]> www.ginac.de Git - ginac.git/blobdiff - ginac/factor.cpp
[BUGFIX] Fix crash in parser.
[ginac.git] / ginac / factor.cpp
index 2f9157b97a81082c0b38ab11873b820af6dcdaa3..efe438eae8c59e658cd7553d2867aa42c71556b3 100644 (file)
@@ -33,7 +33,7 @@
  */
 
 /*
- *  GiNaC Copyright (C) 1999-2009 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2024 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
 #include "normal.h"
 #include "add.h"
 
+#include <type_traits>
 #include <algorithm>
-#include <cmath>
 #include <limits>
 #include <list>
 #include <vector>
+#include <stack>
 #ifdef DEBUGFACTOR
 #include <ostream>
 #endif
@@ -80,21 +81,25 @@ using namespace cln;
 
 namespace GiNaC {
 
+// anonymous namespace to hide all utility functions
+namespace {
+
 #ifdef DEBUGFACTOR
 #define DCOUT(str) cout << #str << endl
 #define DCOUTVAR(var) cout << #var << ": " << var << endl
 #define DCOUT2(str,var) cout << #str << ": " << var << endl
 ostream& operator<<(ostream& o, const vector<int>& v)
 {
-       vector<int>::const_iterator i = v.begin(), end = v.end();
+       auto i = v.begin(), end = v.end();
        while ( i != end ) {
-               o << *i++ << " ";
+               o << *i << " ";
+               ++i;
        }
        return o;
 }
 static ostream& operator<<(ostream& o, const vector<cl_I>& v)
 {
-       vector<cl_I>::const_iterator i = v.begin(), end = v.end();
+       auto i = v.begin(), end = v.end();
        while ( i != end ) {
                o << *i << "[" << i-v.begin() << "]" << " ";
                ++i;
@@ -103,7 +108,7 @@ static ostream& operator<<(ostream& o, const vector<cl_I>& v)
 }
 static ostream& operator<<(ostream& o, const vector<cl_MI>& v)
 {
-       vector<cl_MI>::const_iterator i = v.begin(), end = v.end();
+       auto i = v.begin(), end = v.end();
        while ( i != end ) {
                o << *i << "[" << i-v.begin() << "]" << " ";
                ++i;
@@ -117,9 +122,9 @@ ostream& operator<<(ostream& o, const vector<numeric>& v)
        }
        return o;
 }
-ostream& operator<<(ostream& o, const vector< vector<cl_MI> >& v)
+ostream& operator<<(ostream& o, const vector<vector<cl_MI>>& v)
 {
-       vector< vector<cl_MI> >::const_iterator i = v.begin(), end = v.end();
+       auto i = v.begin(), end = v.end();
        while ( i != end ) {
                o << i-v.begin() << ": " << *i << endl;
                ++i;
@@ -132,9 +137,6 @@ ostream& operator<<(ostream& o, const vector< vector<cl_MI> >& v)
 #define DCOUT2(str,var)
 #endif // def DEBUGFACTOR
 
-// anonymous namespace to hide all utility functions
-namespace {
-
 ////////////////////////////////////////////////////////////////////////////////
 // modular univariate polynomial code
 
@@ -142,7 +144,8 @@ typedef std::vector<cln::cl_MI> umodpoly;
 typedef std::vector<cln::cl_I> upoly;
 typedef vector<umodpoly> upvec;
 
-// COPY FROM UPOLY.HPP
+
+// COPY FROM UPOLY.H
 
 // CHANGED size_t -> int !!!
 template<typename T> static int degree(const T& p)
@@ -155,6 +158,11 @@ template<typename T> static typename T::value_type lcoeff(const T& p)
        return p[p.size() - 1];
 }
 
+/** Make the polynomial unit normal (having unit normal leading coefficient).
+ *
+ *  @param[in, out] a  polynomial to make unit normal
+ *  @return            true if polynomial a was already unit normal, false otherwise
+ */
 static bool normalize_in_field(umodpoly& a)
 {
        if (a.size() == 0)
@@ -169,61 +177,22 @@ static bool normalize_in_field(umodpoly& a)
        return false;
 }
 
+/** Remove leading zero coefficients from polynomial.
+ *
+ *  @param[in, out] p     polynomial from which the zero leading coefficients will be removed
+ *  @param[in]      hint  assume all coefficients of order ≥ hint are zero
+ */
 template<typename T> static void
 canonicalize(T& p, const typename T::size_type hint = std::numeric_limits<typename T::size_type>::max())
 {
-       if (p.empty())
-               return;
-
-       std::size_t i = p.size() - 1;
-       // Be fast if the polynomial is already canonicalized
-       if (!zerop(p[i]))
-               return;
-
-       if (hint < p.size())
-               i = hint;
-
-       bool is_zero = false;
-       do {
-               if (!zerop(p[i])) {
-                       ++i;
-                       break;
-               }
-               if (i == 0) {
-                       is_zero = true;
-                       break;
-               }
-               --i;
-       } while (true);
+       std::size_t i = min(p.size(), hint);
 
-       if (is_zero) {
-               p.clear();
-               return;
-       }
+       while ( i-- && zerop(p[i]) ) { }
 
-       p.erase(p.begin() + i, p.end());
+       p.erase(p.begin() + i + 1, p.end());
 }
 
-// END COPY FROM UPOLY.HPP
-
-static void expt_pos(umodpoly& a, unsigned int q)
-{
-       if ( a.empty() ) return;
-       cl_MI zero = a[0].ring()->zero(); 
-       int deg = degree(a);
-       a.resize(degree(a)*q+1, zero);
-       for ( int i=deg; i>0; --i ) {
-               a[i*q] = a[i];
-               a[i] = zero;
-       }
-}
-
-template<bool COND, typename T = void> struct enable_if
-{
-       typedef T type;
-};
-
-template<typename T> struct enable_if<false, T> { /* empty */ };
+// END COPY FROM UPOLY.H
 
 template<typename T> struct uvar_poly_p
 {
@@ -486,23 +455,22 @@ static umodpoly umodpoly_to_umodpoly(const umodpoly& a, const cl_modint_ring& R,
        return e;
 }
 
-/** Divides all coefficients of the polynomial a by the integer x.
+/** Divides all coefficients of the polynomial a by the positive integer x.
  *  All coefficients are supposed to be divisible by x. If they are not, the
- *  the<cl_I> cast will raise an exception.
+ *  division will raise an exception.
  *
  *  @param[in,out] a  polynomial of which the coefficients will be reduced by x
- *  @param[in]     x  integer that divides the coefficients
+ *  @param[in]     x  positive integer that divides the coefficients
  */
 static void reduce_coeff(umodpoly& a, const cl_I& x)
 {
        if ( a.empty() ) return;
 
        cl_modint_ring R = a[0].ring();
-       umodpoly::iterator i = a.begin(), end = a.end();
-       for ( ; i!=end; ++i ) {
+       for (auto & i : a) {
                // cln cannot perform this division in the modular field
-               cl_I c = R->retract(*i);
-               *i = cl_MI(R, the<cl_I>(c / x));
+               cl_I c = R->retract(i);
+               i = cl_MI(R, exquopos(c, x));
        }
 }
 
@@ -532,7 +500,7 @@ static void rem(const umodpoly& a, const umodpoly& b, umodpoly& r)
        } while ( k-- );
 
        fill(r.begin()+n, r.end(), a[0].ring()->zero());
-       canonicalize(r);
+       canonicalize(r, n);
 }
 
 /** Calculates quotient of a/b.
@@ -643,7 +611,6 @@ static void deriv(const umodpoly& a, umodpoly& d)
 
 static bool unequal_one(const umodpoly& a)
 {
-       if ( a.empty() ) return true;
        return ( a.size() != 1 || a[0] != a[0].ring()->one() );
 }
 
@@ -669,6 +636,26 @@ static bool squarefree(const umodpoly& a)
        return equal_one(c);
 }
 
+/** Computes w^q mod a.
+ *  Uses theorem 2.1 from A.K.Lenstra's PhD thesis; see exercise 8.13 in [GCL].
+ *
+ *  @param[in]  w  polynomial
+ *  @param[in]  a  modulus polynomial
+ *  @param[in]  q  common modulus of w and a
+ *  @param[out] r  result
+ */
+static void expt_pos_Q(const umodpoly& w, const umodpoly& a, unsigned int q, umodpoly& r)
+{
+       if ( w.empty() ) return;
+       cl_MI zero = w[0].ring()->zero();
+       int deg = degree(w);
+       umodpoly buf(deg*q+1, zero);
+       for ( size_t i=0; i<=deg; ++i ) {
+               buf[i*q] = w[i];
+       }
+       rem(buf, a, r);
+}
+
 // END modular univariate polynomial code
 ////////////////////////////////////////////////////////////////////////////////
 
@@ -679,7 +666,9 @@ typedef vector<cl_MI> mvec;
 
 class modular_matrix
 {
+#ifdef DEBUGFACTOR
        friend ostream& operator<<(ostream& o, const modular_matrix& m);
+#endif
 public:
        modular_matrix(size_t r_, size_t c_, const cl_MI& init) : r(r_), c(c_)
        {
@@ -691,90 +680,75 @@ public:
        cl_MI operator()(size_t row, size_t col) const { return m[row*c + col]; }
        void mul_col(size_t col, const cl_MI x)
        {
-               mvec::iterator i = m.begin() + col;
                for ( size_t rc=0; rc<r; ++rc ) {
-                       *i = *i * x;
-                       i += c;
+                       std::size_t i = c*rc + col;
+                       m[i] = m[i] * x;
                }
        }
        void sub_col(size_t col1, size_t col2, const cl_MI fac)
        {
-               mvec::iterator i1 = m.begin() + col1;
-               mvec::iterator i2 = m.begin() + col2;
                for ( size_t rc=0; rc<r; ++rc ) {
-                       *i1 = *i1 - *i2 * fac;
-                       i1 += c;
-                       i2 += c;
+                       std::size_t i1 = col1 + c*rc;
+                       std::size_t i2 = col2 + c*rc;
+                       m[i1] = m[i1] - m[i2]*fac;
                }
        }
        void switch_col(size_t col1, size_t col2)
        {
-               cl_MI buf;
-               mvec::iterator i1 = m.begin() + col1;
-               mvec::iterator i2 = m.begin() + col2;
                for ( size_t rc=0; rc<r; ++rc ) {
-                       buf = *i1; *i1 = *i2; *i2 = buf;
-                       i1 += c;
-                       i2 += c;
+                       std::size_t i1 = col1 + rc*c;
+                       std::size_t i2 = col2 + rc*c;
+                       std::swap(m[i1], m[i2]);
                }
        }
        void mul_row(size_t row, const cl_MI x)
        {
-               vector<cl_MI>::iterator i = m.begin() + row*c;
                for ( size_t cc=0; cc<c; ++cc ) {
-                       *i = *i * x;
-                       ++i;
+                       std::size_t i = row*c + cc; 
+                       m[i] = m[i] * x;
                }
        }
        void sub_row(size_t row1, size_t row2, const cl_MI fac)
        {
-               vector<cl_MI>::iterator i1 = m.begin() + row1*c;
-               vector<cl_MI>::iterator i2 = m.begin() + row2*c;
                for ( size_t cc=0; cc<c; ++cc ) {
-                       *i1 = *i1 - *i2 * fac;
-                       ++i1;
-                       ++i2;
+                       std::size_t i1 = row1*c + cc;
+                       std::size_t i2 = row2*c + cc;
+                       m[i1] = m[i1] - m[i2]*fac;
                }
        }
        void switch_row(size_t row1, size_t row2)
        {
-               cl_MI buf;
-               vector<cl_MI>::iterator i1 = m.begin() + row1*c;
-               vector<cl_MI>::iterator i2 = m.begin() + row2*c;
                for ( size_t cc=0; cc<c; ++cc ) {
-                       buf = *i1; *i1 = *i2; *i2 = buf;
-                       ++i1;
-                       ++i2;
+                       std::size_t i1 = row1*c + cc;
+                       std::size_t i2 = row2*c + cc;
+                       std::swap(m[i1], m[i2]);
                }
        }
        bool is_col_zero(size_t col) const
        {
-               mvec::const_iterator i = m.begin() + col;
                for ( size_t rr=0; rr<r; ++rr ) {
-                       if ( !zerop(*i) ) {
+                       std::size_t i = col + rr*c;
+                       if ( !zerop(m[i]) ) {
                                return false;
                        }
-                       i += c;
                }
                return true;
        }
        bool is_row_zero(size_t row) const
        {
-               mvec::const_iterator i = m.begin() + row*c;
                for ( size_t cc=0; cc<c; ++cc ) {
-                       if ( !zerop(*i) ) {
+                       std::size_t i = row*c + cc;
+                       if ( !zerop(m[i]) ) {
                                return false;
                        }
-                       ++i;
                }
                return true;
        }
        void set_row(size_t row, const vector<cl_MI>& newrow)
        {
-               mvec::iterator i1 = m.begin() + row*c;
-               mvec::const_iterator i2 = newrow.begin(), end = newrow.end();
-               for ( ; i2 != end; ++i1, ++i2 ) {
-                       *i1 = *i2;
+               for (std::size_t i2 = 0; i2 < newrow.size(); ++i2) {
+                       std::size_t i1 = row*c + i2;
+                       m[i1] = newrow[i2];
                }
        }
        mvec::const_iterator row_begin(size_t row) const { return m.begin()+row*c; }
@@ -827,6 +801,8 @@ ostream& operator<<(ostream& o, const modular_matrix& m)
 ////////////////////////////////////////////////////////////////////////////////
 
 /** Calculates the Q matrix for a polynomial. Used by Berlekamp's algorithm.
+ *
+ *  The implementation follows algorithm 8.5 of [GCL].
  *
  *  @param[in]  a_  modular polynomial
  *  @param[out] Q   Q matrix
@@ -905,7 +881,7 @@ static void nullspace(modular_matrix& M, vector<mvec>& basis)
 
 /** Berlekamp's modular factorization.
  *  
- *  The implementation follows the algorithm in chapter 8 of [GCL].
+ *  The implementation follows algorithm 8.4 of [GCL].
  *
  *  @param[in]  a    modular polynomial
  *  @param[out] upv  vector containing modular factors. if upv was not empty the
@@ -928,8 +904,7 @@ static void berlekamp(const umodpoly& a, upvec& upv)
                return;
        }
 
-       list<umodpoly> factors;
-       factors.push_back(a);
+       list<umodpoly> factors = {a};
        unsigned int size = 1;
        unsigned int r = 1;
        unsigned int q = cl_I_to_uint(R->modulus);
@@ -949,21 +924,18 @@ static void berlekamp(const umodpoly& a, upvec& upv)
                                div(*u, g, uo);
                                if ( equal_one(uo) ) {
                                        throw logic_error("berlekamp: unexpected divisor.");
-                               }
-                               else {
+                               } else {
                                        *u = uo;
                                }
                                factors.push_back(g);
                                size = 0;
-                               list<umodpoly>::const_iterator i = factors.begin(), end = factors.end();
-                               while ( i != end ) {
-                                       if ( degree(*i) ) ++size; 
-                                       ++i;
+                               for (auto & i : factors) {
+                                       if (degree(i))
+                                               ++size;
                                }
                                if ( size == k ) {
-                                       list<umodpoly>::const_iterator i = factors.begin(), end = factors.end();
-                                       while ( i != end ) {
-                                               upv.push_back(*i++);
+                                       for (auto & i : factors) {
+                                               upv.push_back(i);
                                        }
                                        return;
                                }
@@ -982,9 +954,9 @@ static void berlekamp(const umodpoly& a, upvec& upv)
 
 /** Calculates a^(1/prime).
  *  
- *  @param[in] a      polynomial
- *  @param[in] prime  prime number -> exponent 1/prime
- *  @param[in] ap     resulting polynomial
+ *  @param[in]  a      polynomial
+ *  @param[in]  prime  prime number -> exponent 1/prime
+ *  @param[out] ap     resulting polynomial
  */
 static void expt_1_over_p(const umodpoly& a, unsigned int prime, umodpoly& ap)
 {
@@ -1035,8 +1007,7 @@ static void modsqrfree(const umodpoly& a, upvec& factors, vector<int>& mult)
                                mult[i] *= prime;
                        }
                }
-       }
-       else {
+       } else {
                umodpoly ap;
                expt_1_over_p(a, prime, ap);
                size_t previ = mult.size();
@@ -1051,7 +1022,7 @@ static void modsqrfree(const umodpoly& a, upvec& factors, vector<int>& mult)
 
 /** Distinct degree factorization (DDF).
  *  
- *  The implementation follows the algorithm in chapter 8 of [GCL].
+ *  The implementation follows algorithm 8.8 of [GCL].
  *
  *  @param[in]  a_         modular polynomial
  *  @param[out] degrees    vector containing the degrees of the factors of the
@@ -1068,23 +1039,17 @@ static void distinct_degree_factor(const umodpoly& a_, vector<int>& degrees, upv
        int nhalf = degree(a)/2;
 
        int i = 1;
-       umodpoly w(2);
-       w[0] = R->zero();
-       w[1] = R->one();
+       umodpoly w = {R->zero(), R->one()};
        umodpoly x = w;
 
        while ( i <= nhalf ) {
-               expt_pos(w, q);
                umodpoly buf;
-               rem(w, a, buf);
+               expt_pos_Q(w, a, q, buf);
                w = buf;
-               umodpoly wx = w - x;
-               gcd(a, wx, buf);
+               gcd(a, w - x, buf);
                if ( unequal_one(buf) ) {
                        degrees.push_back(i);
                        ddfactors.push_back(buf);
-               }
-               if ( unequal_one(buf) ) {
                        umodpoly buf2;
                        div(a, buf, buf2);
                        a = buf2;
@@ -1121,8 +1086,7 @@ static void same_degree_factor(const umodpoly& a, upvec& upv)
        for ( size_t i=0; i<degrees.size(); ++i ) {
                if ( degrees[i] == degree(ddfactors[i]) ) {
                        upv.push_back(ddfactors[i]);
-               }
-               else {
+               } else {
                        berlekamp(ddfactors[i], upv);
                }
        }
@@ -1187,15 +1151,13 @@ static void exteuclid(const umodpoly& a, const umodpoly& b, umodpoly& s, umodpol
                d2 = r2;
        }
        cl_MI fac = recip(lcoeff(a) * lcoeff(c));
-       umodpoly::iterator i = s.begin(), end = s.end();
-       for ( ; i!=end; ++i ) {
-               *i = *i * fac;
+       for (auto & i : s) {
+               i = i * fac;
        }
        canonicalize(s);
        fac = recip(lcoeff(b) * lcoeff(c));
-       i = t.begin(), end = t.end();
-       for ( ; i!=end; ++i ) {
-               *i = *i * fac;
+       for (auto & i : t) {
+               i = i * fac;
        }
        canonicalize(t);
 }
@@ -1214,43 +1176,35 @@ static upoly replace_lc(const upoly& poly, const cl_I& lc)
        return r;
 }
 
-/** Calculates the bound for the modulus.
- *  See [Mig].
+/** Calculates bound for the product of absolute values (modulus) of the roots.
+ *  Uses Landau's inequality, see [Mig].
  */
-static inline cl_I calc_bound(const ex& a, const ex& x, int maxdeg)
+static inline cl_I calc_bound(const ex& a, const ex& x)
 {
-       cl_I maxcoeff = 0;
-       cl_R coeff = 0;
+       cl_R radicand = 0;
        for ( int i=a.degree(x); i>=a.ldegree(x); --i ) {
                cl_I aa = abs(the<cl_I>(ex_to<numeric>(a.coeff(x, i)).to_cl_N()));
-               if ( aa > maxcoeff ) maxcoeff = aa;
-               coeff = coeff + square(aa);
+               radicand = radicand + square(aa);
        }
-       cl_I coeffnorm = ceiling1(the<cl_R>(cln::sqrt(coeff)));
-       cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg));
-       return ( B > maxcoeff ) ? B : maxcoeff;
+       return ceiling1(the<cl_R>(cln::sqrt(radicand)));
 }
 
-/** Calculates the bound for the modulus.
- *  See [Mig].
+/** Calculates bound for the product of absolute values (modulus) of the roots.
+ *  Uses Landau's inequality, see [Mig].
  */
-static inline cl_I calc_bound(const upoly& a, int maxdeg)
+static inline cl_I calc_bound(const upoly& a)
 {
-       cl_I maxcoeff = 0;
-       cl_R coeff = 0;
+       cl_R radicand = 0;
        for ( int i=degree(a); i>=0; --i ) {
                cl_I aa = abs(a[i]);
-               if ( aa > maxcoeff ) maxcoeff = aa;
-               coeff = coeff + square(aa);
+               radicand = radicand + square(aa);
        }
-       cl_I coeffnorm = ceiling1(the<cl_R>(cln::sqrt(coeff)));
-       cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg));
-       return ( B > maxcoeff ) ? B : maxcoeff;
+       return ceiling1(the<cl_R>(cln::sqrt(radicand)));
 }
 
 /** Hensel lifting as used by factor_univariate().
  *
- *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *  The implementation follows algorithm 6.1 of [GCL].
  *
  *  @param[in]  a_   primitive univariate polynomials
  *  @param[in]  p    prime number that does not divide lcoeff(a)
@@ -1267,7 +1221,7 @@ static void hensel_univar(const upoly& a_, unsigned int p, const umodpoly& u1_,
 
        // calc bound B
        int maxdeg = (degree(u1_) > degree(w1_)) ? degree(u1_) : degree(w1_);
-       cl_I maxmodulus = 2*calc_bound(a, maxdeg);
+       cl_I maxmodulus = ash(calc_bound(a), maxdeg+1);  // = 2 * calc_bound(a) * 2^maxdeg
 
        // step 1
        cl_I alpha = lcoeff(a);
@@ -1330,48 +1284,41 @@ static void hensel_univar(const upoly& a_, unsigned int p, const umodpoly& u1_,
                if ( alpha != 1 ) {
                        w = w / alpha;
                }
-       }
-       else {
+       } else {
                u.clear();
        }
 }
 
-/** Returns a new prime number.
+/** Returns a new small prime number.
  *
- *  @param[in] p  prime number
- *  @return       next prime number after p
+ *  @param[in] n  an integer
+ *  @return       smallest prime greater than n
  */
-static unsigned int next_prime(unsigned int p)
-{
-       static vector<unsigned int> primes;
-       if ( primes.size() == 0 ) {
-               primes.push_back(3); primes.push_back(5); primes.push_back(7);
-       }
-       vector<unsigned int>::const_iterator it = primes.begin();
-       if ( p >= primes.back() ) {
-               unsigned int candidate = primes.back() + 2;
-               while ( true ) {
-                       size_t n = primes.size()/2;
-                       for ( size_t i=0; i<n; ++i ) {
-                               if ( candidate % primes[i] ) continue;
-                               candidate += 2;
-                               i=-1;
+static unsigned int next_prime(unsigned int n)
+{
+       static vector<unsigned int> primes = {2, 3, 5, 7};
+       unsigned int candidate = primes.back();
+       while (primes.back() <= n) {
+               candidate += 2;
+               bool is_prime = true;
+               for (size_t i=1; primes[i]*primes[i]<=candidate; ++i) {
+                       if (candidate % primes[i] == 0) {
+                               is_prime = false;
+                               break;
                        }
-                       primes.push_back(candidate);
-                       if ( candidate > p ) break;
                }
-               return candidate;
+               if (is_prime)
+                       primes.push_back(candidate);
        }
-       vector<unsigned int>::const_iterator end = primes.end();
-       for ( ; it!=end; ++it ) {
-               if ( *it > p ) {
-                       return *it;
+       for (auto & it : primes) {
+               if ( it > n ) {
+                       return it;
                }
        }
        throw logic_error("next_prime: should not reach this point!");
 }
 
-/** Manages the splitting a vector of of modular factors into two partitions.
+/** Manages the splitting of a vector of modular factors into two partitions.
  */
 class factor_partition
 {
@@ -1423,8 +1370,7 @@ public:
                        if ( len > n/2 ) return false;
                        fill(k.begin(), k.begin()+len, 1);
                        fill(k.begin()+len+1, k.end(), 0);
-               }
-               else {
+               } else {
                        k[last++] = 0;
                        k[last] = 1;
                }
@@ -1447,8 +1393,7 @@ private:
                        if ( d ) {
                                if ( cache[pos].size() >= d ) {
                                        lr[group] = lr[group] * cache[pos][d-1];
-                               }
-                               else {
+                               } else {
                                        if ( cache[pos].size() == 0 ) {
                                                cache[pos].push_back(factors[pos] * factors[pos+1]);
                                        }
@@ -1462,8 +1407,7 @@ private:
                                        }
                                        lr[group] = lr[group] * cache[pos].back();
                                }
-                       }
-                       else {
+                       } else {
                                lr[group] = lr[group] * factors[pos];
                        }
                } while ( i < n );
@@ -1474,8 +1418,7 @@ private:
                lr[1] = one;
                if ( n > 6 ) {
                        split_cached();
-               }
-               else {
+               } else {
                        for ( size_t i=0; i<n; ++i ) {
                                lr[k[i]] = lr[k[i]] * factors[i];
                        }
@@ -1483,7 +1426,7 @@ private:
        }
 private:
        umodpoly lr[2];
-       vector< vector<umodpoly> > cache;
+       vector<vector<umodpoly>> cache;
        upvec factors;
        umodpoly one;
        size_t n;
@@ -1517,6 +1460,9 @@ static ex factor_univariate(const ex& poly, const ex& x, unsigned int& prime)
        poly.unitcontprim(x, unit, cont, prim_ex);
        upoly prim;
        upoly_from_ex(prim, prim_ex, x);
+       if (prim_ex.is_equal(1)) {
+               return poly;
+       }
 
        // determine proper prime and minimize number of modular factors
        prime = 3;
@@ -1524,7 +1470,17 @@ static ex factor_univariate(const ex& poly, const ex& x, unsigned int& prime)
        cl_modint_ring R;
        unsigned int trials = 0;
        unsigned int minfactors = 0;
-       cl_I lc = lcoeff(prim) * the<cl_I>(ex_to<numeric>(cont).to_cl_N());
+
+       const numeric& cont_n = ex_to<numeric>(cont);
+       cl_I i_cont;
+       if (cont_n.is_integer()) {
+               i_cont = the<cl_I>(cont_n.to_cl_N());
+       } else {
+               // poly \in Q[x] => poly = q ipoly, ipoly \in Z[x], q \in Q
+               // factor(poly) \equiv q factor(ipoly)
+               i_cont = cl_I(1);
+       }
+       cl_I lc = lcoeff(prim)*i_cont;
        upvec factors;
        while ( trials < 2 ) {
                umodpoly modpoly;
@@ -1550,8 +1506,7 @@ static ex factor_univariate(const ex& poly, const ex& x, unsigned int& prime)
                        minfactors = trialfactors.size();
                        lastp = prime;
                        trials = 1;
-               }
-               else {
+               } else {
                        ++trials;
                }
        }
@@ -1605,15 +1560,13 @@ static ex factor_univariate(const ex& poly, const ex& x, unsigned int& prime)
                                                }
                                        }
                                        break;
-                               }
-                               else {
+                               } else {
                                        upvec newfactors1(part.size_left()), newfactors2(part.size_right());
-                                       upvec::iterator i1 = newfactors1.begin(), i2 = newfactors2.begin();
+                                       auto i1 = newfactors1.begin(), i2 = newfactors2.begin();
                                        for ( size_t i=0; i<n; ++i ) {
                                                if ( part[i] ) {
                                                        *i2++ = tocheck.top().factors[i];
-                                               }
-                                               else {
+                                               } else {
                                                        *i1++ = tocheck.top().factors[i];
                                                }
                                        }
@@ -1625,8 +1578,7 @@ static ex factor_univariate(const ex& poly, const ex& x, unsigned int& prime)
                                        tocheck.push(mf);
                                        break;
                                }
-                       }
-                       else {
+                       } else {
                                // not successful
                                if ( !part.next() ) {
                                        // if no more combinations left, return polynomial as
@@ -1679,7 +1631,7 @@ static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex&
  *  with deg(s_i) < deg(a_i)
  *  and with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r
  *
- *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *  The implementation follows algorithm 6.3 of [GCL].
  *
  *  @param[in]  a   vector of modular univariate polynomials
  *  @param[in]  x   symbol
@@ -1724,9 +1676,8 @@ static void change_modulus(const cl_modint_ring& R, umodpoly& a)
 {
        if ( a.empty() ) return;
        cl_modint_ring oldR = a[0].ring();
-       umodpoly::iterator i = a.begin(), end = a.end();
-       for ( ; i!=end; ++i ) {
-               *i = R->canonhom(oldR->retract(*i));
+       for (auto & i : a) {
+               i = R->canonhom(oldR->retract(i));
        }
        canonicalize(a);
 }
@@ -1735,7 +1686,7 @@ static void change_modulus(const cl_modint_ring& R, umodpoly& a)
  *
  *  Solves  s*a + t*b == 1 mod p^k  given a,b.
  *
- *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *  The implementation follows algorithm 6.3 of [GCL].
  *
  *  @param[in]  a   polynomial
  *  @param[in]  b   polynomial
@@ -1794,7 +1745,7 @@ static void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned
  *    s_1*b_1 + ... + s_r*b_r == x^m mod p^k
  *  with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r
  *
- *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *  The implementation follows algorithm 6.3 of [GCL].
  *
  *  @param a  vector with univariate polynomials mod p^k
  *  @param x  symbol
@@ -1817,8 +1768,7 @@ static upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsign
                        rem(bmod, a[j], buf);
                        result.push_back(buf);
                }
-       }
-       else {
+       } else {
                umodpoly s, t;
                eea_lift(a[1], a[0], x, p, k, s, t);
                umodpoly bmod = umodpoly_to_umodpoly(s, R, m);
@@ -1840,7 +1790,7 @@ static upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsign
 struct make_modular_map : public map_function {
        cl_modint_ring R;
        make_modular_map(const cl_modint_ring& R_) : R(R_) { }
-       ex operator()(const ex& e)
+       ex operator()(const ex& e) override
        {
                if ( is_a<add>(e) || is_a<mul>(e) ) {
                        return e.map(*this);
@@ -1852,8 +1802,7 @@ struct make_modular_map : public map_function {
                        numeric n(R->retract(emod));
                        if ( n > halfmod ) {
                                return n-mod;
-                       }
-                       else {
+                       } else {
                                return n;
                        }
                }
@@ -1880,7 +1829,7 @@ static ex make_modular(const ex& e, const cl_modint_ring& R)
  *    s_1*b_1 + ... + s_r*b_r == c mod <I^(d+1),p^k>
  *  with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r
  *
- *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *  The implementation follows algorithm 6.2 of [GCL].
  *
  *  @param a_  vector of multivariate factors mod p^k
  *  @param x   symbol (equiv. x_1 in [GCL])
@@ -1896,7 +1845,8 @@ static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex&
 {
        vector<ex> a = a_;
 
-       const cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k));
+       const cl_I modulus = expt_pos(cl_I(p),k);
+       const cl_modint_ring R = find_modint_ring(modulus);
        const size_t r = a.size();
        const size_t nu = I.size() + 1;
 
@@ -1946,8 +1896,7 @@ static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex&
                                e = make_modular(buf, R);
                        }
                }
-       }
-       else {
+       } else {
                upvec amod;
                for ( size_t i=0; i<a.size(); ++i ) {
                        umodpoly up;
@@ -1961,8 +1910,7 @@ static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex&
                if ( is_a<add>(c) ) {
                        nterms = c.nops();
                        z = c.op(0);
-               }
-               else {
+               } else {
                        nterms = 1;
                        z = c;
                }
@@ -1971,16 +1919,13 @@ static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex&
                        cl_I cm = the<cl_I>(ex_to<numeric>(z.lcoeff(x)).to_cl_N());
                        upvec delta_s = univar_diophant(amod, x, m, p, k);
                        cl_MI modcm;
-                       cl_I poscm = cm;
-                       while ( poscm < 0 ) {
-                               poscm = poscm + expt_pos(cl_I(p),k);
-                       }
+                       cl_I poscm = plusp(cm) ? cm : mod(cm, modulus);
                        modcm = cl_MI(R, poscm);
                        for ( size_t j=0; j<delta_s.size(); ++j ) {
                                delta_s[j] = delta_s[j] * modcm;
                                sigma[j] = sigma[j] + umodpoly_to_ex(delta_s[j], x);
                        }
-                       if ( nterms > 1 ) {
+                       if ( nterms > 1 && i+1 != nterms ) {
                                z = c.op(i+1);
                        }
                }
@@ -1994,7 +1939,7 @@ static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex&
 }
 
 /** Multivariate Hensel lifting.
- *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *  The implementation follows algorithm 6.4 of [GCL].
  *  Since we don't have a data type for modular multivariate polynomials, the
  *  respective operations are done in a GiNaC::ex and the function
  *  make_modular() is then called to make the coefficient modular p^l.
@@ -2094,73 +2039,69 @@ static ex hensel_multivar(const ex& a, const ex& x, const vector<EvalPoint>& I,
                acand *= U[i];
        }
        if ( expand(a-acand).is_zero() ) {
-               lst res;
-               for ( size_t i=0; i<U.size(); ++i ) {
-                       res.append(U[i]);
-               }
-               return res;
-       }
-       else {
-               lst res;
-               return lst();
+               return lst(U.begin(), U.end());
+       } else {
+               return lst{};
        }
 }
 
-/** Takes a factorized expression and puts the factors in a lst. The exponents
+/** Takes a factorized expression and puts the factors in a vector. The exponents
  *  of the factors are discarded, e.g. 7*x^2*(y+1)^4 --> {7,x,y+1}. The first
- *  element of the list is always the numeric coefficient.
+ *  element of the result is always the numeric coefficient.
  */
-static ex put_factors_into_lst(const ex& e)
+static exvector put_factors_into_vec(const ex& e)
 {
-       lst result;
+       exvector result;
        if ( is_a<numeric>(e) ) {
-               result.append(e);
+               result.push_back(e);
                return result;
        }
        if ( is_a<power>(e) ) {
-               result.append(1);
-               result.append(e.op(0));
+               result.push_back(1);
+               result.push_back(e.op(0));
                return result;
        }
        if ( is_a<symbol>(e) || is_a<add>(e) ) {
-               result.append(1);
-               result.append(e);
+               ex icont(e.integer_content());
+               result.push_back(icont);
+               result.push_back(e/icont);
                return result;
        }
        if ( is_a<mul>(e) ) {
                ex nfac = 1;
+               result.push_back(nfac);
                for ( size_t i=0; i<e.nops(); ++i ) {
                        ex op = e.op(i);
                        if ( is_a<numeric>(op) ) {
                                nfac = op;
                        }
                        if ( is_a<power>(op) ) {
-                               result.append(op.op(0));
+                               result.push_back(op.op(0));
                        }
                        if ( is_a<symbol>(op) || is_a<add>(op) ) {
-                               result.append(op);
+                               result.push_back(op);
                        }
                }
-               result.prepend(nfac);
+               result[0] = nfac;
                return result;
        }
-       throw runtime_error("put_factors_into_lst: bad term.");
+       throw runtime_error("put_factors_into_vec: bad term.");
 }
 
 /** Checks a set of numbers for whether each number has a unique prime factor.
  *
- *  @param[in]  f  list of numbers to check
+ *  @param[in]  f  numbers to check
  *  @return        true: if number set is bad, false: if set is okay (has unique
  *                 prime factors)
  */
-static bool checkdivisors(const lst& f)
+static bool checkdivisors(const exvector& f)
 {
-       const int k = f.nops();
+       const int k = f.size();
        numeric q, r;
        vector<numeric> d(k);
-       d[0] = ex_to<numeric>(abs(f.op(0)));
+       d[0] = ex_to<numeric>(abs(f[0]));
        for ( int i=1; i<k; ++i ) {
-               q = ex_to<numeric>(abs(f.op(i)));
+               q = ex_to<numeric>(abs(f[i]));
                for ( int j=i-1; j>=0; --j ) {
                        r = d[j];
                        do {
@@ -2185,25 +2126,24 @@ static bool checkdivisors(const lst& f)
  *
  *  @param[in]     u        multivariate polynomial to be factored
  *  @param[in]     vn       leading coefficient of u in x (x==first symbol in syms)
- *  @param[in]     syms     set of symbols that appear in u
- *  @param[in]     f        lst containing the factors of the leading coefficient vn
+ *  @param[in]     x        first symbol that appears in u
+ *  @param[in]     syms_wox remaining symbols that appear in u
+ *  @param[in]     f        vector containing the factors of the leading coefficient vn
  *  @param[in,out] modulus  integer modulus for random number generation (i.e. |a_i| < modulus)
  *  @param[out]    u0       returns the evaluated (univariate) polynomial
  *  @param[out]    a        returns the valid evaluation points. must have initial size equal
  *                          number of symbols-1 before calling generate_set
  */
-static void generate_set(const ex& u, const ex& vn, const exset& syms, const lst& f,
+static void generate_set(const ex& u, const ex& vn, const ex& x, const exset& syms_wox, const exvector& f,
                          numeric& modulus, ex& u0, vector<numeric>& a)
 {
-       const ex& x = *syms.begin();
        while ( true ) {
                ++modulus;
                // generate a set of integers ...
                u0 = u;
                ex vna = vn;
                ex vnatry;
-               exset::const_iterator s = syms.begin();
-               ++s;
+               auto s = syms_wox.begin();
                for ( size_t i=0; i<a.size(); ++i ) {
                        do {
                                a[i] = mod(numeric(rand()), 2*modulus) - modulus;
@@ -2221,14 +2161,13 @@ static void generate_set(const ex& u, const ex& vn, const exset& syms, const lst
                }
                if ( !is_a<numeric>(vn) ) {
                        // ... and for which the evaluated factors have each an unique prime factor
-                       lst fnum = f;
-                       fnum.let_op(0) = fnum.op(0) * u0.content(x);
-                       for ( size_t i=1; i<fnum.nops(); ++i ) {
-                               if ( !is_a<numeric>(fnum.op(i)) ) {
-                                       s = syms.begin();
-                                       ++s;
+                       exvector fnum = f;
+                       fnum[0] = fnum[0] * u0.content(x);
+                       for ( size_t i=1; i<fnum.size(); ++i ) {
+                               if ( !is_a<numeric>(fnum[i]) ) {
+                                       s = syms_wox.begin();
                                        for ( size_t j=0; j<a.size(); ++j, ++s ) {
-                                               fnum.let_op(i) = fnum.op(i).subs(*s == a[j]);
+                                               fnum[i] = fnum[i].subs(*s == a[j]);
                                        }
                                }
                        }
@@ -2244,72 +2183,42 @@ static void generate_set(const ex& u, const ex& vn, const exset& syms, const lst
 // forward declaration
 static ex factor_sqrfree(const ex& poly);
 
-/** Multivariate factorization.
- *  
- *  The implementation is based on the algorithm described in [Wan].
- *  An evaluation homomorphism (a set of integers) is determined that fulfills
- *  certain criteria. The evaluated polynomial is univariate and is factorized
- *  by factor_univariate(). The main work then is to find the correct leading
- *  coefficients of the univariate factors. They have to correspond to the
- *  factors of the (multivariate) leading coefficient of the input polynomial
- *  (as defined for a specific variable x). After that the Hensel lifting can be
- *  performed.
- *
- *  @param[in] poly  expanded, square free polynomial
- *  @param[in] syms  contains the symbols in the polynomial
- *  @return          factorized polynomial
+/** Used by factor_multivariate().
  */
-static ex factor_multivariate(const ex& poly, const exset& syms)
-{
-       exset::const_iterator s;
-       const ex& x = *syms.begin();
-
-       // make polynomial primitive
-       ex unit, cont, pp;
-       poly.unitcontprim(x, unit, cont, pp);
-       if ( !is_a<numeric>(cont) ) {
-               return factor_sqrfree(cont) * factor_sqrfree(pp);
-       }
-
-       // factor leading coefficient
-       ex vn = pp.collect(x).lcoeff(x);
-       ex vnlst;
-       if ( is_a<numeric>(vn) ) {
-               vnlst = lst(vn);
-       }
-       else {
-               ex vnfactors = factor(vn);
-               vnlst = put_factors_into_lst(vnfactors);
-       }
-
-       const unsigned int maxtrials = 3;
-       numeric modulus = (vnlst.nops() > 3) ? vnlst.nops() : 3;
-       vector<numeric> a(syms.size()-1, 0);
-
-       // try now to factorize until we are successful
-       while ( true ) {
+struct factorization_ctx {
+       const ex poly, x;         // polynomial, first symbol x...
+       const exset syms_wox;     // ...remaining symbols w/o x
+       ex unit, cont, pp;        // unit * cont * pp == poly
+       ex vn; exvector vnlst;    // leading coeff, factors of leading coeff
+       numeric modulus;          // incremented each time we try
+       /** returns factors or empty if it did not succeed */
+       ex try_next_evaluation_homomorphism()
+       {
+               constexpr unsigned maxtrials = 3;
+               vector<numeric> a(syms_wox.size(), 0);
 
                unsigned int trialcount = 0;
                unsigned int prime;
                int factor_count = 0;
                int min_factor_count = -1;
                ex u, delta;
-               ex ufac, ufaclst;
+               ex ufac;
+               exvector ufaclst;
 
                // try several evaluation points to reduce the number of factors
                while ( trialcount < maxtrials ) {
 
                        // generate a set of valid evaluation points
-                       generate_set(pp, vn, syms, ex_to<lst>(vnlst), modulus, u, a);
+                       generate_set(pp, vn, x, syms_wox, vnlst, modulus, u, a);
 
                        ufac = factor_univariate(u, x, prime);
-                       ufaclst = put_factors_into_lst(ufac);
-                       factor_count = ufaclst.nops()-1;
-                       delta = ufaclst.op(0);
+                       ufaclst = put_factors_into_vec(ufac);
+                       factor_count = ufaclst.size()-1;
+                       delta = ufaclst[0];
 
                        if ( factor_count <= 1 ) {
                                // irreducible
-                               return poly;
+                               return lst{pp};
                        }
                        if ( min_factor_count < 0 ) {
                                // first time here
@@ -2330,20 +2239,18 @@ static ex factor_multivariate(const ex& poly, const exset& syms)
                vector<ex> C(factor_count);
                if ( is_a<numeric>(vn) ) {
                        // easy case
-                       for ( size_t i=1; i<ufaclst.nops(); ++i ) {
-                               C[i-1] = ufaclst.op(i).lcoeff(x);
+                       for ( size_t i=1; i<ufaclst.size(); ++i ) {
+                               C[i-1] = ufaclst[i].lcoeff(x);
                        }
-               }
-               else {
+               } else {
                        // difficult case.
                        // we use the property of the ftilde having a unique prime factor.
                        // details can be found in [Wan].
                        // calculate ftilde
-                       vector<numeric> ftilde(vnlst.nops()-1);
+                       vector<numeric> ftilde(vnlst.size()-1);
                        for ( size_t i=0; i<ftilde.size(); ++i ) {
-                               ex ft = vnlst.op(i+1);
-                               s = syms.begin();
-                               ++s;
+                               ex ft = vnlst[i+1];
+                               auto s = syms_wox.begin();
                                for ( size_t j=0; j<a.size(); ++j ) {
                                        ft = ft.subs(*s == a[j]);
                                        ++s;
@@ -2355,40 +2262,41 @@ static ex factor_multivariate(const ex& poly, const exset& syms)
                        vector<ex> D(factor_count, 1);
                        if ( delta == 1 ) {
                                for ( int i=0; i<factor_count; ++i ) {
-                                       numeric prefac = ex_to<numeric>(ufaclst.op(i+1).lcoeff(x));
+                                       numeric prefac = ex_to<numeric>(ufaclst[i+1].lcoeff(x));
                                        for ( int j=ftilde.size()-1; j>=0; --j ) {
                                                int count = 0;
-                                               while ( irem(prefac, ftilde[j]) == 0 ) {
-                                                       prefac = iquo(prefac, ftilde[j]);
+                                               numeric q;
+                                               while ( irem(prefac, ftilde[j], q) == 0 ) {
+                                                       prefac = q;
                                                        ++count;
                                                }
                                                if ( count ) {
                                                        used_flag[j] = true;
-                                                       D[i] = D[i] * pow(vnlst.op(j+1), count);
+                                                       D[i] = D[i] * pow(vnlst[j+1], count);
                                                }
                                        }
                                        C[i] = D[i] * prefac;
                                }
-                       }
-                       else {
+                       } else {
                                for ( int i=0; i<factor_count; ++i ) {
-                                       numeric prefac = ex_to<numeric>(ufaclst.op(i+1).lcoeff(x));
+                                       numeric prefac = ex_to<numeric>(ufaclst[i+1].lcoeff(x));
                                        for ( int j=ftilde.size()-1; j>=0; --j ) {
                                                int count = 0;
-                                               while ( irem(prefac, ftilde[j]) == 0 ) {
-                                                       prefac = iquo(prefac, ftilde[j]);
+                                               numeric q;
+                                               while ( irem(prefac, ftilde[j], q) == 0 ) {
+                                                       prefac = q;
                                                        ++count;
                                                }
                                                while ( irem(ex_to<numeric>(delta)*prefac, ftilde[j]) == 0 ) {
                                                        numeric g = gcd(prefac, ex_to<numeric>(ftilde[j]));
                                                        prefac = iquo(prefac, g);
                                                        delta = delta / (ftilde[j]/g);
-                                                       ufaclst.let_op(i+1) = ufaclst.op(i+1) * (ftilde[j]/g);
+                                                       ufaclst[i+1] = ufaclst[i+1] * (ftilde[j]/g);
                                                        ++count;
                                                }
                                                if ( count ) {
                                                        used_flag[j] = true;
-                                                       D[i] = D[i] * pow(vnlst.op(j+1), count);
+                                                       D[i] = D[i] * pow(vnlst[j+1], count);
                                                }
                                        }
                                        C[i] = D[i] * prefac;
@@ -2403,60 +2311,114 @@ static ex factor_multivariate(const ex& poly, const exset& syms)
                                }
                        }
                        if ( some_factor_unused ) {
-                               continue;
+                               return lst{};  // next try
                        }
                }
-               
+
                // multiply the remaining content of the univariate polynomial into the
                // first factor
                if ( delta != 1 ) {
                        C[0] = C[0] * delta;
-                       ufaclst.let_op(1) = ufaclst.op(1) * delta;
+                       ufaclst[1] = ufaclst[1] * delta;
                }
 
                // set up evaluation points
-               EvalPoint ep;
                vector<EvalPoint> epv;
-               s = syms.begin();
-               ++s;
+               auto s = syms_wox.begin();
                for ( size_t i=0; i<a.size(); ++i ) {
-                       ep.x = *s++;
-                       ep.evalpoint = a[i].to_int();
-                       epv.push_back(ep);
+                       epv.emplace_back(EvalPoint{*s++, a[i].to_int()});
                }
 
                // calc bound p^l
                int maxdeg = 0;
                for ( int i=1; i<=factor_count; ++i ) {
-                       if ( ufaclst.op(i).degree(x) > maxdeg ) {
+                       if ( ufaclst[i].degree(x) > maxdeg ) {
                                maxdeg = ufaclst[i].degree(x);
                        }
                }
-               cl_I B = 2*calc_bound(u, x, maxdeg);
+               cl_I B = ash(calc_bound(u, x), maxdeg+1);  // = 2 * calc_bound(u,x) * 2^maxdeg
                cl_I l = 1;
                cl_I pl = prime;
                while ( pl < B ) {
                        l = l + 1;
                        pl = pl * prime;
                }
-               
+
                // set up modular factors (mod p^l)
-               cl_modint_ring R = find_modint_ring(expt_pos(cl_I(prime),l));
-               upvec modfactors(ufaclst.nops()-1);
-               for ( size_t i=1; i<ufaclst.nops(); ++i ) {
-                       umodpoly_from_ex(modfactors[i-1], ufaclst.op(i), x, R);
+               cl_modint_ring R = find_modint_ring(pl);
+               upvec modfactors(ufaclst.size()-1);
+               for ( size_t i=1; i<ufaclst.size(); ++i ) {
+                       umodpoly_from_ex(modfactors[i-1], ufaclst[i], x, R);
                }
 
                // try Hensel lifting
-               ex res = hensel_multivar(pp, x, epv, prime, l, modfactors, C);
-               if ( res != lst() ) {
-                       ex result = cont * unit;
+               return hensel_multivar(pp, x, epv, prime, l, modfactors, C);
+       }
+};
+
+/** Multivariate factorization.
+ *
+ *  The implementation is based on the algorithm described in [Wan].
+ *  An evaluation homomorphism (a set of integers) is determined that fulfills
+ *  certain criteria. The evaluated polynomial is univariate and is factorized
+ *  by factor_univariate(). The main work then is to find the correct leading
+ *  coefficients of the univariate factors. They have to correspond to the
+ *  factors of the (multivariate) leading coefficient of the input polynomial
+ *  (as defined for a specific variable x). After that the Hensel lifting can be
+ *  performed. This is done in round-robin for each x in syms until success.
+ *
+ *  @param[in] poly  expanded, square free polynomial
+ *  @param[in] syms  contains the symbols in the polynomial
+ *  @return          factorized polynomial
+ */
+static ex factor_multivariate(const ex& poly, const exset& syms)
+{
+       // set up one factorization context for each symbol
+       vector<factorization_ctx> ctx_in_x;
+       for (auto x : syms) {
+               exset syms_wox;  // remaining syms w/o x
+               copy_if(syms.begin(), syms.end(),
+                       inserter(syms_wox, syms_wox.end()), [x](const ex& y){ return y != x; });
+
+               factorization_ctx ctx{poly, x, syms_wox};
+
+               // make polynomial primitive
+               poly.unitcontprim(x, ctx.unit, ctx.cont, ctx.pp);
+               if ( !is_a<numeric>(ctx.cont) ) {
+                       // content is a polynomial in one or more of remaining syms, let's start over
+                       return ctx.unit * factor_sqrfree(ctx.cont) * factor_sqrfree(ctx.pp);
+               }
+
+               // find factors of leading coefficient
+               ctx.vn = ctx.pp.collect(x).lcoeff(x);
+               ctx.vnlst = put_factors_into_vec(factor(ctx.vn));
+
+               ctx.modulus = (ctx.vnlst.size() > 3) ? ctx.vnlst.size() : numeric(3);
+
+               ctx_in_x.push_back(ctx);
+       }
+
+       // try an evaluation homomorphism for each context in round-robin
+       auto ctx = ctx_in_x.begin();
+       while ( true ) {
+
+               ex res = ctx->try_next_evaluation_homomorphism();
+
+               if ( res != lst{} ) {
+                       // found the factors
+                       ex result = ctx->cont * ctx->unit;
                        for ( size_t i=0; i<res.nops(); ++i ) {
-                               result *= res.op(i).content(x) * res.op(i).unit(x);
-                               result *= res.op(i).primpart(x);
+                               ex unit, cont, pp;
+                               res.op(i).unitcontprim(ctx->x, unit, cont, pp);
+                               result *= unit * cont * pp;
                        }
                        return result;
                }
+
+               // switch context for next symbol
+               if (++ctx == ctx_in_x.end()) {
+                       ctx = ctx_in_x.begin();
+               }
        }
 }
 
@@ -2464,7 +2426,7 @@ static ex factor_multivariate(const ex& poly, const exset& syms)
  */
 struct find_symbols_map : public map_function {
        exset syms;
-       ex operator()(const ex& e)
+       ex operator()(const ex& e) override
        {
                if ( is_a<symbol>(e) ) {
                        syms.insert(e);
@@ -2489,13 +2451,12 @@ static ex factor_sqrfree(const ex& poly)
        if ( findsymbols.syms.size() == 1 ) {
                // univariate case
                const ex& x = *(findsymbols.syms.begin());
-               if ( poly.ldegree(x) > 0 ) {
+               int ld = poly.ldegree(x);
+               if ( ld > 0 ) {
                        // pull out direct factors
-                       int ld = poly.ldegree(x);
                        ex res = factor_univariate(expand(poly/pow(x, ld)), x);
                        return res * pow(x,ld);
-               }
-               else {
+               } else {
                        ex res = factor_univariate(poly, x);
                        return res;
                }
@@ -2512,7 +2473,7 @@ static ex factor_sqrfree(const ex& poly)
 struct apply_factor_map : public map_function {
        unsigned options;
        apply_factor_map(unsigned options_) : options(options_) { }
-       ex operator()(const ex& e)
+       ex operator()(const ex& e) override
        {
                if ( e.info(info_flags::polynomial) ) {
                        return factor(e, options);
@@ -2522,26 +2483,51 @@ struct apply_factor_map : public map_function {
                        for ( size_t i=0; i<e.nops(); ++i ) {
                                if ( e.op(i).info(info_flags::polynomial) ) {
                                        s1 += e.op(i);
-                               }
-                               else {
+                               } else {
                                        s2 += e.op(i);
                                }
                        }
-                       s1 = s1.eval();
-                       s2 = s2.eval();
                        return factor(s1, options) + s2.map(*this);
                }
                return e.map(*this);
        }
 };
 
-} // anonymous namespace
+/** Iterate through explicit factors of e, call yield(f, k) for
+ *  each factor of the form f^k.
+ *
+ *  Note that this function doesn't factor e itself, it only
+ *  iterates through the factors already explicitly present.
+ */
+template <typename F> void
+factor_iter(const ex &e, F yield)
+{
+       if (is_a<mul>(e)) {
+               for (const auto &f : e) {
+                       if (is_a<power>(f)) {
+                               yield(f.op(0), f.op(1));
+                       } else {
+                               yield(f, ex(1));
+                       }
+               }
+       } else {
+               if (is_a<power>(e)) {
+                       yield(e.op(0), e.op(1));
+               } else {
+                       yield(e, ex(1));
+               }
+       }
+}
 
-/** Interface function to the outside world. It checks the arguments, tries a
- *  square free factorization, and then calls factor_sqrfree to do the hard
- *  work.
+/** This function factorizes a polynomial. It checks the arguments,
+ *  tries a square free factorization, and then calls factor_sqrfree
+ *  to do the hard work.
+ *
+ *  This function expands its argument, so for polynomials with
+ *  explicit factors it's better to call it on each one separately
+ *  (or use factor() which does just that).
  */
-ex factor(const ex& poly, unsigned options)
+static ex factor1(const ex& poly, unsigned options)
 {
        // check arguments
        if ( !poly.info(info_flags::polynomial) ) {
@@ -2560,60 +2546,43 @@ ex factor(const ex& poly, unsigned options)
                return poly;
        }
        lst syms;
-       exset::const_iterator i=findsymbols.syms.begin(), end=findsymbols.syms.end();
-       for ( ; i!=end; ++i ) {
-               syms.append(*i);
+       for (auto & i : findsymbols.syms ) {
+               syms.append(i);
        }
 
        // make poly square free
        ex sfpoly = sqrfree(poly.expand(), syms);
 
        // factorize the square free components
-       if ( is_a<power>(sfpoly) ) {
-               // case: (polynomial)^exponent
-               const ex& base = sfpoly.op(0);
-               if ( !is_a<add>(base) ) {
-                       // simple case: (monomial)^exponent
-                       return sfpoly;
-               }
-               ex f = factor_sqrfree(base);
-               return pow(f, sfpoly.op(1));
-       }
-       if ( is_a<mul>(sfpoly) ) {
-               // case: multiple factors
-               ex res = 1;
-               for ( size_t i=0; i<sfpoly.nops(); ++i ) {
-                       const ex& t = sfpoly.op(i);
-                       if ( is_a<power>(t) ) {
-                               const ex& base = t.op(0);
-                               if ( !is_a<add>(base) ) {
-                                       res *= t;
-                               }
-                               else {
-                                       ex f = factor_sqrfree(base);
-                                       res *= pow(f, t.op(1));
-                               }
-                       }
-                       else if ( is_a<add>(t) ) {
-                               ex f = factor_sqrfree(t);
-                               res *= f;
-                       }
-                       else {
-                               res *= t;
+       ex res = 1;
+       factor_iter(sfpoly,
+               [&](const ex &f, const ex &k) {
+                       if ( is_a<add>(f) ) {
+                               res *= pow(factor_sqrfree(f), k);
+                       } else {
+                               // simple case: (monomial)^exponent
+                               res *= pow(f, k);
                        }
-               }
-               return res;
-       }
-       if ( is_a<symbol>(sfpoly) ) {
-               return poly;
-       }
-       // case: (polynomial)
-       ex f = factor_sqrfree(sfpoly);
-       return f;
+               });
+       return res;
 }
 
-} // namespace GiNaC
+} // anonymous namespace
 
-#ifdef DEBUGFACTOR
-#include "test.h"
-#endif
+/** Interface function to the outside world. It uses factor1()
+ *  on each of the explicitly present factors of poly.
+ */
+ex factor(const ex& poly, unsigned options)
+{
+       ex result = 1;
+       factor_iter(poly,
+               [&](const ex &f1, const ex &k1) {
+                       factor_iter(factor1(f1, options),
+                               [&](const ex &f2, const ex &k2) {
+                                       result *= pow(f2, k1*k2);
+                               });
+               });
+       return result;
+}
+
+} // namespace GiNaC