @@ namespace GiNaC {
 #define DCOUT(str) cout << #str << endl
 #define DCOUTVAR(var) cout << #var << ": " << var << endl
 #define DCOUT2(str,var) cout << #str << ": " << var << endl
-#else
-#define DCOUT(str)
-#define DCOUTVAR(var)
-#define DCOUT2(str,var)
-#endif
-
-// anonymous namespace to hide all utility functions
-namespace {
-
-typedef vector<cl_MI> mvec;
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const vector<cl_MI>& v)
+ostream& operator<<(ostream& o, const vector<int>& v)
 {
-       vector<cl_MI>::const_iterator i = v.begin(), end = v.end();
+       vector<int>::const_iterator i = v.begin(), end = v.end();
        while ( i != end ) {
                o << *i++ << " ";
        }
        return o;
 }
+static ostream& operator<<(ostream& o, const vector<cl_I>& v)
+{
+       vector<cl_I>::const_iterator i = v.begin(), end = v.end();
+       while ( i != end ) {
+               o << *i << "[" << i-v.begin() << "]" << " ";
+               ++i;
+       }
+       return o;
+}
+static ostream& operator<<(ostream& o, const vector<cl_MI>& v)
+{
+       vector<cl_MI>::const_iterator i = v.begin(), end = v.end();
+       while ( i != end ) {
+               o << *i << "[" << i-v.begin() << "]" << " ";
+               ++i;
+       }
+       return o;
+}
+ostream& operator<<(ostream& o, const vector<numeric>& v)
+{
+       for ( size_t i=0; i<v.size(); ++i ) {
+               o << v[i] << " ";
+       }
+       return o;
+}
 ostream& operator<<(ostream& o, const vector< vector<cl_MI> >& v)
 {
        vector< vector<cl_MI> >::const_iterator i = v.begin(), end = v.end();
        while ( i != end ) {
-               o << *i++ << endl;
+               o << i-v.begin() << ": " << *i << endl;
+               ++i;
        }
        return o;
 }
-#endif
+#else
+#define DCOUT(str)
+#define DCOUTVAR(var)
+#define DCOUT2(str,var)
+#endif // def DEBUGFACTOR
+
+// anonymous namespace to hide all utility functions
+namespace {
 
 ////////////////////////////////////////////////////////////////////////////////
 // modular univariate polynomial code
@@ -161,33 +206,44 @@ canonicalize(T& p, const typename T::size_type hint = std::numeric_limits<typena
 
 // END COPY FROM UPOLY.HPP
 
-static void expt_pos(const umodpoly& a, unsigned int q, umodpoly& b)
-{
-       throw runtime_error("expt_pos: not implemented!");
-       // code below is not correct!
-//     b.clear();
-//     if ( a.empty() ) return;
-//     b.resize(degree(a)*q+1, a[0].ring()->zero());
-//     cl_MI norm = recip(a[0]);
-//     umodpoly an = a;
-//     for ( size_t i=0; i<an.size(); ++i ) {
-//             an[i] = an[i] * norm;
-//     }
-//     b[0] = a[0].ring()->one();
-//     for ( size_t i=1; i<b.size(); ++i ) {
-//             for ( size_t j=1; j<i; ++j ) {
-//                     b[i] = b[i] + ((i-j+1)*q-i-1) * a[i-j] * b[j-1];
-//             }
-//             b[i] = b[i] / i;
-//     }
-//     cl_MI corr = expt_pos(a[0], q);
-//     for ( size_t i=0; i<b.size(); ++i ) {
-//             b[i] = b[i] * corr;
-//     }
+static void expt_pos(umodpoly& a, unsigned int q)
+{
+       if ( a.empty() ) return;
+       cl_MI zero = a[0].ring()->zero(); 
+       int deg = degree(a);
+       a.resize(degree(a)*q+1, zero);
+       for ( int i=deg; i>0; --i ) {
+               a[i*q] = a[i];
+               a[i] = zero;
+       }
 }
 
+template<bool COND, typename T = void> struct enable_if
+{
+       typedef T type;
+};
+
+template<typename T> struct enable_if<false, T> { /* empty */ };
+
+template<typename T> struct uvar_poly_p
+{
+       static const bool value = false;
+};
+
+template<> struct uvar_poly_p<upoly>
+{
+       static const bool value = true;
+};
+
+template<> struct uvar_poly_p<umodpoly>
+{
+       static const bool value = true;
+};
+
 template<typename T>
-static T operator+(const T& a, const T& b)
+// Don't define this for anything but univariate polynomials.
+static typename enable_if<uvar_poly_p<T>::value, T>::type
+operator+(const T& a, const T& b)
 {
        int sa = a.size();
        int sb = b.size();
@@ -218,7 +274,11 @@ static T operator+(const T& a, const T& b)
 }
 
 template<typename T>
-static T operator-(const T& a, const T& b)
+// Don't define this for anything but univariate polynomials. Otherwise
+// overload resolution might fail (this actually happens when compiling
+// GiNaC with g++ 3.4).
+static typename enable_if<uvar_poly_p<T>::value, T>::type
+operator-(const T& a, const T& b)
 {
        int sa = a.size();
        int sb = b.size();
@@ -359,10 +419,12 @@ static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_m
        canonicalize(ump);
 }
 
+#ifdef DEBUGFACTOR
 static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_I& modulus)
 {
        umodpoly_from_ex(ump, e, x, find_modint_ring(modulus));
 }
+#endif
 
 static ex upoly_to_ex(const upoly& a, const ex& x)
 {
@@ -410,6 +472,20 @@ static upoly umodpoly_to_upoly(const umodpoly& a)
        return e;
 }
 
+static umodpoly umodpoly_to_umodpoly(const umodpoly& a, const cl_modint_ring& R, unsigned int m)
+{
+       umodpoly e;
+       if ( a.empty() ) return e;
+       cl_modint_ring oldR = a[0].ring();
+       size_t sa = a.size();
+       e.resize(sa+m, R->zero());
+       for ( size_t i=0; i<sa; ++i ) {
+               e[i+m] = R->canonhom(oldR->retract(a[i]));
+       }
+       canonicalize(e);
+       return e;
+}
+
 /** Divides all coefficients of the polynomial a by the integer x.
  *  All coefficients are supposed to be divisible by x. If they are not, the
  *  the<cl_I> cast will raise an exception.
@@ -586,7 +662,7 @@ static bool squarefree(const umodpoly& a)
        umodpoly b;
        deriv(a, b);
        if ( b.empty() ) {
-               return true;
+               return false;
        }
        umodpoly c;
        gcd(a, b, c);
@@ -599,6 +675,8 @@ static bool squarefree(const umodpoly& a)
 ////////////////////////////////////////////////////////////////////////////////
 // modular matrix
 
+typedef vector<cl_MI> mvec;
+
 class modular_matrix
 {
        friend ostream& operator<<(ostream& o, const modular_matrix& m);
@@ -613,90 +691,75 @@ public:
        cl_MI operator()(size_t row, size_t col) const { return m[row*c + col]; }
        void mul_col(size_t col, const cl_MI x)
        {
-               mvec::iterator i = m.begin() + col;
                for ( size_t rc=0; rc<r; ++rc ) {
-                       *i = *i * x;
-                       i += c;
+                       std::size_t i = c*rc + col;
+                       m[i] = m[i] * x;
                }
        }
        void sub_col(size_t col1, size_t col2, const cl_MI fac)
        {
-               mvec::iterator i1 = m.begin() + col1;
-               mvec::iterator i2 = m.begin() + col2;
                for ( size_t rc=0; rc<r; ++rc ) {
-                       *i1 = *i1 - *i2 * fac;
-                       i1 += c;
-                       i2 += c;
+                       std::size_t i1 = col1 + c*rc;
+                       std::size_t i2 = col2 + c*rc;
+                       m[i1] = m[i1] - m[i2]*fac;
                }
        }
        void switch_col(size_t col1, size_t col2)
        {
-               cl_MI buf;
-               mvec::iterator i1 = m.begin() + col1;
-               mvec::iterator i2 = m.begin() + col2;
                for ( size_t rc=0; rc<r; ++rc ) {
-                       buf = *i1; *i1 = *i2; *i2 = buf;
-                       i1 += c;
-                       i2 += c;
+                       std::size_t i1 = col1 + rc*c;
+                       std::size_t i2 = col2 + rc*c;
+                       std::swap(m[i1], m[i2]);
                }
        }
        void mul_row(size_t row, const cl_MI x)
        {
-               vector<cl_MI>::iterator i = m.begin() + row*c;
                for ( size_t cc=0; cc<c; ++cc ) {
-                       *i = *i * x;
-                       ++i;
+                       std::size_t i = row*c + cc; 
+                       m[i] = m[i] * x;
                }
        }
        void sub_row(size_t row1, size_t row2, const cl_MI fac)
        {
-               vector<cl_MI>::iterator i1 = m.begin() + row1*c;
-               vector<cl_MI>::iterator i2 = m.begin() + row2*c;
                for ( size_t cc=0; cc<c; ++cc ) {
-                       *i1 = *i1 - *i2 * fac;
-                       ++i1;
-                       ++i2;
+                       std::size_t i1 = row1*c + cc;
+                       std::size_t i2 = row2*c + cc;
+                       m[i1] = m[i1] - m[i2]*fac;
                }
        }
        void switch_row(size_t row1, size_t row2)
        {
-               cl_MI buf;
-               vector<cl_MI>::iterator i1 = m.begin() + row1*c;
-               vector<cl_MI>::iterator i2 = m.begin() + row2*c;
                for ( size_t cc=0; cc<c; ++cc ) {
-                       buf = *i1; *i1 = *i2; *i2 = buf;
-                       ++i1;
-                       ++i2;
+                       std::size_t i1 = row1*c + cc;
+                       std::size_t i2 = row2*c + cc;
+                       std::swap(m[i1], m[i2]);
                }
        }
        bool is_col_zero(size_t col) const
        {
-               mvec::const_iterator i = m.begin() + col;
                for ( size_t rr=0; rr<r; ++rr ) {
-                       if ( !zerop(*i) ) {
+                       std::size_t i = col + rr*c;
+                       if ( !zerop(m[i]) ) {
                                return false;
                        }
-                       i += c;
                }
                return true;
        }
        bool is_row_zero(size_t row) const
        {
-               mvec::const_iterator i = m.begin() + row*c;
                for ( size_t cc=0; cc<c; ++cc ) {
-                       if ( !zerop(*i) ) {
+                       std::size_t i = row*c + cc;
+                       if ( !zerop(m[i]) ) {
                                return false;
                        }
-                       ++i;
                }
                return true;
        }
        void set_row(size_t row, const vector<cl_MI>& newrow)
        {
-               mvec::iterator i1 = m.begin() + row*c;
-               mvec::const_iterator i2 = newrow.begin(), end = newrow.end();
-               for ( ; i2 != end; ++i1, ++i2 ) {
-                       *i1 = *i2;
+               for (std::size_t i2 = 0; i2 < newrow.size(); ++i2) {
+                       std::size_t i1 = row*c + i2;
+                       m[i1] = newrow[i2];
                }
        }
        mvec::const_iterator row_begin(size_t row) const { return m.begin()+row*c; }
@@ -748,6 +811,11 @@ ostream& operator<<(ostream& o, const modular_matrix& m)
 // END modular matrix
 ////////////////////////////////////////////////////////////////////////////////
 
+/** Calculates the Q matrix for a polynomial. Used by Berlekamp's algorithm.
+ *
+ *  @param[in]  a_  modular polynomial
+ *  @param[out] Q   Q matrix
+ */
 static void q_matrix(const umodpoly& a_, modular_matrix& Q)
 {
        umodpoly a = a_;
@@ -771,6 +839,11 @@ static void q_matrix(const umodpoly& a_, modular_matrix& Q)
        }
 }
 
+/** Determine the nullspace of a matrix M-1.
+ *
+ *  @param[in,out] M      matrix, will be modified
+ *  @param[out]    basis  calculated nullspace of M-1
+ */
 static void nullspace(modular_matrix& M, vector<mvec>& basis)
 {
        const size_t n = M.rowsize();
@@ -815,11 +888,20 @@ static void nullspace(modular_matrix& M, vector<mvec>& basis)
        }
 }
 
+/** Berlekamp's modular factorization.
+ *  
+ *  The implementation follows the algorithm in chapter 8 of [GCL].
+ *
+ *  @param[in]  a    modular polynomial
+ *  @param[out] upv  vector containing modular factors. if upv was not empty the
+ *                   new elements are added at the end
+ */
 static void berlekamp(const umodpoly& a, upvec& upv)
 {
        cl_modint_ring R = a[0].ring();
        umodpoly one(1, R->one());
 
+       // find nullspace of Q matrix
        modular_matrix Q(degree(a), degree(a), R->zero());
        q_matrix(a, Q);
        vector<mvec> nu;
@@ -827,6 +909,7 @@ static void berlekamp(const umodpoly& a, upvec& upv)
 
        const unsigned int k = nu.size();
        if ( k == 1 ) {
+               // irreducible
                return;
        }
 
@@ -838,6 +921,7 @@ static void berlekamp(const umodpoly& a, upvec& upv)
 
        list<umodpoly>::iterator u = factors.begin();
 
+       // calculate all gcd's
        while ( true ) {
                for ( unsigned int s=0; s<q; ++s ) {
                        umodpoly nur = nu[r];
@@ -877,173 +961,181 @@ static void berlekamp(const umodpoly& a, upvec& upv)
        }
 }
 
-static void rem_xq(int q, const umodpoly& b, umodpoly& c)
-{
-       cl_modint_ring R = b[0].ring();
+// modular square free factorization is not used at the moment so we deactivate
+// the code
+#if 0
 
-       int n = degree(b);
-       if ( n > q ) {
-               c.resize(q+1, R->zero());
-               c[q] = R->one();
-               return;
+/** Calculates a^(1/prime).
+ *  
+ *  @param[in] a      polynomial
+ *  @param[in] prime  prime number -> exponent 1/prime
+ *  @param[in] ap     resulting polynomial
+ */
+static void expt_1_over_p(const umodpoly& a, unsigned int prime, umodpoly& ap)
+{
+       size_t newdeg = degree(a)/prime;
+       ap.resize(newdeg+1);
+       ap[0] = a[0];
+       for ( size_t i=1; i<=newdeg; ++i ) {
+               ap[i] = a[i*prime];
        }
+}
 
-       c.clear();
-       c.resize(n+1, R->zero());
-       int k = q-n;
-       c[n] = R->one();
-
-       int ofs = 0;
-       do {
-               cl_MI qk = div(c[n-ofs], b[n]);
-               if ( !zerop(qk) ) {
-                       for ( int i=1; i<=n; ++i ) {
-                               c[n-i+ofs] = c[n-i] - qk * b[n-i];
+/** Modular square free factorization.
+ *
+ *  @param[in]  a        polynomial
+ *  @param[out] factors  modular factors
+ *  @param[out] mult     corresponding multiplicities (exponents)
+ */
+static void modsqrfree(const umodpoly& a, upvec& factors, vector<int>& mult)
+{
+       const unsigned int prime = cl_I_to_uint(a[0].ring()->modulus);
+       int i = 1;
+       umodpoly b;
+       deriv(a, b);
+       if ( b.size() ) {
+               umodpoly c;
+               gcd(a, b, c);
+               umodpoly w;
+               div(a, c, w);
+               while ( unequal_one(w) ) {
+                       umodpoly y;
+                       gcd(w, c, y);
+                       umodpoly z;
+                       div(w, y, z);
+                       factors.push_back(z);
+                       mult.push_back(i);
+                       ++i;
+                       w = y;
+                       umodpoly buf;
+                       div(c, y, buf);
+                       c = buf;
+               }
+               if ( unequal_one(c) ) {
+                       umodpoly cp;
+                       expt_1_over_p(c, prime, cp);
+                       size_t previ = mult.size();
+                       modsqrfree(cp, factors, mult);
+                       for ( size_t i=previ; i<mult.size(); ++i ) {
+                               mult[i] *= prime;
                        }
-                       ofs = ofs ? 0 : 1;
                }
-       } while ( k-- );
-
-       if ( ofs ) {
-               c.pop_back();
        }
        else {
-               c.erase(c.begin());
+               umodpoly ap;
+               expt_1_over_p(a, prime, ap);
+               size_t previ = mult.size();
+               modsqrfree(ap, factors, mult);
+               for ( size_t i=previ; i<mult.size(); ++i ) {
+                       mult[i] *= prime;
+               }
        }
-       canonicalize(c);
 }
 
-static void distinct_degree_factor(const umodpoly& a_, upvec& result)
+#endif // deactivation of square free factorization
+
+/** Distinct degree factorization (DDF).
+ *  
+ *  The implementation follows the algorithm in chapter 8 of [GCL].
+ *
+ *  @param[in]  a_         modular polynomial
+ *  @param[out] degrees    vector containing the degrees of the factors of the
+ *                         corresponding polynomials in ddfactors.
+ *  @param[out] ddfactors  vector containing polynomials which factors have the
+ *                         degree given in degrees.
+ */
+static void distinct_degree_factor(const umodpoly& a_, vector<int>& degrees, upvec& ddfactors)
 {
        umodpoly a = a_;
 
        cl_modint_ring R = a[0].ring();
        int q = cl_I_to_int(R->modulus);
-       int n = degree(a);
-       size_t nhalf = n/2;
+       int nhalf = degree(a)/2;
 
-       size_t i = 1;
-       umodpoly w(1, R->one());
+       int i = 1;
+       umodpoly w(2);
+       w[0] = R->zero();
+       w[1] = R->one();
        umodpoly x = w;
 
-       upvec ai;
-
        while ( i <= nhalf ) {
-               expt_pos(w, q, w);
-               rem(w, a, w);
-
+               expt_pos(w, q);
                umodpoly buf;
-               gcd(a, w-x, buf);
-               ai.push_back(buf);
-
-               if ( unequal_one(ai.back()) ) {
-                       div(a, ai.back(), a);
-                       rem(w, a, w);
+               rem(w, a, buf);
+               w = buf;
+               umodpoly wx = w - x;
+               gcd(a, wx, buf);
+               if ( unequal_one(buf) ) {
+                       degrees.push_back(i);
+                       ddfactors.push_back(buf);
+               }
+               if ( unequal_one(buf) ) {
+                       umodpoly buf2;
+                       div(a, buf, buf2);
+                       a = buf2;
+                       nhalf = degree(a)/2;
+                       rem(w, a, buf);
+                       w = buf;
                }
-
                ++i;
        }
-
-       result = ai;
-}
-
-static void same_degree_factor(const umodpoly& a, upvec& result)
-{
-       cl_modint_ring R = a[0].ring();
-       int deg = degree(a);
-
-       upvec buf;
-       distinct_degree_factor(a, buf);
-       int degsum = 0;
-
-       for ( size_t i=0; i<buf.size(); ++i ) {
-               if ( unequal_one(buf[i]) ) {
-                       degsum += degree(buf[i]);
-                       upvec upv;
-                       berlekamp(buf[i], upv);
-                       for ( size_t j=0; j<upv.size(); ++j ) {
-                               result.push_back(upv[j]);
-                       }
-               }
-       }
-
-       if ( degsum < deg ) {
-               result.push_back(a);
+       if ( unequal_one(a) ) {
+               degrees.push_back(degree(a));
+               ddfactors.push_back(a);
        }
 }
 
-static void distinct_degree_factor_BSGS(const umodpoly& a, upvec& result)
+/** Modular same degree factorization.
+ *  Same degree factorization is a kind of misnomer. It performs distinct degree
+ *  factorization, but instead of using the Cantor-Zassenhaus algorithm it
+ *  (sub-optimally) uses Berlekamp's algorithm for the factors of the same
+ *  degree.
+ *
+ *  @param[in]  a    modular polynomial
+ *  @param[out] upv  vector containing modular factors. if upv was not empty the
+ *                   new elements are added at the end
+ */
+static void same_degree_factor(const umodpoly& a, upvec& upv)
 {
        cl_modint_ring R = a[0].ring();
-       int q = cl_I_to_int(R->modulus);
-       int n = degree(a);
-
-       cl_N pm = 0.3;
-       int l = cl_I_to_int(ceiling1(the<cl_F>(expt(n, pm))));
-       upvec h(l+1);
-       umodpoly qk(1, R->one());
-       h[0] = qk;
-       for ( int i=1; i<=l; ++i ) {
-               expt_pos(h[i-1], q, qk);
-               rem(qk, a, h[i]);
-       }
 
-       int m = std::ceil(((double)n)/2/l);
-       upvec H(m);
-       int ql = std::pow(q, l);
-       H[0] = h[l];
-       for ( int i=1; i<m; ++i ) {
-               expt_pos(H[i-1], ql, qk);
-               rem(qk, a, H[i]);
-       }
+       vector<int> degrees;
+       upvec ddfactors;
+       distinct_degree_factor(a, degrees, ddfactors);
 
-       upvec I(m);
-       umodpoly one(1, R->one());
-       for ( int i=0; i<m; ++i ) {
-               I[i] = one;
-               for ( int j=0; j<l; ++j ) {
-                       I[i] = I[i] * (H[i] - h[j]);
+       for ( size_t i=0; i<degrees.size(); ++i ) {
+               if ( degrees[i] == degree(ddfactors[i]) ) {
+                       upv.push_back(ddfactors[i]);
                }
-               rem(I[i], a, I[i]);
-       }
-
-       upvec F(m, one);
-       umodpoly f = a;
-       for ( int i=0; i<m; ++i ) {
-               umodpoly g;
-               gcd(f, I[i], g); 
-               if ( g == one ) continue;
-               F[i] = g;
-               div(f, g, f);
-       }
-
-       result.resize(n, one);
-       if ( unequal_one(f) ) {
-               result[n] = f;
-       }
-       for ( int i=0; i<m; ++i ) {
-               umodpoly f = F[i];
-               for ( int j=l-1; j>=0; --j ) {
-                       umodpoly g;
-                       gcd(f, H[i]-h[j], g);
-                       result[l*(i+1)-j-1] = g;
-                       div(f, g, f);
+               else {
+                       berlekamp(ddfactors[i], upv);
                }
        }
 }
 
-static void cantor_zassenhaus(const umodpoly& a, upvec& result)
-{
-}
+// Yes, we can (choose).
+#define USE_SAME_DEGREE_FACTOR
 
+/** Modular univariate factorization.
+ *
+ *  In principle, we have two algorithms at our disposal: Berlekamp's algorithm
+ *  and same degree factorization (SDF). SDF seems to be slightly faster in
+ *  almost all cases so it is activated as default.
+ *
+ *  @param[in]  p    modular polynomial
+ *  @param[out] upv  vector containing modular factors. if upv was not empty the
+ *                   new elements are added at the end
+ */
 static void factor_modular(const umodpoly& p, upvec& upv)
 {
-       //same_degree_factor(p, upv);
+#ifdef USE_SAME_DEGREE_FACTOR
+       same_degree_factor(p, upv);
+#else
        berlekamp(p, upv);
-       return;
+#endif
 }
 
-/** Calculates polynomials s and t such that a*s+b*t==1.
+/** Calculates modular polynomials s and t such that a*s+b*t==1.
  *  Assertion: a and b are relatively prime and not zero.
  *
  *  @param[in]  a  polynomial
@@ -1093,6 +1185,12 @@ static void exteuclid(const umodpoly& a, const umodpoly& b, umodpoly& s, umodpol
        canonicalize(t);
 }
 
+/** Replaces the leading coefficient in a polynomial by a given number.
+ *
+ *  @param[in] poly  polynomial to change
+ *  @param[in] lc    new leading coefficient
+ *  @return          changed polynomial
+ */
 static upoly replace_lc(const upoly& poly, const cl_I& lc)
 {
        if ( poly.empty() ) return poly;
@@ -1101,35 +1199,70 @@ static upoly replace_lc(const upoly& poly, const cl_I& lc)
        return r;
 }
 
-static ex hensel_univar(const ex& a_, const ex& x, unsigned int p, const umodpoly& u1_, const umodpoly& w1_, const ex& gamma_ = 0)
+/** Calculates the bound for the modulus.
+ *  See [Mig].
+ */
+static inline cl_I calc_bound(const ex& a, const ex& x, int maxdeg)
+{
+       cl_I maxcoeff = 0;
+       cl_R coeff = 0;
+       for ( int i=a.degree(x); i>=a.ldegree(x); --i ) {
+               cl_I aa = abs(the<cl_I>(ex_to<numeric>(a.coeff(x, i)).to_cl_N()));
+               if ( aa > maxcoeff ) maxcoeff = aa;
+               coeff = coeff + square(aa);
+       }
+       cl_I coeffnorm = ceiling1(the<cl_R>(cln::sqrt(coeff)));
+       cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg));
+       return ( B > maxcoeff ) ? B : maxcoeff;
+}
+
+/** Calculates the bound for the modulus.
+ *  See [Mig].
+ */
+static inline cl_I calc_bound(const upoly& a, int maxdeg)
+{
+       cl_I maxcoeff = 0;
+       cl_R coeff = 0;
+       for ( int i=degree(a); i>=0; --i ) {
+               cl_I aa = abs(a[i]);
+               if ( aa > maxcoeff ) maxcoeff = aa;
+               coeff = coeff + square(aa);
+       }
+       cl_I coeffnorm = ceiling1(the<cl_R>(cln::sqrt(coeff)));
+       cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg));
+       return ( B > maxcoeff ) ? B : maxcoeff;
+}
+
+/** Hensel lifting as used by factor_univariate().
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param[in]  a_   primitive univariate polynomials
+ *  @param[in]  p    prime number that does not divide lcoeff(a)
+ *  @param[in]  u1_  modular factor of a (mod p)
+ *  @param[in]  w1_  modular factor of a (mod p), relatively prime to u1_,
+ *                   fulfilling  u1_*w1_ == a mod p
+ *  @param[out] u    lifted factor
+ *  @param[out] w    lifted factor, u*w = a
+ */
+static void hensel_univar(const upoly& a_, unsigned int p, const umodpoly& u1_, const umodpoly& w1_, upoly& u, upoly& w)
 {
-       upoly a;
-       upoly_from_ex(a, a_, x);
+       upoly a = a_;
        const cl_modint_ring& R = u1_[0].ring();
 
        // calc bound B
-       cl_R maxcoeff;
-       for ( int i=degree(a); i>=0; --i ) {
-               maxcoeff = maxcoeff + square(abs(a[i]));
-       }
-       cl_I normmc = ceiling1(the<cl_R>(cln::sqrt(maxcoeff)));
-       cl_I maxdegree = (degree(u1_) > degree(w1_)) ? degree(u1_) : degree(w1_);
-       cl_I B = normmc * expt_pos(cl_I(2), maxdegree);
+       int maxdeg = (degree(u1_) > degree(w1_)) ? degree(u1_) : degree(w1_);
+       cl_I maxmodulus = 2*calc_bound(a, maxdeg);
 
        // step 1
        cl_I alpha = lcoeff(a);
-       cl_I gamma = the<cl_I>(ex_to<numeric>(gamma_).to_cl_N());
-       if ( gamma == 0 ) {
-               gamma = alpha;
-       }
-       cl_I gamma_ui = abs(gamma);
-       a = a * gamma;
+       a = a * alpha;
        umodpoly nu1 = u1_;
        normalize_in_field(nu1);
        umodpoly nw1 = w1_;
        normalize_in_field(nw1);
        upoly phi;
-       phi = umodpoly_to_upoly(nu1) * gamma;
+       phi = umodpoly_to_upoly(nu1) * alpha;
        umodpoly u1;
        umodpoly_from_upoly(u1, phi, R);
        phi = umodpoly_to_upoly(nw1) * alpha;
@@ -1142,11 +1275,10 @@ static ex hensel_univar(const ex& a_, const ex& x, unsigned int p, const umodpol
        exteuclid(u1, w1, s, t);
 
        // step 3
-       upoly u = replace_lc(umodpoly_to_upoly(u1), gamma);
-       upoly w = replace_lc(umodpoly_to_upoly(w1), alpha);
+       u = replace_lc(umodpoly_to_upoly(u1), alpha);
+       w = replace_lc(umodpoly_to_upoly(w1), alpha);
        upoly e = a - u * w;
        cl_I modulus = p;
-       const cl_I maxmodulus = 2*B*gamma_ui;
 
        // step 4
        while ( !e.empty() && modulus < maxmodulus ) {
@@ -1171,18 +1303,29 @@ static ex hensel_univar(const ex& a_, const ex& x, unsigned int p, const umodpol
 
        // step 5
        if ( e.empty() ) {
-               ex ue = upoly_to_ex(u, x);
-               ex we = upoly_to_ex(w, x);
-               ex delta = ue.content(x);
-               ue = ue / delta;
-               we = we / numeric(gamma) * delta;
-               return lst(ue, we);
+               cl_I g = u[0];
+               for ( size_t i=1; i<u.size(); ++i ) {
+                       g = gcd(g, u[i]);
+                       if ( g == 1 ) break;
+               }
+               if ( g != 1 ) {
+                       u = u / g;
+                       w = w * g;
+               }
+               if ( alpha != 1 ) {
+                       w = w / alpha;
+               }
        }
        else {
-               return lst();
+               u.clear();
        }
 }
 
+/** Returns a new prime number.
+ *
+ *  @param[in] p  prime number
+ *  @return       next prime number after p
+ */
 static unsigned int next_prime(unsigned int p)
 {
        static vector<unsigned int> primes;
@@ -1213,93 +1356,183 @@ static unsigned int next_prime(unsigned int p)
        throw logic_error("next_prime: should not reach this point!");
 }
 
-class Partition
+/** Manages the splitting a vector of of modular factors into two partitions.
+ */
+class factor_partition
 {
 public:
-       Partition(size_t n_) : n(n_)
+       /** Takes the vector of modular factors and initializes the first partition */
+       factor_partition(const upvec& factors_) : factors(factors_)
        {
-               k.resize(n, 1);
-               k[0] = 0;
-               sum = n-1;
+               n = factors.size();
+               k.resize(n, 0);
+               k[0] = 1;
+               cache.resize(n-1);
+               one.resize(1, factors.front()[0].ring()->one());
+               len = 1;
+               last = 0;
+               split();
        }
        int operator[](size_t i) const { return k[i]; }
        size_t size() const { return n; }
-       size_t size_first() const { return n-sum; }
-       size_t size_second() const { return sum; }
-#ifdef DEBUGFACTOR
-       void get() const
-       {
-               for ( size_t i=0; i<k.size(); ++i ) {
-                       cout << k[i] << " ";
-               }
-               cout << endl;
-       }
-#endif
+       size_t size_left() const { return n-len; }
+       size_t size_right() const { return len; }
+       /** Initializes the next partition.
+           Returns true, if there is one, false otherwise. */
        bool next()
        {
-               for ( size_t i=n-1; i>=1; --i ) {
-                       if ( k[i] ) {
-                               --k[i];
-                               --sum;
-                               return sum > 0;
+               if ( last == n-1 ) {
+                       int rem = len - 1;
+                       int p = last - 1;
+                       while ( rem ) {
+                               if ( k[p] ) {
+                                       --rem;
+                                       --p;
+                                       continue;
+                               }
+                               last = p - 1;
+                               while ( k[last] == 0 ) { --last; }
+                               if ( last == 0 && n == 2*len ) return false;
+                               k[last++] = 0;
+                               for ( size_t i=0; i<=len-rem; ++i ) {
+                                       k[last] = 1;
+                                       ++last;
+                               }
+                               fill(k.begin()+last, k.end(), 0);
+                               --last;
+                               split();
+                               return true;
                        }
-                       ++k[i];
-                       ++sum;
+                       last = len;
+                       ++len;
+                       if ( len > n/2 ) return false;
+                       fill(k.begin(), k.begin()+len, 1);
+                       fill(k.begin()+len+1, k.end(), 0);
                }
-               return false;
+               else {
+                       k[last++] = 0;
+                       k[last] = 1;
+               }
+               split();
+               return true;
        }
+       /** Get first partition */
+       umodpoly& left() { return lr[0]; }
+       /** Get second partition */
+       umodpoly& right() { return lr[1]; }
 private:
-       size_t n, sum;
-       vector<int> k;
-};
-
-static void split(const upvec& factors, const Partition& part, umodpoly& a, umodpoly& b)
-{
-       umodpoly one(1, factors.front()[0].ring()->one());
-       a = one;
-       b = one;
-       for ( size_t i=0; i<part.size(); ++i ) {
-               if ( part[i] ) {
-                       b = b * factors[i];
+       void split_cached()
+       {
+               size_t i = 0;
+               do {
+                       size_t pos = i;
+                       int group = k[i++];
+                       size_t d = 0;
+                       while ( i < n && k[i] == group ) { ++d; ++i; }
+                       if ( d ) {
+                               if ( cache[pos].size() >= d ) {
+                                       lr[group] = lr[group] * cache[pos][d-1];
+                               }
+                               else {
+                                       if ( cache[pos].size() == 0 ) {
+                                               cache[pos].push_back(factors[pos] * factors[pos+1]);
+                                       }
+                                       size_t j = pos + cache[pos].size() + 1;
+                                       d -= cache[pos].size();
+                                       while ( d ) {
+                                               umodpoly buf = cache[pos].back() * factors[j];
+                                               cache[pos].push_back(buf);
+                                               --d;
+                                               ++j;
+                                       }
+                                       lr[group] = lr[group] * cache[pos].back();
+                               }
+                       }
+                       else {
+                               lr[group] = lr[group] * factors[pos];
+                       }
+               } while ( i < n );
+       }
+       void split()
+       {
+               lr[0] = one;
+               lr[1] = one;
+               if ( n > 6 ) {
+                       split_cached();
                }
                else {
-                       a = a * factors[i];
+                       for ( size_t i=0; i<n; ++i ) {
+                               lr[k[i]] = lr[k[i]] * factors[i];
+                       }
                }
        }
-}
+private:
+       umodpoly lr[2];
+       vector< vector<umodpoly> > cache;
+       upvec factors;
+       umodpoly one;
+       size_t n;
+       size_t len;
+       size_t last;
+       vector<int> k;
+};
 
+/** Contains a pair of univariate polynomial and its modular factors.
+ *  Used by factor_univariate().
+ */
 struct ModFactors
 {
-       ex poly;
+       upoly poly;
        upvec factors;
 };
 
-static ex factor_univariate(const ex& poly, const ex& x)
+/** Univariate polynomial factorization.
+ *
+ *  Modular factorization is tried for several primes to minimize the number of
+ *  modular factors. Then, Hensel lifting is performed.
+ *
+ *  @param[in]     poly   expanded square free univariate polynomial
+ *  @param[in]     x      symbol
+ *  @param[in,out] prime  prime number to start trying modular factorization with,
+ *                        output value is the prime number actually used
+ */
+static ex factor_univariate(const ex& poly, const ex& x, unsigned int& prime)
 {
-       ex unit, cont, prim;
-       poly.unitcontprim(x, unit, cont, prim);
+       ex unit, cont, prim_ex;
+       poly.unitcontprim(x, unit, cont, prim_ex);
+       upoly prim;
+       upoly_from_ex(prim, prim_ex, x);
 
        // determine proper prime and minimize number of modular factors
-       unsigned int p = 3, lastp = 3;
+       prime = 3;
+       unsigned int lastp = prime;
        cl_modint_ring R;
        unsigned int trials = 0;
        unsigned int minfactors = 0;
-       numeric lcoeff = ex_to<numeric>(prim.lcoeff(x));
+
+       const numeric& cont_n = ex_to<numeric>(cont);
+       cl_I i_cont;
+       if (cont_n.is_integer()) {
+               i_cont = the<cl_I>(cont_n.to_cl_N());
+       } else {
+               // poly \in Q[x] => poly = q ipoly, ipoly \in Z[x], q \in Q
+               // factor(poly) \equiv q factor(ipoly)
+               i_cont = cl_I(1);
+       }
+       cl_I lc = lcoeff(prim)*i_cont;
        upvec factors;
        while ( trials < 2 ) {
+               umodpoly modpoly;
                while ( true ) {
-                       p = next_prime(p);
-                       if ( irem(lcoeff, p) != 0 ) {
-                               R = find_modint_ring(p);
-                               umodpoly modpoly;
-                               umodpoly_from_ex(modpoly, prim, x, R);
+                       prime = next_prime(prime);
+                       if ( !zerop(rem(lc, prime)) ) {
+                               R = find_modint_ring(prime);
+                               umodpoly_from_upoly(modpoly, prim, R);
                                if ( squarefree(modpoly) ) break;
                        }
                }
 
                // do modular factorization
-               umodpoly modpoly;
-               umodpoly_from_ex(modpoly, prim, x, R);
                upvec trialfactors;
                factor_modular(modpoly, trialfactors);
                if ( trialfactors.size() <= 1 ) {
@@ -1309,17 +1542,16 @@ static ex factor_univariate(const ex& poly, const ex& x)
 
                if ( minfactors == 0 || trialfactors.size() < minfactors ) {
                        factors = trialfactors;
-                       minfactors = factors.size();
-                       lastp = p;
+                       minfactors = trialfactors.size();
+                       lastp = prime;
                        trials = 1;
                }
                else {
                        ++trials;
                }
        }
-       p = lastp;
-       R = find_modint_ring(p);
-       cl_univpoly_modint_ring UPR = find_univpoly_ring(R);
+       prime = lastp;
+       R = find_modint_ring(prime);
 
        // lift all factor combinations
        stack<ModFactors> tocheck;
@@ -1327,24 +1559,24 @@ static ex factor_univariate(const ex& poly, const ex& x)
        mf.poly = prim;
        mf.factors = factors;
        tocheck.push(mf);
+       upoly f1, f2;
        ex result = 1;
        while ( tocheck.size() ) {
                const size_t n = tocheck.top().factors.size();
-               Partition part(n);
+               factor_partition part(tocheck.top().factors);
                while ( true ) {
-                       umodpoly a, b;
-                       split(tocheck.top().factors, part, a, b);
-
-                       ex answer = hensel_univar(tocheck.top().poly, x, p, a, b);
-                       if ( answer != lst() ) {
-                               if ( part.size_first() == 1 ) {
-                                       if ( part.size_second() == 1 ) {
-                                               result *= answer.op(0) * answer.op(1);
+                       // call Hensel lifting
+                       hensel_univar(tocheck.top().poly, prime, part.left(), part.right(), f1, f2);
+                       if ( !f1.empty() ) {
+                               // successful, update the stack and the result
+                               if ( part.size_left() == 1 ) {
+                                       if ( part.size_right() == 1 ) {
+                                               result *= upoly_to_ex(f1, x) * upoly_to_ex(f2, x);
                                                tocheck.pop();
                                                break;
                                        }
-                                       result *= answer.op(0);
-                                       tocheck.top().poly = answer.op(1);
+                                       result *= upoly_to_ex(f1, x);
+                                       tocheck.top().poly = f2;
                                        for ( size_t i=0; i<n; ++i ) {
                                                if ( part[i] == 0 ) {
                                                        tocheck.top().factors.erase(tocheck.top().factors.begin()+i);
@@ -1353,14 +1585,14 @@ static ex factor_univariate(const ex& poly, const ex& x)
                                        }
                                        break;
                                }
-                               else if ( part.size_second() == 1 ) {
-                                       if ( part.size_first() == 1 ) {
-                                               result *= answer.op(0) * answer.op(1);
+                               else if ( part.size_right() == 1 ) {
+                                       if ( part.size_left() == 1 ) {
+                                               result *= upoly_to_ex(f1, x) * upoly_to_ex(f2, x);
                                                tocheck.pop();
                                                break;
                                        }
-                                       result *= answer.op(1);
-                                       tocheck.top().poly = answer.op(0);
+                                       result *= upoly_to_ex(f2, x);
+                                       tocheck.top().poly = f1;
                                        for ( size_t i=0; i<n; ++i ) {
                                                if ( part[i] == 1 ) {
                                                        tocheck.top().factors.erase(tocheck.top().factors.begin()+i);
@@ -1370,7 +1602,7 @@ static ex factor_univariate(const ex& poly, const ex& x)
                                        break;
                                }
                                else {
-                                       upvec newfactors1(part.size_first()), newfactors2(part.size_second());
+                                       upvec newfactors1(part.size_left()), newfactors2(part.size_right());
                                        upvec::iterator i1 = newfactors1.begin(), i2 = newfactors2.begin();
                                        for ( size_t i=0; i<n; ++i ) {
                                                if ( part[i] ) {
@@ -1381,17 +1613,20 @@ static ex factor_univariate(const ex& poly, const ex& x)
                                                }
                                        }
                                        tocheck.top().factors = newfactors1;
-                                       tocheck.top().poly = answer.op(0);
+                                       tocheck.top().poly = f1;
                                        ModFactors mf;
                                        mf.factors = newfactors2;
-                                       mf.poly = answer.op(1);
+                                       mf.poly = f2;
                                        tocheck.push(mf);
                                        break;
                                }
                        }
                        else {
+                               // not successful
                                if ( !part.next() ) {
-                                       result *= tocheck.top().poly;
+                                       // if no more combinations left, return polynomial as
+                                       // irreducible
+                                       result *= upoly_to_ex(tocheck.top().poly, x);
                                        tocheck.pop();
                                        break;
                                }
@@ -1402,16 +1637,52 @@ static ex factor_univariate(const ex& poly, const ex& x)
        return unit * cont * result;
 }
 
+/** Second interface to factor_univariate() to be used if the information about
+ *  the prime is not needed.
+ */
+static inline ex factor_univariate(const ex& poly, const ex& x)
+{
+       unsigned int prime;
+       return factor_univariate(poly, x, prime);
+}
+
+/** Represents an evaluation point (<symbol>==<integer>).
+ */
 struct EvalPoint
 {
        ex x;
        int evalpoint;
 };
 
+#ifdef DEBUGFACTOR
+ostream& operator<<(ostream& o, const vector<EvalPoint>& v)
+{
+       for ( size_t i=0; i<v.size(); ++i ) {
+               o << "(" << v[i].x << "==" << v[i].evalpoint << ") ";
+       }
+       return o;
+}
+#endif // def DEBUGFACTOR
+
 // forward declaration
-vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, const vector<EvalPoint>& I, unsigned int d, unsigned int p, unsigned int k);
+static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, const vector<EvalPoint>& I, unsigned int d, unsigned int p, unsigned int k);
 
-upvec multiterm_eea_lift(const upvec& a, const ex& x, unsigned int p, unsigned int k)
+/** Utility function for multivariate Hensel lifting.
+ *
+ *  Solves the equation
+ *    s_1*b_1 + ... + s_r*b_r == 1 mod p^k
+ *  with deg(s_i) < deg(a_i)
+ *  and with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param[in]  a   vector of modular univariate polynomials
+ *  @param[in]  x   symbol
+ *  @param[in]  p   prime number
+ *  @param[in]  k   p^k is modulus
+ *  @return         vector of polynomials (s_i)
+ */
+static upvec multiterm_eea_lift(const upvec& a, const ex& x, unsigned int p, unsigned int k)
 {
        const size_t r = a.size();
        cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k));
@@ -1439,10 +1710,12 @@ upvec multiterm_eea_lift(const upvec& a, const ex& x, unsigned int p, unsigned i
        return s;
 }
 
-/**
- *  Assert: a not empty.
+/** Changes the modulus of a modular polynomial. Used by eea_lift().
+ *
+ *  @param[in]     R  new modular ring
+ *  @param[in,out] a  polynomial to change (in situ)
  */
-void change_modulus(const cl_modint_ring& R, umodpoly& a)
+static void change_modulus(const cl_modint_ring& R, umodpoly& a)
 {
        if ( a.empty() ) return;
        cl_modint_ring oldR = a[0].ring();
@@ -1453,7 +1726,21 @@ void change_modulus(const cl_modint_ring& R, umodpoly& a)
        canonicalize(a);
 }
 
-void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned int p, unsigned int k, umodpoly& s_, umodpoly& t_)
+/** Utility function for multivariate Hensel lifting.
+ *
+ *  Solves  s*a + t*b == 1 mod p^k  given a,b.
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param[in]  a   polynomial
+ *  @param[in]  b   polynomial
+ *  @param[in]  x   symbol
+ *  @param[in]  p   prime number
+ *  @param[in]  k   p^k is modulus
+ *  @param[out] s_  output polynomial
+ *  @param[out] t_  output polynomial
+ */
+static void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned int p, unsigned int k, umodpoly& s_, umodpoly& t_)
 {
        cl_modint_ring R = find_modint_ring(p);
        umodpoly amod = a;
@@ -1496,7 +1783,22 @@ void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned int p,
        s_ = s; t_ = t;
 }
 
-upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsigned int p, unsigned int k)
+/** Utility function for multivariate Hensel lifting.
+ *
+ *  Solves the equation
+ *    s_1*b_1 + ... + s_r*b_r == x^m mod p^k
+ *  with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param a  vector with univariate polynomials mod p^k
+ *  @param x  symbol
+ *  @param m  exponent of x^m in the equation to solve
+ *  @param p  prime number
+ *  @param k  p^k is modulus
+ *  @return   vector of polynomials (s_i)
+ */
+static upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsigned int p, unsigned int k)
 {
        cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k));
 
@@ -1505,34 +1807,31 @@ upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsigned int
        if ( r > 2 ) {
                upvec s = multiterm_eea_lift(a, x, p, k);
                for ( size_t j=0; j<r; ++j ) {
-                       ex phi = expand(pow(x,m) * umodpoly_to_ex(s[j], x));
-                       umodpoly bmod;
-                       umodpoly_from_ex(bmod, phi, x, R);
+                       umodpoly bmod = umodpoly_to_umodpoly(s[j], R, m);
                        umodpoly buf;
                        rem(bmod, a[j], buf);
                        result.push_back(buf);
                }
        }
        else {
-               umodpoly s;
-               umodpoly t;
+               umodpoly s, t;
                eea_lift(a[1], a[0], x, p, k, s, t);
-               ex phi = expand(pow(x,m) * umodpoly_to_ex(s, x));
-               umodpoly bmod;
-               umodpoly_from_ex(bmod, phi, x, R);
+               umodpoly bmod = umodpoly_to_umodpoly(s, R, m);
                umodpoly buf, q;
                remdiv(bmod, a[0], buf, q);
                result.push_back(buf);
-               phi = expand(pow(x,m) * umodpoly_to_ex(t, x));
-               umodpoly t1mod;
-               umodpoly_from_ex(t1mod, phi, x, R);
-               umodpoly buf2 = t1mod + q * a[1];
-               result.push_back(buf2);
+               umodpoly t1mod = umodpoly_to_umodpoly(t, R, m);
+               buf = t1mod + q * a[1];
+               result.push_back(buf);
        }
 
        return result;
 }
 
+/** Map used by function make_modular().
+ *  Finds every coefficient in a polynomial and replaces it by is value in the
+ *  given modular ring R (symmetric representation).
+ */
 struct make_modular_map : public map_function {
        cl_modint_ring R;
        make_modular_map(const cl_modint_ring& R_) : R(R_) { }
@@ -1557,13 +1856,38 @@ struct make_modular_map : public map_function {
        }
 };
 
+/** Helps mimicking modular multivariate polynomial arithmetic.
+ *
+ *  @param e  expression of which to make the coefficients equal to their value
+ *            in the modular ring R (symmetric representation)
+ *  @param R  modular ring
+ *  @return   resulting expression
+ */
 static ex make_modular(const ex& e, const cl_modint_ring& R)
 {
        make_modular_map map(R);
        return map(e.expand());
 }
 
-vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, const vector<EvalPoint>& I, unsigned int d, unsigned int p, unsigned int k)
+/** Utility function for multivariate Hensel lifting.
+ *
+ *  Returns the polynomials s_i that fulfill
+ *    s_1*b_1 + ... + s_r*b_r == c mod <I^(d+1),p^k>
+ *  with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param a_  vector of multivariate factors mod p^k
+ *  @param x   symbol (equiv. x_1 in [GCL])
+ *  @param c   polynomial mod p^k
+ *  @param I   vector of evaluation points
+ *  @param d   maximum total degree of result
+ *  @param p   prime number
+ *  @param k   p^k is modulus
+ *  @return    vector of polynomials (s_i)
+ */
+static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, const vector<EvalPoint>& I,
+                                    unsigned int d, unsigned int p, unsigned int k)
 {
        vector<ex> a = a_;
 
@@ -1601,22 +1925,20 @@ vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, con
                ex e = make_modular(buf, R);
 
                ex monomial = 1;
-               for ( size_t m=1; m<=d; ++m ) {
-                       while ( !e.is_zero() && e.has(xnu) ) {
-                               monomial *= (xnu - alphanu);
-                               monomial = expand(monomial);
-                               ex cm = e.diff(ex_to<symbol>(xnu), m).subs(xnu==alphanu) / factorial(m);
-                               cm = make_modular(cm, R);
-                               if ( !cm.is_zero() ) {
-                                       vector<ex> delta_s = multivar_diophant(anew, x, cm, Inew, d, p, k);
-                                       ex buf = e;
-                                       for ( size_t j=0; j<delta_s.size(); ++j ) {
-                                               delta_s[j] *= monomial;
-                                               sigma[j] += delta_s[j];
-                                               buf -= delta_s[j] * b[j];
-                                       }
-                                       e = make_modular(buf, R);
+               for ( size_t m=1; !e.is_zero() && e.has(xnu) && m<=d; ++m ) {
+                       monomial *= (xnu - alphanu);
+                       monomial = expand(monomial);
+                       ex cm = e.diff(ex_to<symbol>(xnu), m).subs(xnu==alphanu) / factorial(m);
+                       cm = make_modular(cm, R);
+                       if ( !cm.is_zero() ) {
+                               vector<ex> delta_s = multivar_diophant(anew, x, cm, Inew, d, p, k);
+                               ex buf = e;
+                               for ( size_t j=0; j<delta_s.size(); ++j ) {
+                                       delta_s[j] *= monomial;
+                                       sigma[j] += delta_s[j];
+                                       buf -= delta_s[j] * b[j];
                                }
+                               e = make_modular(buf, R);
                        }
                }
        }
@@ -1666,17 +1988,24 @@ vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, con
        return sigma;
 }
 
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const vector<EvalPoint>& v)
-{
-       for ( size_t i=0; i<v.size(); ++i ) {
-               o << "(" << v[i].x << "==" << v[i].evalpoint << ") ";
-       }
-       return o;
-}
-#endif // def DEBUGFACTOR
-
-ex hensel_multivar(const ex& a, const ex& x, const vector<EvalPoint>& I, unsigned int p, const cl_I& l, const upvec& u, const vector<ex>& lcU)
+/** Multivariate Hensel lifting.
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *  Since we don't have a data type for modular multivariate polynomials, the
+ *  respective operations are done in a GiNaC::ex and the function
+ *  make_modular() is then called to make the coefficient modular p^l.
+ *
+ *  @param a    multivariate polynomial primitive in x
+ *  @param x    symbol (equiv. x_1 in [GCL])
+ *  @param I    vector of evaluation points (x_2==a_2,x_3==a_3,...)
+ *  @param p    prime number (should not divide lcoeff(a mod I))
+ *  @param l    p^l is the modulus of the lifted univariate field
+ *  @param u    vector of modular (mod p^l) factors of a mod I
+ *  @param lcU  correct leading coefficient of the univariate factors of a mod I
+ *  @return     list GiNaC::lst with lifted factors (multivariate factors of a),
+ *              empty if Hensel lifting did not succeed
+ */
+static ex hensel_multivar(const ex& a, const ex& x, const vector<EvalPoint>& I,
+                          unsigned int p, const cl_I& l, const upvec& u, const vector<ex>& lcU)
 {
        const size_t nu = I.size() + 1;
        const cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),l));
@@ -1772,10 +2101,13 @@ ex hensel_multivar(const ex& a, const ex& x, const vector<EvalPoint>& I, unsigne
        }
 }
 
+/** Takes a factorized expression and puts the factors in a lst. The exponents
+ *  of the factors are discarded, e.g. 7*x^2*(y+1)^4 --> {7,x,y+1}. The first
+ *  element of the list is always the numeric coefficient.
+ */
 static ex put_factors_into_lst(const ex& e)
 {
        lst result;
-
        if ( is_a<numeric>(e) ) {
                result.append(e);
                return result;
@@ -1783,13 +2115,12 @@ static ex put_factors_into_lst(const ex& e)
        if ( is_a<power>(e) ) {
                result.append(1);
                result.append(e.op(0));
-               result.append(e.op(1));
                return result;
        }
        if ( is_a<symbol>(e) || is_a<add>(e) ) {
-               result.append(1);
-               result.append(e);
-               result.append(1);
+               ex icont(e.integer_content());
+               result.append(icont);
+               result.append(e/icont);
                return result;
        }
        if ( is_a<mul>(e) ) {
@@ -1801,11 +2132,9 @@ static ex put_factors_into_lst(const ex& e)
                        }
                        if ( is_a<power>(op) ) {
                                result.append(op.op(0));
-                               result.append(op.op(1));
                        }
                        if ( is_a<symbol>(op) || is_a<add>(op) ) {
                                result.append(op);
-                               result.append(1);
                        }
                }
                result.prepend(nfac);
@@ -1814,25 +2143,19 @@ static ex put_factors_into_lst(const ex& e)
        throw runtime_error("put_factors_into_lst: bad term.");
 }
 
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const vector<numeric>& v)
-{
-       for ( size_t i=0; i<v.size(); ++i ) {
-               o << v[i] << " ";
-       }
-       return o;
-}
-#endif // def DEBUGFACTOR
-
-static bool checkdivisors(const lst& f, vector<numeric>& d)
+/** Checks a set of numbers for whether each number has a unique prime factor.
+ *
+ *  @param[in]  f  list of numbers to check
+ *  @return        true: if number set is bad, false: if set is okay (has unique
+ *                 prime factors)
+ */
+static bool checkdivisors(const lst& f)
 {
-       const int k = f.nops()-2;
+       const int k = f.nops();
        numeric q, r;
-       d[0] = ex_to<numeric>(f.op(0) * f.op(f.nops()-1));
-       if ( d[0] == 1 && k == 1 && abs(f.op(1)) != 1 ) {
-               return false;
-       }
-       for ( int i=1; i<=k; ++i ) {
+       vector<numeric> d(k);
+       d[0] = ex_to<numeric>(abs(f.op(0)));
+       for ( int i=1; i<k; ++i ) {
                q = ex_to<numeric>(abs(f.op(i)));
                for ( int j=i-1; j>=0; --j ) {
                        r = d[j];
@@ -1849,13 +2172,30 @@ static bool checkdivisors(const lst& f, vector<numeric>& d)
        return false;
 }
 
-static bool generate_set(const ex& u, const ex& vn, const exset& syms, const ex& f, const numeric& modulus, vector<numeric>& a, vector<numeric>& d)
+/** Generates a set of evaluation points for a multivariate polynomial.
+ *  The set fulfills the following conditions:
+ *  1. lcoeff(evaluated_polynomial) does not vanish
+ *  2. factors of lcoeff(evaluated_polynomial) have each a unique prime factor
+ *  3. evaluated_polynomial is square free
+ *  See [Wan] for more details.
+ *
+ *  @param[in]     u        multivariate polynomial to be factored
+ *  @param[in]     vn       leading coefficient of u in x (x==first symbol in syms)
+ *  @param[in]     syms     set of symbols that appear in u
+ *  @param[in]     f        lst containing the factors of the leading coefficient vn
+ *  @param[in,out] modulus  integer modulus for random number generation (i.e. |a_i| < modulus)
+ *  @param[out]    u0       returns the evaluated (univariate) polynomial
+ *  @param[out]    a        returns the valid evaluation points. must have initial size equal
+ *                          number of symbols-1 before calling generate_set
+ */
+static void generate_set(const ex& u, const ex& vn, const exset& syms, const lst& f,
+                         numeric& modulus, ex& u0, vector<numeric>& a)
 {
-       // computation of d is actually not necessary
        const ex& x = *syms.begin();
-       bool trying = true;
-       do {
-               ex u0 = u;
+       while ( true ) {
+               ++modulus;
+               // generate a set of integers ...
+               u0 = u;
                ex vna = vn;
                ex vnatry;
                exset::const_iterator s = syms.begin();
@@ -1864,71 +2204,71 @@ static bool generate_set(const ex& u, const ex& vn, const exset& syms, const ex&
                        do {
                                a[i] = mod(numeric(rand()), 2*modulus) - modulus;
                                vnatry = vna.subs(*s == a[i]);
+                               // ... for which the leading coefficient doesn't vanish ...
                        } while ( vnatry == 0 );
                        vna = vnatry;
                        u0 = u0.subs(*s == a[i]);
                        ++s;
                }
-               if ( gcd(u0,u0.diff(ex_to<symbol>(x))) != 1 ) {
+               // ... for which u0 is square free ...
+               ex g = gcd(u0, u0.diff(ex_to<symbol>(x)));
+               if ( !is_a<numeric>(g) ) {
                        continue;
                }
-               if ( is_a<numeric>(vn) ) {
-                       trying = false;
-               }
-               else {
-                       lst fnum;
-                       lst::const_iterator i = ex_to<lst>(f).begin();
-                       fnum.append(*i++);
-                       bool problem = false;
-                       while ( i!=ex_to<lst>(f).end() ) {
-                               ex fs = *i;
-                               if ( !is_a<numeric>(fs) ) {
+               if ( !is_a<numeric>(vn) ) {
+                       // ... and for which the evaluated factors have each an unique prime factor
+                       lst fnum = f;
+                       fnum.let_op(0) = fnum.op(0) * u0.content(x);
+                       for ( size_t i=1; i<fnum.nops(); ++i ) {
+                               if ( !is_a<numeric>(fnum.op(i)) ) {
                                        s = syms.begin();
                                        ++s;
-                                       for ( size_t j=0; j<a.size(); ++j ) {
-                                               fs = fs.subs(*s == a[j]);
-                                               ++s;
-                                       }
-                                       if ( abs(fs) == 1 ) {
-                                               problem = true;
-                                               break;
+                                       for ( size_t j=0; j<a.size(); ++j, ++s ) {
+                                               fnum.let_op(i) = fnum.op(i).subs(*s == a[j]);
                                        }
                                }
-                               fnum.append(fs);
-                               ++i; ++i;
                        }
-                       if ( problem ) {
-                               return true;
+                       if ( checkdivisors(fnum) ) {
+                               continue;
                        }
-                       ex con = u0.content(x);
-                       fnum.append(con);
-                       trying = checkdivisors(fnum, d);
                }
-       } while ( trying );
-       return false;
+               // ok, we have a valid set now
+               return;
+       }
 }
 
+// forward declaration
+static ex factor_sqrfree(const ex& poly);
+
+/** Multivariate factorization.
+ *  
+ *  The implementation is based on the algorithm described in [Wan].
+ *  An evaluation homomorphism (a set of integers) is determined that fulfills
+ *  certain criteria. The evaluated polynomial is univariate and is factorized
+ *  by factor_univariate(). The main work then is to find the correct leading
+ *  coefficients of the univariate factors. They have to correspond to the
+ *  factors of the (multivariate) leading coefficient of the input polynomial
+ *  (as defined for a specific variable x). After that the Hensel lifting can be
+ *  performed.
+ *
+ *  @param[in] poly  expanded, square free polynomial
+ *  @param[in] syms  contains the symbols in the polynomial
+ *  @return          factorized polynomial
+ */
 static ex factor_multivariate(const ex& poly, const exset& syms)
 {
        exset::const_iterator s;
        const ex& x = *syms.begin();
 
-       /* make polynomial primitive */
-       ex p = poly.expand().collect(x);
-       ex cont = p.lcoeff(x);
-       for ( numeric i=p.degree(x)-1; i>=p.ldegree(x); --i ) {
-               cont = gcd(cont, p.coeff(x,ex_to<numeric>(i).to_int()));
-               if ( cont == 1 ) break;
-       }
-       ex pp = expand(normal(p / cont));
+       // make polynomial primitive
+       ex unit, cont, pp;
+       poly.unitcontprim(x, unit, cont, pp);
        if ( !is_a<numeric>(cont) ) {
-               return factor(cont) * factor(pp);
+               return factor_sqrfree(cont) * factor_sqrfree(pp);
        }
 
-       /* factor leading coefficient */
-       pp = pp.collect(x);
-       ex vn = pp.lcoeff(x);
-       pp = pp.expand();
+       // factor leading coefficient
+       ex vn = pp.collect(x).lcoeff(x);
        ex vnlst;
        if ( is_a<numeric>(vn) ) {
                vnlst = lst(vn);
@@ -1938,200 +2278,139 @@ static ex factor_multivariate(const ex& poly, const exset& syms)
                vnlst = put_factors_into_lst(vnfactors);
        }
 
-       const numeric maxtrials = 3;
-       numeric modulus = (vnlst.nops()-1 > 3) ? vnlst.nops()-1 : 3;
-       numeric minimalr = -1;
+       const unsigned int maxtrials = 3;
+       numeric modulus = (vnlst.nops() > 3) ? vnlst.nops() : 3;
        vector<numeric> a(syms.size()-1, 0);
-       vector<numeric> d((vnlst.nops()-1)/2+1, 0);
 
+       // try now to factorize until we are successful
        while ( true ) {
-               numeric trialcount = 0;
+
+               unsigned int trialcount = 0;
+               unsigned int prime;
+               int factor_count = 0;
+               int min_factor_count = -1;
                ex u, delta;
-               unsigned int prime = 3;
-               size_t factor_count = 0;
-               ex ufac;
-               ex ufaclst;
+               ex ufac, ufaclst;
+
+               // try several evaluation points to reduce the number of factors
                while ( trialcount < maxtrials ) {
-                       bool problem = generate_set(pp, vn, syms, vnlst, modulus, a, d);
-                       if ( problem ) {
-                               ++modulus;
-                               continue;
-                       }
-                       u = pp;
-                       s = syms.begin();
-                       ++s;
-                       for ( size_t i=0; i<a.size(); ++i ) {
-                               u = u.subs(*s == a[i]);
-                               ++s;
-                       }
-                       delta = u.content(x);
-
-                       // determine proper prime
-                       prime = 3;
-                       cl_modint_ring R = find_modint_ring(prime);
-                       while ( true ) {
-                               if ( irem(ex_to<numeric>(u.lcoeff(x)), prime) != 0 ) {
-                                       umodpoly modpoly;
-                                       umodpoly_from_ex(modpoly, u, x, R);
-                                       if ( squarefree(modpoly) ) break;
-                               }
-                               prime = next_prime(prime);
-                               R = find_modint_ring(prime);
-                       }
 
-                       ufac = factor(u);
+                       // generate a set of valid evaluation points
+                       generate_set(pp, vn, syms, ex_to<lst>(vnlst), modulus, u, a);
+
+                       ufac = factor_univariate(u, x, prime);
                        ufaclst = put_factors_into_lst(ufac);
-                       factor_count = (ufaclst.nops()-1)/2;
-
-                       // veto factorization for which gcd(u_i, u_j) != 1 for all i,j
-                       upvec tryu;
-                       for ( size_t i=0; i<(ufaclst.nops()-1)/2; ++i ) {
-                               umodpoly newu;
-                               umodpoly_from_ex(newu, ufaclst.op(i*2+1), x, R);
-                               tryu.push_back(newu);
-                       }
-                       bool veto = false;
-                       for ( size_t i=0; i<tryu.size()-1; ++i ) {
-                               for ( size_t j=i+1; j<tryu.size(); ++j ) {
-                                       umodpoly tryg;
-                                       gcd(tryu[i], tryu[j], tryg);
-                                       if ( unequal_one(tryg) ) {
-                                               veto = true;
-                                               goto escape_quickly;
-                                       }
-                               }
-                       }
-                       escape_quickly: ;
-                       if ( veto ) {
-                               continue;
-                       }
+                       factor_count = ufaclst.nops()-1;
+                       delta = ufaclst.op(0);
 
                        if ( factor_count <= 1 ) {
+                               // irreducible
                                return poly;
                        }
-
-                       if ( minimalr < 0 ) {
-                               minimalr = factor_count;
+                       if ( min_factor_count < 0 ) {
+                               // first time here
+                               min_factor_count = factor_count;
                        }
-                       else if ( minimalr == factor_count ) {
+                       else if ( min_factor_count == factor_count ) {
+                               // one less to try
                                ++trialcount;
-                               ++modulus;
                        }
-                       else if ( minimalr > factor_count ) {
-                               minimalr = factor_count;
+                       else if ( min_factor_count > factor_count ) {
+                               // new minimum, reset trial counter
+                               min_factor_count = factor_count;
                                trialcount = 0;
                        }
-                       if ( minimalr <= 1 ) {
-                               return poly;
-                       }
-               }
-
-               vector<numeric> ftilde((vnlst.nops()-1)/2+1);
-               ftilde[0] = ex_to<numeric>(vnlst.op(0));
-               for ( size_t i=1; i<ftilde.size(); ++i ) {
-                       ex ft = vnlst.op((i-1)*2+1);
-                       s = syms.begin();
-                       ++s;
-                       for ( size_t j=0; j<a.size(); ++j ) {
-                               ft = ft.subs(*s == a[j]);
-                               ++s;
-                       }
-                       ftilde[i] = ex_to<numeric>(ft);
-               }
-
-               vector<bool> used_flag((vnlst.nops()-1)/2+1, false);
-               vector<ex> D(factor_count, 1);
-               for ( size_t i=0; i<=factor_count; ++i ) {
-                       numeric prefac;
-                       if ( i == 0 ) {
-                               prefac = ex_to<numeric>(ufaclst.op(0));
-                               ftilde[0] = ftilde[0] / prefac;
-                               vnlst.let_op(0) = vnlst.op(0) / prefac;
-                               continue;
-                       }
-                       else {
-                               prefac = ex_to<numeric>(ufaclst.op(2*(i-1)+1).lcoeff(x));
-                       }
-                       for ( size_t j=(vnlst.nops()-1)/2+1; j>0; --j ) {
-                               if ( abs(ftilde[j-1]) == 1 ) {
-                                       used_flag[j-1] = true;
-                                       continue;
-                               }
-                               numeric g = gcd(prefac, ftilde[j-1]);
-                               if ( g != 1 ) {
-                                       prefac = prefac / g;
-                                       numeric count = abs(iquo(g, ftilde[j-1]));
-                                       used_flag[j-1] = true;
-                                       if ( i > 0 ) {
-                                               if ( j == 1 ) {
-                                                       D[i-1] = D[i-1] * pow(vnlst.op(0), count);
-                                               }
-                                               else {
-                                                       D[i-1] = D[i-1] * pow(vnlst.op(2*(j-2)+1), count);
-                                               }
-                                       }
-                                       else {
-                                               ftilde[j-1] = ftilde[j-1] / prefac;
-                                               break;
-                                       }
-                                       ++j;
-                               }
-                       }
-               }
-
-               bool some_factor_unused = false;
-               for ( size_t i=0; i<used_flag.size(); ++i ) {
-                       if ( !used_flag[i] ) {
-                               some_factor_unused = true;
-                               break;
-                       }
-               }
-               if ( some_factor_unused ) {
-                       continue;
                }
 
+               // determine true leading coefficients for the Hensel lifting
                vector<ex> C(factor_count);
-               if ( delta == 1 ) {
-                       for ( size_t i=0; i<D.size(); ++i ) {
-                               ex Dtilde = D[i];
-                               s = syms.begin();
-                               ++s;
-                               for ( size_t j=0; j<a.size(); ++j ) {
-                                       Dtilde = Dtilde.subs(*s == a[j]);
-                                       ++s;
-                               }
-                               C[i] = D[i] * (ufaclst.op(2*i+1).lcoeff(x) / Dtilde);
+               if ( is_a<numeric>(vn) ) {
+                       // easy case
+                       for ( size_t i=1; i<ufaclst.nops(); ++i ) {
+                               C[i-1] = ufaclst.op(i).lcoeff(x);
                        }
                }
                else {
-                       for ( size_t i=0; i<D.size(); ++i ) {
-                               ex Dtilde = D[i];
+                       // difficult case.
+                       // we use the property of the ftilde having a unique prime factor.
+                       // details can be found in [Wan].
+                       // calculate ftilde
+                       vector<numeric> ftilde(vnlst.nops()-1);
+                       for ( size_t i=0; i<ftilde.size(); ++i ) {
+                               ex ft = vnlst.op(i+1);
                                s = syms.begin();
                                ++s;
                                for ( size_t j=0; j<a.size(); ++j ) {
-                                       Dtilde = Dtilde.subs(*s == a[j]);
+                                       ft = ft.subs(*s == a[j]);
                                        ++s;
                                }
-                               ex ui;
-                               if ( i == 0 ) {
-                                       ui = ufaclst.op(0);
+                               ftilde[i] = ex_to<numeric>(ft);
+                       }
+                       // calculate D and C
+                       vector<bool> used_flag(ftilde.size(), false);
+                       vector<ex> D(factor_count, 1);
+                       if ( delta == 1 ) {
+                               for ( int i=0; i<factor_count; ++i ) {
+                                       numeric prefac = ex_to<numeric>(ufaclst.op(i+1).lcoeff(x));
+                                       for ( int j=ftilde.size()-1; j>=0; --j ) {
+                                               int count = 0;
+                                               while ( irem(prefac, ftilde[j]) == 0 ) {
+                                                       prefac = iquo(prefac, ftilde[j]);
+                                                       ++count;
+                                               }
+                                               if ( count ) {
+                                                       used_flag[j] = true;
+                                                       D[i] = D[i] * pow(vnlst.op(j+1), count);
+                                               }
+                                       }
+                                       C[i] = D[i] * prefac;
                                }
-                               else {
-                                       ui = ufaclst.op(2*(i-1)+1);
+                       }
+                       else {
+                               for ( int i=0; i<factor_count; ++i ) {
+                                       numeric prefac = ex_to<numeric>(ufaclst.op(i+1).lcoeff(x));
+                                       for ( int j=ftilde.size()-1; j>=0; --j ) {
+                                               int count = 0;
+                                               while ( irem(prefac, ftilde[j]) == 0 ) {
+                                                       prefac = iquo(prefac, ftilde[j]);
+                                                       ++count;
+                                               }
+                                               while ( irem(ex_to<numeric>(delta)*prefac, ftilde[j]) == 0 ) {
+                                                       numeric g = gcd(prefac, ex_to<numeric>(ftilde[j]));
+                                                       prefac = iquo(prefac, g);
+                                                       delta = delta / (ftilde[j]/g);
+                                                       ufaclst.let_op(i+1) = ufaclst.op(i+1) * (ftilde[j]/g);
+                                                       ++count;
+                                               }
+                                               if ( count ) {
+                                                       used_flag[j] = true;
+                                                       D[i] = D[i] * pow(vnlst.op(j+1), count);
+                                               }
+                                       }
+                                       C[i] = D[i] * prefac;
                                }
-                               while ( true ) {
-                                       ex d = gcd(ui.lcoeff(x), Dtilde);
-                                       C[i] = D[i] * ( ui.lcoeff(x) / d );
-                                       ui = ui * ( Dtilde[i] / d );
-                                       delta = delta / ( Dtilde[i] / d );
-                                       if ( delta == 1 ) break;
-                                       ui = delta * ui;
-                                       C[i] = delta * C[i];
-                                       pp = pp * pow(delta, D.size()-1);
+                       }
+                       // check if something went wrong
+                       bool some_factor_unused = false;
+                       for ( size_t i=0; i<used_flag.size(); ++i ) {
+                               if ( !used_flag[i] ) {
+                                       some_factor_unused = true;
+                                       break;
                                }
                        }
+                       if ( some_factor_unused ) {
+                               continue;
+                       }
+               }
+               
+               // multiply the remaining content of the univariate polynomial into the
+               // first factor
+               if ( delta != 1 ) {
+                       C[0] = C[0] * delta;
+                       ufaclst.let_op(1) = ufaclst.op(1) * delta;
                }
 
+               // set up evaluation points
                EvalPoint ep;
                vector<EvalPoint> epv;
                s = syms.begin();
@@ -2142,37 +2421,32 @@ static ex factor_multivariate(const ex& poly, const exset& syms)
                        epv.push_back(ep);
                }
 
-               // calc bound B
-               ex maxcoeff;
-               for ( int i=u.degree(x); i>=u.ldegree(x); --i ) {
-                       maxcoeff += pow(abs(u.coeff(x, i)),2);
-               }
-               cl_I normmc = ceiling1(the<cl_R>(cln::sqrt(ex_to<numeric>(maxcoeff).to_cl_N())));
-               unsigned int maxdegree = 0;
-               for ( size_t i=0; i<factor_count; ++i ) {
-                       if ( ufaclst[2*i+1].degree(x) > (int)maxdegree ) {
-                               maxdegree = ufaclst[2*i+1].degree(x);
+               // calc bound p^l
+               int maxdeg = 0;
+               for ( int i=1; i<=factor_count; ++i ) {
+                       if ( ufaclst.op(i).degree(x) > maxdeg ) {
+                               maxdeg = ufaclst[i].degree(x);
                        }
                }
-               cl_I B = normmc * expt_pos(cl_I(2), maxdegree);
+               cl_I B = 2*calc_bound(u, x, maxdeg);
                cl_I l = 1;
                cl_I pl = prime;
                while ( pl < B ) {
                        l = l + 1;
                        pl = pl * prime;
                }
-
-               upvec uvec;
+               
+               // set up modular factors (mod p^l)
                cl_modint_ring R = find_modint_ring(expt_pos(cl_I(prime),l));
-               for ( size_t i=0; i<(ufaclst.nops()-1)/2; ++i ) {
-                       umodpoly newu;
-                       umodpoly_from_ex(newu, ufaclst.op(i*2+1), x, R);
-                       uvec.push_back(newu);
+               upvec modfactors(ufaclst.nops()-1);
+               for ( size_t i=1; i<ufaclst.nops(); ++i ) {
+                       umodpoly_from_ex(modfactors[i-1], ufaclst.op(i), x, R);
                }
 
-               ex res = hensel_multivar(ufaclst.op(0)*pp, x, epv, prime, l, uvec, C);
+               // try Hensel lifting
+               ex res = hensel_multivar(pp, x, epv, prime, l, modfactors, C);
                if ( res != lst() ) {
-                       ex result = cont * ufaclst.op(0);
+                       ex result = cont * unit;
                        for ( size_t i=0; i<res.nops(); ++i ) {
                                result *= res.op(i).content(x) * res.op(i).unit(x);
                                result *= res.op(i).primpart(x);
@@ -2182,6 +2456,8 @@ static ex factor_multivariate(const ex& poly, const exset& syms)
        }
 }
 
+/** Finds all symbols in an expression. Used by factor_sqrfree() and factor().
+ */
 struct find_symbols_map : public map_function {
        exset syms;
        ex operator()(const ex& e)
@@ -2194,6 +2470,9 @@ struct find_symbols_map : public map_function {
        }
 };
 
+/** Factorizes a polynomial that is square free. It calls either the univariate
+ *  or the multivariate factorization functions.
+ */
 static ex factor_sqrfree(const ex& poly)
 {
        // determine all symbols in poly
@@ -2207,6 +2486,7 @@ static ex factor_sqrfree(const ex& poly)
                // univariate case
                const ex& x = *(findsymbols.syms.begin());
                if ( poly.ldegree(x) > 0 ) {
+                       // pull out direct factors
                        int ld = poly.ldegree(x);
                        ex res = factor_univariate(expand(poly/pow(x, ld)), x);
                        return res * pow(x,ld);
@@ -2222,6 +2502,9 @@ static ex factor_sqrfree(const ex& poly)
        return res;
 }
 
+/** Map used by factor() when factor_options::all is given to access all
+ *  subexpressions and to call factor() on them.
+ */
 struct apply_factor_map : public map_function {
        unsigned options;
        apply_factor_map(unsigned options_) : options(options_) { }
@@ -2250,6 +2533,10 @@ struct apply_factor_map : public map_function {
 
 } // anonymous namespace
 
+/** Interface function to the outside world. It checks the arguments, tries a
+ *  square free factorization, and then calls factor_sqrfree to do the hard
+ *  work.
+ */
 ex factor(const ex& poly, unsigned options)
 {
        // check arguments
@@ -2275,7 +2562,7 @@ ex factor(const ex& poly, unsigned options)
        }
 
        // make poly square free
-       ex sfpoly = sqrfree(poly, syms);
+       ex sfpoly = sqrfree(poly.expand(), syms);
 
        // factorize the square free components
        if ( is_a<power>(sfpoly) ) {