]> www.ginac.de Git - ginac.git/blobdiff - ginac/factor.cpp
Update copyright statements.
[ginac.git] / ginac / factor.cpp
index 3a012405ffc2934ae9d91358261a039101343e2e..0f17e2410185cc373e492e6481eb7300e8b6c6be 100644 (file)
@@ -1,11 +1,39 @@
 /** @file factor.cpp
  *
- *  Polynomial factorization routines.
- *  Only univariate at the moment and completely non-optimized!
+ *  Polynomial factorization (implementation).
+ *
+ *  The interface function factor() at the end of this file is defined in the
+ *  GiNaC namespace. All other utility functions and classes are defined in an
+ *  additional anonymous namespace.
+ *
+ *  Factorization starts by doing a square free factorization and making the
+ *  coefficients integer. Then, depending on the number of free variables it
+ *  proceeds either in dedicated univariate or multivariate factorization code.
+ *
+ *  Univariate factorization does a modular factorization via Berlekamp's
+ *  algorithm and distinct degree factorization. Hensel lifting is used at the
+ *  end.
+ *  
+ *  Multivariate factorization uses the univariate factorization (applying a
+ *  evaluation homomorphism first) and Hensel lifting raises the answer to the
+ *  multivariate domain. The Hensel lifting code is completely distinct from the
+ *  code used by the univariate factorization.
+ *
+ *  Algorithms used can be found in
+ *    [Wan] An Improved Multivariate Polynomial Factoring Algorithm,
+ *          P.S.Wang,
+ *          Mathematics of Computation, Vol. 32, No. 144 (1978) 1215--1231.
+ *    [GCL] Algorithms for Computer Algebra,
+ *          K.O.Geddes, S.R.Czapor, G.Labahn,
+ *          Springer Verlag, 1992.
+ *    [Mig] Some Useful Bounds,
+ *          M.Mignotte, 
+ *          In "Computer Algebra, Symbolic and Algebraic Computation" (B.Buchberger et al., eds.),
+ *          pp. 259-263, Springer-Verlag, New York, 1982.
  */
 
 /*
- *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2014 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -22,6 +50,8 @@
  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
+//#define DEBUGFACTOR
+
 #include "factor.h"
 
 #include "ex.h"
 #include "add.h"
 
 #include <algorithm>
+#include <cmath>
+#include <limits>
 #include <list>
 #include <vector>
+#ifdef DEBUGFACTOR
+#include <ostream>
+#endif
 using namespace std;
 
 #include <cln/cln.h>
 using namespace cln;
 
-//#define DEBUGFACTOR
-
-#ifdef DEBUGFACTOR
-#include <ostream>
-#endif // def DEBUGFACTOR
-
 namespace GiNaC {
 
-namespace {
-
-typedef vector<cl_MI> Vec;
-typedef vector<Vec> VecVec;
-
 #ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const Vec& v)
+#define DCOUT(str) cout << #str << endl
+#define DCOUTVAR(var) cout << #var << ": " << var << endl
+#define DCOUT2(str,var) cout << #str << ": " << var << endl
+ostream& operator<<(ostream& o, const vector<int>& v)
 {
-       Vec::const_iterator i = v.begin(), end = v.end();
+       vector<int>::const_iterator i = v.begin(), end = v.end();
        while ( i != end ) {
                o << *i++ << " ";
        }
        return o;
 }
-#endif // def DEBUGFACTOR
-
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const VecVec& v)
+static ostream& operator<<(ostream& o, const vector<cl_I>& v)
 {
-       VecVec::const_iterator i = v.begin(), end = v.end();
+       vector<cl_I>::const_iterator i = v.begin(), end = v.end();
        while ( i != end ) {
-               o << *i++ << endl;
+               o << *i << "[" << i-v.begin() << "]" << " ";
+               ++i;
        }
        return o;
 }
-#endif // def DEBUGFACTOR
-
-struct Term
+static ostream& operator<<(ostream& o, const vector<cl_MI>& v)
 {
-       cl_MI c;          // coefficient
-       unsigned int exp; // exponent >=0
-};
-
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const Term& t)
+       vector<cl_MI>::const_iterator i = v.begin(), end = v.end();
+       while ( i != end ) {
+               o << *i << "[" << i-v.begin() << "]" << " ";
+               ++i;
+       }
+       return o;
+}
+ostream& operator<<(ostream& o, const vector<numeric>& v)
 {
-       if ( t.exp ) {
-               o << "(" << t.c << ")x^" << t.exp;
+       for ( size_t i=0; i<v.size(); ++i ) {
+               o << v[i] << " ";
        }
-       else {
-               o << "(" << t.c << ")";
+       return o;
+}
+ostream& operator<<(ostream& o, const vector< vector<cl_MI> >& v)
+{
+       vector< vector<cl_MI> >::const_iterator i = v.begin(), end = v.end();
+       while ( i != end ) {
+               o << i-v.begin() << ": " << *i << endl;
+               ++i;
        }
        return o;
 }
+#else
+#define DCOUT(str)
+#define DCOUTVAR(var)
+#define DCOUT2(str,var)
 #endif // def DEBUGFACTOR
 
-struct UniPoly
+// anonymous namespace to hide all utility functions
+namespace {
+
+////////////////////////////////////////////////////////////////////////////////
+// modular univariate polynomial code
+
+typedef std::vector<cln::cl_MI> umodpoly;
+typedef std::vector<cln::cl_I> upoly;
+typedef vector<umodpoly> upvec;
+
+// COPY FROM UPOLY.HPP
+
+// CHANGED size_t -> int !!!
+template<typename T> static int degree(const T& p)
 {
-       cl_modint_ring R;
-       list<Term> terms;  // highest exponent first
-
-       UniPoly(const cl_modint_ring& ring) : R(ring) { }
-       UniPoly(const cl_modint_ring& ring, const ex& poly, const ex& x) : R(ring)
-       { 
-               // assert: poly is in Z[x]
-               Term t;
-               for ( int i=poly.degree(x); i>=poly.ldegree(x); --i ) {
-                       int coeff = ex_to<numeric>(poly.coeff(x,i)).to_int();
-                       if ( coeff ) {
-                               t.c = R->canonhom(coeff);
-                               if ( !zerop(t.c) ) {
-                                       t.exp = i;
-                                       terms.push_back(t);
-                               }
-                       }
-               }
-       }
-       UniPoly(const cl_modint_ring& ring, const Vec& v) : R(ring)
-       {
-               Term t;
-               for ( unsigned int i=0; i<v.size(); ++i ) {
-                       if ( !zerop(v[i]) ) {
-                               t.c = v[i];
-                               t.exp = i;
-                               terms.push_front(t);
-                       }
-               }
+       return p.size() - 1;
+}
+
+template<typename T> static typename T::value_type lcoeff(const T& p)
+{
+       return p[p.size() - 1];
+}
+
+static bool normalize_in_field(umodpoly& a)
+{
+       if (a.size() == 0)
+               return true;
+       if ( lcoeff(a) == a[0].ring()->one() ) {
+               return true;
        }
-       unsigned int degree() const
-       {
-               if ( terms.size() ) {
-                       return terms.front().exp;
+
+       const cln::cl_MI lc_1 = recip(lcoeff(a));
+       for (std::size_t k = a.size(); k-- != 0; )
+               a[k] = a[k]*lc_1;
+       return false;
+}
+
+template<typename T> static void
+canonicalize(T& p, const typename T::size_type hint = std::numeric_limits<typename T::size_type>::max())
+{
+       if (p.empty())
+               return;
+
+       std::size_t i = p.size() - 1;
+       // Be fast if the polynomial is already canonicalized
+       if (!zerop(p[i]))
+               return;
+
+       if (hint < p.size())
+               i = hint;
+
+       bool is_zero = false;
+       do {
+               if (!zerop(p[i])) {
+                       ++i;
+                       break;
                }
-               else {
-                       return 0;
+               if (i == 0) {
+                       is_zero = true;
+                       break;
                }
+               --i;
+       } while (true);
+
+       if (is_zero) {
+               p.clear();
+               return;
        }
-       bool zero() const { return (terms.size() == 0); }
-       const cl_MI operator[](unsigned int deg) const
-       {
-               list<Term>::const_iterator i = terms.begin(), end = terms.end();
-               for ( ; i != end; ++i ) {
-                       if ( i->exp == deg ) {
-                               return i->c;
-                       }
-                       if ( i->exp < deg ) {
-                               break;
-                       }
-               }
-               return R->zero();
+
+       p.erase(p.begin() + i, p.end());
+}
+
+// END COPY FROM UPOLY.HPP
+
+static void expt_pos(umodpoly& a, unsigned int q)
+{
+       if ( a.empty() ) return;
+       cl_MI zero = a[0].ring()->zero(); 
+       int deg = degree(a);
+       a.resize(degree(a)*q+1, zero);
+       for ( int i=deg; i>0; --i ) {
+               a[i*q] = a[i];
+               a[i] = zero;
        }
-       void set(unsigned int deg, const cl_MI& c)
-       {
-               list<Term>::iterator i = terms.begin(), end = terms.end();
-               while ( i != end ) {
-                       if ( i->exp == deg ) {
-                               if ( !zerop(c) ) {
-                                       i->c = c;
-                               }
-                               else {
-                                       terms.erase(i);
-                               }
-                               return;
-                       }
-                       if ( i->exp < deg ) {
-                               break;
-                       }
-                       ++i;
+}
+
+template<bool COND, typename T = void> struct enable_if
+{
+       typedef T type;
+};
+
+template<typename T> struct enable_if<false, T> { /* empty */ };
+
+template<typename T> struct uvar_poly_p
+{
+       static const bool value = false;
+};
+
+template<> struct uvar_poly_p<upoly>
+{
+       static const bool value = true;
+};
+
+template<> struct uvar_poly_p<umodpoly>
+{
+       static const bool value = true;
+};
+
+template<typename T>
+// Don't define this for anything but univariate polynomials.
+static typename enable_if<uvar_poly_p<T>::value, T>::type
+operator+(const T& a, const T& b)
+{
+       int sa = a.size();
+       int sb = b.size();
+       if ( sa >= sb ) {
+               T r(sa);
+               int i = 0;
+               for ( ; i<sb; ++i ) {
+                       r[i] = a[i] + b[i];
                }
-               if ( !zerop(c) ) {
-                       Term t;
-                       t.c = c;
-                       t.exp = deg;
-                       terms.insert(i, t);
+               for ( ; i<sa; ++i ) {
+                       r[i] = a[i];
                }
+               canonicalize(r);
+               return r;
        }
-       ex to_ex(const ex& x, bool symmetric = true) const
-       {
-               ex r;
-               list<Term>::const_iterator i = terms.begin(), end = terms.end();
-               if ( symmetric ) {
-                       numeric mod(R->modulus);
-                       numeric halfmod = (mod-1)/2;
-                       for ( ; i != end; ++i ) {
-                               numeric n(R->retract(i->c));
-                               if ( n > halfmod ) {
-                                       r += pow(x, i->exp) * (n-mod);
-                               }
-                               else {
-                                       r += pow(x, i->exp) * n;
-                               }
-                       }
+       else {
+               T r(sb);
+               int i = 0;
+               for ( ; i<sa; ++i ) {
+                       r[i] = a[i] + b[i];
                }
-               else {
-                       for ( ; i != end; ++i ) {
-                               r += pow(x, i->exp) * numeric(R->retract(i->c));
-                       }
+               for ( ; i<sb; ++i ) {
+                       r[i] = b[i];
                }
+               canonicalize(r);
                return r;
        }
-       void unit_normal()
-       {
-               if ( terms.size() ) {
-                       if ( terms.front().c != R->one() ) {
-                               list<Term>::iterator i = terms.begin(), end = terms.end();
-                               cl_MI cont = i->c;
-                               i->c = R->one();
-                               while ( ++i != end ) {
-                                       i->c = div(i->c, cont);
-                                       if ( zerop(i->c) ) {
-                                               terms.erase(i);
-                                       }
-                               }
-                       }
-               }
-       }
-       cl_MI unit() const
-       {
-               return terms.front().c;
-       }
-       void divide(const cl_MI& x)
-       {
-               list<Term>::iterator i = terms.begin(), end = terms.end();
-               for ( ; i != end; ++i ) {
-                       i->c = div(i->c, x);
-                       if ( zerop(i->c) ) {
-                               terms.erase(i);
-                       }
+}
+
+template<typename T>
+// Don't define this for anything but univariate polynomials. Otherwise
+// overload resolution might fail (this actually happens when compiling
+// GiNaC with g++ 3.4).
+static typename enable_if<uvar_poly_p<T>::value, T>::type
+operator-(const T& a, const T& b)
+{
+       int sa = a.size();
+       int sb = b.size();
+       if ( sa >= sb ) {
+               T r(sa);
+               int i = 0;
+               for ( ; i<sb; ++i ) {
+                       r[i] = a[i] - b[i];
                }
-       }
-       void reduce_exponents(unsigned int prime)
-       {
-               list<Term>::iterator i = terms.begin(), end = terms.end();
-               while ( i != end ) {
-                       if ( i->exp > 0 ) {
-                               // assert: i->exp is multiple of prime
-                               i->exp /= prime;
-                       }
-                       ++i;
+               for ( ; i<sa; ++i ) {
+                       r[i] = a[i];
                }
+               canonicalize(r);
+               return r;
        }
-       void deriv(UniPoly& d) const
-       {
-               list<Term>::const_iterator i = terms.begin(), end = terms.end();
-               while ( i != end ) {
-                       if ( i->exp ) {
-                               cl_MI newc = i->c * i->exp;
-                               if ( !zerop(newc) ) {
-                                       Term t;
-                                       t.c = newc;
-                                       t.exp = i->exp-1;
-                                       d.terms.push_back(t);
-                               }
-                       }
-                       ++i;
+       else {
+               T r(sb);
+               int i = 0;
+               for ( ; i<sa; ++i ) {
+                       r[i] = a[i] - b[i];
                }
-       }
-       bool operator<(const UniPoly& o) const
-       {
-               if ( terms.size() != o.terms.size() ) {
-                       return terms.size() < o.terms.size();
-               }
-               list<Term>::const_iterator i1 = terms.begin(), end = terms.end();
-               list<Term>::const_iterator i2 = o.terms.begin();
-               while ( i1 != end ) {
-                       if ( i1->exp != i2->exp ) {
-                               return i1->exp < i2->exp;
-                       }
-                       if ( i1->c != i2->c ) {
-                               return R->retract(i1->c) < R->retract(i2->c);
-                       }
-                       ++i1; ++i2;
+               for ( ; i<sb; ++i ) {
+                       r[i] = -b[i];
                }
-               return true;
+               canonicalize(r);
+               return r;
        }
-       bool operator==(const UniPoly& o) const
-       {
-               if ( terms.size() != o.terms.size() ) {
-                       return false;
-               }
-               list<Term>::const_iterator i1 = terms.begin(), end = terms.end();
-               list<Term>::const_iterator i2 = o.terms.begin();
-               while ( i1 != end ) {
-                       if ( i1->exp != i2->exp ) {
-                               return false;
-                       }
-                       if ( i1->c != i2->c ) {
-                               return false;
-                       }
-                       ++i1; ++i2;
+}
+
+static upoly operator*(const upoly& a, const upoly& b)
+{
+       upoly c;
+       if ( a.empty() || b.empty() ) return c;
+
+       int n = degree(a) + degree(b);
+       c.resize(n+1, 0);
+       for ( int i=0 ; i<=n; ++i ) {
+               for ( int j=0 ; j<=i; ++j ) {
+                       if ( j > degree(a) || (i-j) > degree(b) ) continue;
+                       c[i] = c[i] + a[j] * b[i-j];
                }
-               return true;
-       }
-       bool operator!=(const UniPoly& o) const
-       {
-               bool res = !(*this == o);
-               return res;
        }
-};
+       canonicalize(c);
+       return c;
+}
 
-static UniPoly operator*(const UniPoly& a, const UniPoly& b)
+static umodpoly operator*(const umodpoly& a, const umodpoly& b)
 {
-       unsigned int n = a.degree()+b.degree();
-       UniPoly c(a.R);
-       Term t;
-       for ( unsigned int i=0 ; i<=n; ++i ) {
-               t.c = a.R->zero();
-               for ( unsigned int j=0 ; j<=i; ++j ) {
-                       t.c = t.c + a[j] * b[i-j];
-               }
-               if ( !zerop(t.c) ) {
-                       t.exp = i;
-                       c.terms.push_front(t);
+       umodpoly c;
+       if ( a.empty() || b.empty() ) return c;
+
+       int n = degree(a) + degree(b);
+       c.resize(n+1, a[0].ring()->zero());
+       for ( int i=0 ; i<=n; ++i ) {
+               for ( int j=0 ; j<=i; ++j ) {
+                       if ( j > degree(a) || (i-j) > degree(b) ) continue;
+                       c[i] = c[i] + a[j] * b[i-j];
                }
        }
+       canonicalize(c);
        return c;
 }
 
-static UniPoly operator-(const UniPoly& a, const UniPoly& b)
+static upoly operator*(const upoly& a, const cl_I& x)
 {
-       list<Term>::const_iterator ia = a.terms.begin(), aend = a.terms.end();
-       list<Term>::const_iterator ib = b.terms.begin(), bend = b.terms.end();
-       UniPoly c(a.R);
-       while ( ia != aend && ib != bend ) {
-               if ( ia->exp > ib->exp ) {
-                       c.terms.push_back(*ia);
-                       ++ia;
-               }
-               else if ( ia->exp < ib->exp ) {
-                       c.terms.push_back(*ib);
-                       c.terms.back().c = -c.terms.back().c;
-                       ++ib;
-               }
-               else {
-                       Term t;
-                       t.exp = ia->exp;
-                       t.c = ia->c - ib->c;
-                       if ( !zerop(t.c) ) {
-                               c.terms.push_back(t);
-                       }
-                       ++ia; ++ib;
-               }
+       if ( zerop(x) ) {
+               upoly r;
+               return r;
        }
-       while ( ia != aend ) {
-               c.terms.push_back(*ia);
-               ++ia;
+       upoly r(a.size());
+       for ( size_t i=0; i<a.size(); ++i ) {
+               r[i] = a[i] * x;
+       }
+       return r;
+}
+
+static upoly operator/(const upoly& a, const cl_I& x)
+{
+       if ( zerop(x) ) {
+               upoly r;
+               return r;
        }
-       while ( ib != bend ) {
-               c.terms.push_back(*ib);
-               c.terms.back().c = -c.terms.back().c;
-               ++ib;
+       upoly r(a.size());
+       for ( size_t i=0; i<a.size(); ++i ) {
+               r[i] = exquo(a[i],x);
        }
-       return c;
+       return r;
 }
 
-static UniPoly operator-(const UniPoly& a)
+static umodpoly operator*(const umodpoly& a, const cl_MI& x)
 {
-       list<Term>::const_iterator ia = a.terms.begin(), aend = a.terms.end();
-       UniPoly c(a.R);
-       while ( ia != aend ) {
-               c.terms.push_back(*ia);
-               c.terms.back().c = -c.terms.back().c;
-               ++ia;
+       umodpoly r(a.size());
+       for ( size_t i=0; i<a.size(); ++i ) {
+               r[i] = a[i] * x;
        }
-       return c;
+       canonicalize(r);
+       return r;
 }
 
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const UniPoly& t)
+static void upoly_from_ex(upoly& up, const ex& e, const ex& x)
 {
-       list<Term>::const_iterator i = t.terms.begin(), end = t.terms.end();
-       if ( i == end ) {
-               o << "0";
-               return o;
+       // assert: e is in Z[x]
+       int deg = e.degree(x);
+       up.resize(deg+1);
+       int ldeg = e.ldegree(x);
+       for ( ; deg>=ldeg; --deg ) {
+               up[deg] = the<cl_I>(ex_to<numeric>(e.coeff(x, deg)).to_cl_N());
        }
-       for ( ; i != end; ) {
-               o << *i++;
-               if ( i != end ) {
-                       o << " + ";
-               }
+       for ( ; deg>=0; --deg ) {
+               up[deg] = 0;
        }
-       return o;
+       canonicalize(up);
 }
-#endif // def DEBUGFACTOR
 
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const list<UniPoly>& t)
+static void umodpoly_from_upoly(umodpoly& ump, const upoly& e, const cl_modint_ring& R)
 {
-       list<UniPoly>::const_iterator i = t.begin(), end = t.end();
-       o << "{" << endl;
-       for ( ; i != end; ) {
-               o << *i++ << endl;
+       int deg = degree(e);
+       ump.resize(deg+1);
+       for ( ; deg>=0; --deg ) {
+               ump[deg] = R->canonhom(e[deg]);
        }
-       o << "}" << endl;
-       return o;
+       canonicalize(ump);
 }
-#endif // def DEBUGFACTOR
 
-typedef vector<UniPoly> UniPolyVec;
+static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_modint_ring& R)
+{
+       // assert: e is in Z[x]
+       int deg = e.degree(x);
+       ump.resize(deg+1);
+       int ldeg = e.ldegree(x);
+       for ( ; deg>=ldeg; --deg ) {
+               cl_I coeff = the<cl_I>(ex_to<numeric>(e.coeff(x, deg)).to_cl_N());
+               ump[deg] = R->canonhom(coeff);
+       }
+       for ( ; deg>=0; --deg ) {
+               ump[deg] = R->zero();
+       }
+       canonicalize(ump);
+}
 
-struct UniFactor
+#ifdef DEBUGFACTOR
+static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_I& modulus)
 {
-       UniPoly p;
-       unsigned int exp;
+       umodpoly_from_ex(ump, e, x, find_modint_ring(modulus));
+}
+#endif
 
-       UniFactor(const cl_modint_ring& ring) : p(ring) { }
-       UniFactor(const UniPoly& p_, unsigned int exp_) : p(p_), exp(exp_) { }
-       bool operator<(const UniFactor& o) const
-       {
-               return p < o.p;
+static ex upoly_to_ex(const upoly& a, const ex& x)
+{
+       if ( a.empty() ) return 0;
+       ex e;
+       for ( int i=degree(a); i>=0; --i ) {
+               e += numeric(a[i]) * pow(x, i);
        }
-};
+       return e;
+}
 
-struct UniFactorVec
+static ex umodpoly_to_ex(const umodpoly& a, const ex& x)
 {
-       vector<UniFactor> factors;
-
-       void unique()
-       {
-               sort(factors.begin(), factors.end());
-               if ( factors.size() > 1 ) {
-                       vector<UniFactor>::iterator i = factors.begin();
-                       vector<UniFactor>::const_iterator cmp = factors.begin()+1;
-                       vector<UniFactor>::iterator end = factors.end();
-                       while ( cmp != end ) {
-                               if ( i->p != cmp->p ) {
-                                       ++i;
-                                       ++cmp;
-                               }
-                               else {
-                                       i->exp += cmp->exp;
-                                       ++cmp;
-                               }
-                       }
-                       if ( i != end-1 ) {
-                               factors.erase(i+1, end);
-                       }
+       if ( a.empty() ) return 0;
+       cl_modint_ring R = a[0].ring();
+       cl_I mod = R->modulus;
+       cl_I halfmod = (mod-1) >> 1;
+       ex e;
+       for ( int i=degree(a); i>=0; --i ) {
+               cl_I n = R->retract(a[i]);
+               if ( n > halfmod ) {
+                       e += numeric(n-mod) * pow(x, i);
+               } else {
+                       e += numeric(n) * pow(x, i);
                }
        }
-};
+       return e;
+}
 
-#ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const UniFactorVec& ufv)
+static upoly umodpoly_to_upoly(const umodpoly& a)
 {
-       for ( size_t i=0; i<ufv.factors.size(); ++i ) {
-               if ( i != ufv.factors.size()-1 ) {
-                       o << "*";
+       upoly e(a.size());
+       if ( a.empty() ) return e;
+       cl_modint_ring R = a[0].ring();
+       cl_I mod = R->modulus;
+       cl_I halfmod = (mod-1) >> 1;
+       for ( int i=degree(a); i>=0; --i ) {
+               cl_I n = R->retract(a[i]);
+               if ( n > halfmod ) {
+                       e[i] = n-mod;
+               } else {
+                       e[i] = n;
                }
-               else {
-                       o << " ";
-               }
-               o << "[ " << ufv.factors[i].p << " ]^" << ufv.factors[i].exp << endl;
        }
-       return o;
+       return e;
 }
-#endif // def DEBUGFACTOR
 
-static void rem(const UniPoly& a_, const UniPoly& b, UniPoly& c)
+static umodpoly umodpoly_to_umodpoly(const umodpoly& a, const cl_modint_ring& R, unsigned int m)
 {
-       if ( a_.degree() < b.degree() ) {
-               c = a_;
-               return;
-       }
+       umodpoly e;
+       if ( a.empty() ) return e;
+       cl_modint_ring oldR = a[0].ring();
+       size_t sa = a.size();
+       e.resize(sa+m, R->zero());
+       for ( size_t i=0; i<sa; ++i ) {
+               e[i+m] = R->canonhom(oldR->retract(a[i]));
+       }
+       canonicalize(e);
+       return e;
+}
 
-       unsigned int k, n;
-       n = b.degree();
-       k = a_.degree() - n;
+/** Divides all coefficients of the polynomial a by the integer x.
+ *  All coefficients are supposed to be divisible by x. If they are not, the
+ *  the<cl_I> cast will raise an exception.
+ *
+ *  @param[in,out] a  polynomial of which the coefficients will be reduced by x
+ *  @param[in]     x  integer that divides the coefficients
+ */
+static void reduce_coeff(umodpoly& a, const cl_I& x)
+{
+       if ( a.empty() ) return;
 
-       if ( n == 0 ) {
-               c.terms.clear();
-               return;
+       cl_modint_ring R = a[0].ring();
+       umodpoly::iterator i = a.begin(), end = a.end();
+       for ( ; i!=end; ++i ) {
+               // cln cannot perform this division in the modular field
+               cl_I c = R->retract(*i);
+               *i = cl_MI(R, the<cl_I>(c / x));
        }
+}
 
-       c = a_;
-       Term termbuf;
-
-       while ( true ) {
-               cl_MI qk = div(c[n+k], b[n]);
+/** Calculates remainder of a/b.
+ *  Assertion: a and b not empty.
+ *
+ *  @param[in]  a  polynomial dividend
+ *  @param[in]  b  polynomial divisor
+ *  @param[out] r  polynomial remainder
+ */
+static void rem(const umodpoly& a, const umodpoly& b, umodpoly& r)
+{
+       int k, n;
+       n = degree(b);
+       k = degree(a) - n;
+       r = a;
+       if ( k < 0 ) return;
+
+       do {
+               cl_MI qk = div(r[n+k], b[n]);
                if ( !zerop(qk) ) {
-                       unsigned int j;
-                       for ( unsigned int i=0; i<n; ++i ) {
-                               j = n + k - 1 - i;
-                               c.set(j, c[j] - qk*b[j-k]);
+                       for ( int i=0; i<n; ++i ) {
+                               unsigned int j = n + k - 1 - i;
+                               r[j] = r[j] - qk * b[j-k];
                        }
                }
-               if ( k == 0 ) break;
-               --k;
-       }
-       list<Term>::iterator i = c.terms.begin(), end = c.terms.end();
-       while ( i != end ) {
-               if ( i->exp <= n-1 ) {
-                       break;
-               }
-               ++i;
-       }
-       c.terms.erase(c.terms.begin(), i);
+       } while ( k-- );
+
+       fill(r.begin()+n, r.end(), a[0].ring()->zero());
+       canonicalize(r);
 }
 
-static void div(const UniPoly& a_, const UniPoly& b, UniPoly& q)
+/** Calculates quotient of a/b.
+ *  Assertion: a and b not empty.
+ *
+ *  @param[in]  a  polynomial dividend
+ *  @param[in]  b  polynomial divisor
+ *  @param[out] q  polynomial quotient
+ */
+static void div(const umodpoly& a, const umodpoly& b, umodpoly& q)
 {
-       if ( a_.degree() < b.degree() ) {
-               q.terms.clear();
-               return;
-       }
-
-       unsigned int k, n;
-       n = b.degree();
-       k = a_.degree() - n;
+       int k, n;
+       n = degree(b);
+       k = degree(a) - n;
+       q.clear();
+       if ( k < 0 ) return;
+
+       umodpoly r = a;
+       q.resize(k+1, a[0].ring()->zero());
+       do {
+               cl_MI qk = div(r[n+k], b[n]);
+               if ( !zerop(qk) ) {
+                       q[k] = qk;
+                       for ( int i=0; i<n; ++i ) {
+                               unsigned int j = n + k - 1 - i;
+                               r[j] = r[j] - qk * b[j-k];
+                       }
+               }
+       } while ( k-- );
 
-       UniPoly c = a_;
-       Term termbuf;
+       canonicalize(q);
+}
 
-       while ( true ) {
-               cl_MI qk = div(c[n+k], b[n]);
+/** Calculates quotient and remainder of a/b.
+ *  Assertion: a and b not empty.
+ *
+ *  @param[in]  a  polynomial dividend
+ *  @param[in]  b  polynomial divisor
+ *  @param[out] r  polynomial remainder
+ *  @param[out] q  polynomial quotient
+ */
+static void remdiv(const umodpoly& a, const umodpoly& b, umodpoly& r, umodpoly& q)
+{
+       int k, n;
+       n = degree(b);
+       k = degree(a) - n;
+       q.clear();
+       r = a;
+       if ( k < 0 ) return;
+
+       q.resize(k+1, a[0].ring()->zero());
+       do {
+               cl_MI qk = div(r[n+k], b[n]);
                if ( !zerop(qk) ) {
-                       Term t;
-                       t.c = qk;
-                       t.exp = k;
-                       q.terms.push_back(t);
-                       unsigned int j;
-                       for ( unsigned int i=0; i<n; ++i ) {
-                               j = n + k - 1 - i;
-                               c.set(j, c[j] - qk*b[j-k]);
+                       q[k] = qk;
+                       for ( int i=0; i<n; ++i ) {
+                               unsigned int j = n + k - 1 - i;
+                               r[j] = r[j] - qk * b[j-k];
                        }
                }
-               if ( k == 0 ) break;
-               --k;
-       }
+       } while ( k-- );
+
+       fill(r.begin()+n, r.end(), a[0].ring()->zero());
+       canonicalize(r);
+       canonicalize(q);
 }
 
-static void gcd(const UniPoly& a, const UniPoly& b, UniPoly& c)
+/** Calculates the GCD of polynomial a and b.
+ *
+ *  @param[in]  a  polynomial
+ *  @param[in]  b  polynomial
+ *  @param[out] c  GCD
+ */
+static void gcd(const umodpoly& a, const umodpoly& b, umodpoly& c)
 {
-       c = a;
-       c.unit_normal();
-       UniPoly d = b;
-       d.unit_normal();
-
-       if ( c.degree() < d.degree() ) {
-               gcd(b, a, c);
-               return;
-       }
+       if ( degree(a) < degree(b) ) return gcd(b, a, c);
 
-       while ( !d.zero() ) {
-               UniPoly r(a.R);
+       c = a;
+       normalize_in_field(c);
+       umodpoly d = b;
+       normalize_in_field(d);
+       umodpoly r;
+       while ( !d.empty() ) {
                rem(c, d, r);
                c = d;
                d = r;
        }
-       c.unit_normal();
+       normalize_in_field(c);
 }
 
-static bool is_one(const UniPoly& w)
+/** Calculates the derivative of the polynomial a.
+ *  
+ *  @param[in]  a  polynomial of which to take the derivative
+ *  @param[out] d  result/derivative
+ */
+static void deriv(const umodpoly& a, umodpoly& d)
 {
-       if ( w.terms.size() == 1 && w[0] == w.R->one() ) {
-               return true;
+       d.clear();
+       if ( a.size() <= 1 ) return;
+
+       d.insert(d.begin(), a.begin()+1, a.end());
+       int max = d.size();
+       for ( int i=1; i<max; ++i ) {
+               d[i] = d[i] * (i+1);
        }
-       return false;
+       canonicalize(d);
 }
 
-static void sqrfree_main(const UniPoly& a, UniFactorVec& fvec)
+static bool unequal_one(const umodpoly& a)
 {
-       unsigned int i = 1;
-       UniPoly b(a.R);
-       a.deriv(b);
-       if ( !b.zero() ) {
-               UniPoly c(a.R), w(a.R);
-               gcd(a, b, c);
-               div(a, c, w);
-               while ( !is_one(w) ) {
-                       UniPoly y(a.R), z(a.R);
-                       gcd(w, c, y);
-                       div(w, y, z);
-                       if ( !is_one(z) ) {
-                               UniFactor uf(z, i++);
-                               fvec.factors.push_back(uf);
-                       }
-                       w = y;
-                       UniPoly cbuf(a.R);
-                       div(c, y, cbuf);
-                       c = cbuf;
-               }
-               if ( !is_one(c) ) {
-                       unsigned int prime = cl_I_to_uint(c.R->modulus);
-                       c.reduce_exponents(prime);
-                       unsigned int pos = fvec.factors.size();
-                       sqrfree_main(c, fvec);
-                       for ( unsigned int p=pos; p<fvec.factors.size(); ++p ) {
-                               fvec.factors[p].exp *= prime;
-                       }
-                       return;
-               }
-       }
-       else {
-               unsigned int prime = cl_I_to_uint(a.R->modulus);
-               UniPoly amod = a;
-               amod.reduce_exponents(prime);
-               unsigned int pos = fvec.factors.size();
-               sqrfree_main(amod, fvec);
-               for ( unsigned int p=pos; p<fvec.factors.size(); ++p ) {
-                       fvec.factors[p].exp *= prime;
-               }
-               return;
-       }
+       if ( a.empty() ) return true;
+       return ( a.size() != 1 || a[0] != a[0].ring()->one() );
 }
 
-static void squarefree(const UniPoly& a, UniFactorVec& fvec)
+static bool equal_one(const umodpoly& a)
+{
+       return ( a.size() == 1 && a[0] == a[0].ring()->one() );
+}
+
+/** Returns true if polynomial a is square free.
+ *
+ *  @param[in] a  polynomial to check
+ *  @return       true if polynomial is square free, false otherwise
+ */
+static bool squarefree(const umodpoly& a)
 {
-       sqrfree_main(a, fvec);
-       fvec.unique();
+       umodpoly b;
+       deriv(a, b);
+       if ( b.empty() ) {
+               return false;
+       }
+       umodpoly c;
+       gcd(a, b, c);
+       return equal_one(c);
 }
 
-class Matrix
+// END modular univariate polynomial code
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+// modular matrix
+
+typedef vector<cl_MI> mvec;
+
+class modular_matrix
 {
-       friend ostream& operator<<(ostream& o, const Matrix& m);
+       friend ostream& operator<<(ostream& o, const modular_matrix& m);
 public:
-       Matrix(size_t r_, size_t c_, const cl_MI& init) : r(r_), c(c_)
+       modular_matrix(size_t r_, size_t c_, const cl_MI& init) : r(r_), c(c_)
        {
                m.resize(c*r, init);
        }
@@ -626,87 +691,146 @@ public:
        cl_MI operator()(size_t row, size_t col) const { return m[row*c + col]; }
        void mul_col(size_t col, const cl_MI x)
        {
-               Vec::iterator i = m.begin() + col;
                for ( size_t rc=0; rc<r; ++rc ) {
-                       *i = *i * x;
-                       i += c;
+                       std::size_t i = c*rc + col;
+                       m[i] = m[i] * x;
                }
        }
        void sub_col(size_t col1, size_t col2, const cl_MI fac)
        {
-               Vec::iterator i1 = m.begin() + col1;
-               Vec::iterator i2 = m.begin() + col2;
                for ( size_t rc=0; rc<r; ++rc ) {
-                       *i1 = *i1 - *i2 * fac;
-                       i1 += c;
-                       i2 += c;
+                       std::size_t i1 = col1 + c*rc;
+                       std::size_t i2 = col2 + c*rc;
+                       m[i1] = m[i1] - m[i2]*fac;
                }
        }
        void switch_col(size_t col1, size_t col2)
        {
-               cl_MI buf;
-               Vec::iterator i1 = m.begin() + col1;
-               Vec::iterator i2 = m.begin() + col2;
                for ( size_t rc=0; rc<r; ++rc ) {
-                       buf = *i1; *i1 = *i2; *i2 = buf;
-                       i1 += c;
-                       i2 += c;
+                       std::size_t i1 = col1 + rc*c;
+                       std::size_t i2 = col2 + rc*c;
+                       std::swap(m[i1], m[i2]);
+               }
+       }
+       void mul_row(size_t row, const cl_MI x)
+       {
+               for ( size_t cc=0; cc<c; ++cc ) {
+                       std::size_t i = row*c + cc; 
+                       m[i] = m[i] * x;
+               }
+       }
+       void sub_row(size_t row1, size_t row2, const cl_MI fac)
+       {
+               for ( size_t cc=0; cc<c; ++cc ) {
+                       std::size_t i1 = row1*c + cc;
+                       std::size_t i2 = row2*c + cc;
+                       m[i1] = m[i1] - m[i2]*fac;
+               }
+       }
+       void switch_row(size_t row1, size_t row2)
+       {
+               for ( size_t cc=0; cc<c; ++cc ) {
+                       std::size_t i1 = row1*c + cc;
+                       std::size_t i2 = row2*c + cc;
+                       std::swap(m[i1], m[i2]);
+               }
+       }
+       bool is_col_zero(size_t col) const
+       {
+               for ( size_t rr=0; rr<r; ++rr ) {
+                       std::size_t i = col + rr*c;
+                       if ( !zerop(m[i]) ) {
+                               return false;
+                       }
                }
+               return true;
        }
        bool is_row_zero(size_t row) const
        {
-               Vec::const_iterator i = m.begin() + row*c;
                for ( size_t cc=0; cc<c; ++cc ) {
-                       if ( !zerop(*i) ) {
+                       std::size_t i = row*c + cc;
+                       if ( !zerop(m[i]) ) {
                                return false;
                        }
-                       ++i;
                }
                return true;
        }
        void set_row(size_t row, const vector<cl_MI>& newrow)
        {
-               Vec::iterator i1 = m.begin() + row*c;
-               Vec::const_iterator i2 = newrow.begin(), end = newrow.end();
-               for ( ; i2 != end; ++i1, ++i2 ) {
-                       *i1 = *i2;
+               for (std::size_t i2 = 0; i2 < newrow.size(); ++i2) {
+                       std::size_t i1 = row*c + i2;
+                       m[i1] = newrow[i2];
                }
        }
-       Vec::const_iterator row_begin(size_t row) const { return m.begin()+row*c; }
-       Vec::const_iterator row_end(size_t row) const { return m.begin()+row*c+r; }
+       mvec::const_iterator row_begin(size_t row) const { return m.begin()+row*c; }
+       mvec::const_iterator row_end(size_t row) const { return m.begin()+row*c+r; }
 private:
        size_t r, c;
-       Vec m;
+       mvec m;
 };
 
 #ifdef DEBUGFACTOR
-ostream& operator<<(ostream& o, const Matrix& m)
+modular_matrix operator*(const modular_matrix& m1, const modular_matrix& m2)
+{
+       const unsigned int r = m1.rowsize();
+       const unsigned int c = m2.colsize();
+       modular_matrix o(r,c,m1(0,0));
+
+       for ( size_t i=0; i<r; ++i ) {
+               for ( size_t j=0; j<c; ++j ) {
+                       cl_MI buf;
+                       buf = m1(i,0) * m2(0,j);
+                       for ( size_t k=1; k<c; ++k ) {
+                               buf = buf + m1(i,k)*m2(k,j);
+                       }
+                       o(i,j) = buf;
+               }
+       }
+       return o;
+}
+
+ostream& operator<<(ostream& o, const modular_matrix& m)
 {
-       vector<cl_MI>::const_iterator i = m.m.begin(), end = m.m.end();
-       size_t wrap = 1;
-       for ( ; i != end; ++i ) {
-               o << *i << " ";
-               if ( !(wrap++ % m.c) ) {
-                       o << endl;
+       cl_modint_ring R = m(0,0).ring();
+       o << "{";
+       for ( size_t i=0; i<m.rowsize(); ++i ) {
+               o << "{";
+               for ( size_t j=0; j<m.colsize()-1; ++j ) {
+                       o << R->retract(m(i,j)) << ",";
+               }
+               o << R->retract(m(i,m.colsize()-1)) << "}";
+               if ( i != m.rowsize()-1 ) {
+                       o << ",";
                }
        }
-       o << endl;
+       o << "}";
        return o;
 }
 #endif // def DEBUGFACTOR
 
-static void q_matrix(const UniPoly& a, Matrix& Q)
+// END modular matrix
+////////////////////////////////////////////////////////////////////////////////
+
+/** Calculates the Q matrix for a polynomial. Used by Berlekamp's algorithm.
+ *
+ *  @param[in]  a_  modular polynomial
+ *  @param[out] Q   Q matrix
+ */
+static void q_matrix(const umodpoly& a_, modular_matrix& Q)
 {
-       unsigned int n = a.degree();
-       unsigned int q = cl_I_to_uint(a.R->modulus);
-       vector<cl_MI> r(n, a.R->zero());
-       r[0] = a.R->one();
+       umodpoly a = a_;
+       normalize_in_field(a);
+
+       int n = degree(a);
+       unsigned int q = cl_I_to_uint(a[0].ring()->modulus);
+       umodpoly r(n, a[0].ring()->zero());
+       r[0] = a[0].ring()->one();
        Q.set_row(0, r);
        unsigned int max = (n-1) * q;
        for ( size_t m=1; m<=max; ++m ) {
                cl_MI rn_1 = r.back();
                for ( size_t i=n-1; i>0; --i ) {
-                       r[i] = r[i-1] - rn_1 * a[i];
+                       r[i] = r[i-1] - (rn_1 * a[i]);
                }
                r[0] = -rn_1 * a[0];
                if ( (m % q) == 0 ) {
@@ -715,7 +839,12 @@ static void q_matrix(const UniPoly& a, Matrix& Q)
        }
 }
 
-static void nullspace(Matrix& M, vector<Vec>& basis)
+/** Determine the nullspace of a matrix M-1.
+ *
+ *  @param[in,out] M      matrix, will be modified
+ *  @param[out]    basis  calculated nullspace of M-1
+ */
+static void nullspace(modular_matrix& M, vector<mvec>& basis)
 {
        const size_t n = M.rowsize();
        const cl_MI one = M(0,0).ring()->one();
@@ -753,375 +882,1583 @@ static void nullspace(Matrix& M, vector<Vec>& basis)
        }
        for ( size_t i=0; i<n; ++i ) {
                if ( !M.is_row_zero(i) ) {
-                       Vec nu(M.row_begin(i), M.row_end(i));
+                       mvec nu(M.row_begin(i), M.row_end(i));
                        basis.push_back(nu);
                }
        }
 }
 
-static void berlekamp(const UniPoly& a, UniPolyVec& upv)
+/** Berlekamp's modular factorization.
+ *  
+ *  The implementation follows the algorithm in chapter 8 of [GCL].
+ *
+ *  @param[in]  a    modular polynomial
+ *  @param[out] upv  vector containing modular factors. if upv was not empty the
+ *                   new elements are added at the end
+ */
+static void berlekamp(const umodpoly& a, upvec& upv)
+{
+       cl_modint_ring R = a[0].ring();
+       umodpoly one(1, R->one());
+
+       // find nullspace of Q matrix
+       modular_matrix Q(degree(a), degree(a), R->zero());
+       q_matrix(a, Q);
+       vector<mvec> nu;
+       nullspace(Q, nu);
+
+       const unsigned int k = nu.size();
+       if ( k == 1 ) {
+               // irreducible
+               return;
+       }
+
+       list<umodpoly> factors;
+       factors.push_back(a);
+       unsigned int size = 1;
+       unsigned int r = 1;
+       unsigned int q = cl_I_to_uint(R->modulus);
+
+       list<umodpoly>::iterator u = factors.begin();
+
+       // calculate all gcd's
+       while ( true ) {
+               for ( unsigned int s=0; s<q; ++s ) {
+                       umodpoly nur = nu[r];
+                       nur[0] = nur[0] - cl_MI(R, s);
+                       canonicalize(nur);
+                       umodpoly g;
+                       gcd(nur, *u, g);
+                       if ( unequal_one(g) && g != *u ) {
+                               umodpoly uo;
+                               div(*u, g, uo);
+                               if ( equal_one(uo) ) {
+                                       throw logic_error("berlekamp: unexpected divisor.");
+                               }
+                               else {
+                                       *u = uo;
+                               }
+                               factors.push_back(g);
+                               size = 0;
+                               list<umodpoly>::const_iterator i = factors.begin(), end = factors.end();
+                               while ( i != end ) {
+                                       if ( degree(*i) ) ++size; 
+                                       ++i;
+                               }
+                               if ( size == k ) {
+                                       list<umodpoly>::const_iterator i = factors.begin(), end = factors.end();
+                                       while ( i != end ) {
+                                               upv.push_back(*i++);
+                                       }
+                                       return;
+                               }
+                       }
+               }
+               if ( ++r == k ) {
+                       r = 1;
+                       ++u;
+               }
+       }
+}
+
+// modular square free factorization is not used at the moment so we deactivate
+// the code
+#if 0
+
+/** Calculates a^(1/prime).
+ *  
+ *  @param[in] a      polynomial
+ *  @param[in] prime  prime number -> exponent 1/prime
+ *  @param[in] ap     resulting polynomial
+ */
+static void expt_1_over_p(const umodpoly& a, unsigned int prime, umodpoly& ap)
+{
+       size_t newdeg = degree(a)/prime;
+       ap.resize(newdeg+1);
+       ap[0] = a[0];
+       for ( size_t i=1; i<=newdeg; ++i ) {
+               ap[i] = a[i*prime];
+       }
+}
+
+/** Modular square free factorization.
+ *
+ *  @param[in]  a        polynomial
+ *  @param[out] factors  modular factors
+ *  @param[out] mult     corresponding multiplicities (exponents)
+ */
+static void modsqrfree(const umodpoly& a, upvec& factors, vector<int>& mult)
+{
+       const unsigned int prime = cl_I_to_uint(a[0].ring()->modulus);
+       int i = 1;
+       umodpoly b;
+       deriv(a, b);
+       if ( b.size() ) {
+               umodpoly c;
+               gcd(a, b, c);
+               umodpoly w;
+               div(a, c, w);
+               while ( unequal_one(w) ) {
+                       umodpoly y;
+                       gcd(w, c, y);
+                       umodpoly z;
+                       div(w, y, z);
+                       factors.push_back(z);
+                       mult.push_back(i);
+                       ++i;
+                       w = y;
+                       umodpoly buf;
+                       div(c, y, buf);
+                       c = buf;
+               }
+               if ( unequal_one(c) ) {
+                       umodpoly cp;
+                       expt_1_over_p(c, prime, cp);
+                       size_t previ = mult.size();
+                       modsqrfree(cp, factors, mult);
+                       for ( size_t i=previ; i<mult.size(); ++i ) {
+                               mult[i] *= prime;
+                       }
+               }
+       }
+       else {
+               umodpoly ap;
+               expt_1_over_p(a, prime, ap);
+               size_t previ = mult.size();
+               modsqrfree(ap, factors, mult);
+               for ( size_t i=previ; i<mult.size(); ++i ) {
+                       mult[i] *= prime;
+               }
+       }
+}
+
+#endif // deactivation of square free factorization
+
+/** Distinct degree factorization (DDF).
+ *  
+ *  The implementation follows the algorithm in chapter 8 of [GCL].
+ *
+ *  @param[in]  a_         modular polynomial
+ *  @param[out] degrees    vector containing the degrees of the factors of the
+ *                         corresponding polynomials in ddfactors.
+ *  @param[out] ddfactors  vector containing polynomials which factors have the
+ *                         degree given in degrees.
+ */
+static void distinct_degree_factor(const umodpoly& a_, vector<int>& degrees, upvec& ddfactors)
+{
+       umodpoly a = a_;
+
+       cl_modint_ring R = a[0].ring();
+       int q = cl_I_to_int(R->modulus);
+       int nhalf = degree(a)/2;
+
+       int i = 1;
+       umodpoly w(2);
+       w[0] = R->zero();
+       w[1] = R->one();
+       umodpoly x = w;
+
+       while ( i <= nhalf ) {
+               expt_pos(w, q);
+               umodpoly buf;
+               rem(w, a, buf);
+               w = buf;
+               umodpoly wx = w - x;
+               gcd(a, wx, buf);
+               if ( unequal_one(buf) ) {
+                       degrees.push_back(i);
+                       ddfactors.push_back(buf);
+               }
+               if ( unequal_one(buf) ) {
+                       umodpoly buf2;
+                       div(a, buf, buf2);
+                       a = buf2;
+                       nhalf = degree(a)/2;
+                       rem(w, a, buf);
+                       w = buf;
+               }
+               ++i;
+       }
+       if ( unequal_one(a) ) {
+               degrees.push_back(degree(a));
+               ddfactors.push_back(a);
+       }
+}
+
+/** Modular same degree factorization.
+ *  Same degree factorization is a kind of misnomer. It performs distinct degree
+ *  factorization, but instead of using the Cantor-Zassenhaus algorithm it
+ *  (sub-optimally) uses Berlekamp's algorithm for the factors of the same
+ *  degree.
+ *
+ *  @param[in]  a    modular polynomial
+ *  @param[out] upv  vector containing modular factors. if upv was not empty the
+ *                   new elements are added at the end
+ */
+static void same_degree_factor(const umodpoly& a, upvec& upv)
+{
+       cl_modint_ring R = a[0].ring();
+
+       vector<int> degrees;
+       upvec ddfactors;
+       distinct_degree_factor(a, degrees, ddfactors);
+
+       for ( size_t i=0; i<degrees.size(); ++i ) {
+               if ( degrees[i] == degree(ddfactors[i]) ) {
+                       upv.push_back(ddfactors[i]);
+               }
+               else {
+                       berlekamp(ddfactors[i], upv);
+               }
+       }
+}
+
+// Yes, we can (choose).
+#define USE_SAME_DEGREE_FACTOR
+
+/** Modular univariate factorization.
+ *
+ *  In principle, we have two algorithms at our disposal: Berlekamp's algorithm
+ *  and same degree factorization (SDF). SDF seems to be slightly faster in
+ *  almost all cases so it is activated as default.
+ *
+ *  @param[in]  p    modular polynomial
+ *  @param[out] upv  vector containing modular factors. if upv was not empty the
+ *                   new elements are added at the end
+ */
+static void factor_modular(const umodpoly& p, upvec& upv)
+{
+#ifdef USE_SAME_DEGREE_FACTOR
+       same_degree_factor(p, upv);
+#else
+       berlekamp(p, upv);
+#endif
+}
+
+/** Calculates modular polynomials s and t such that a*s+b*t==1.
+ *  Assertion: a and b are relatively prime and not zero.
+ *
+ *  @param[in]  a  polynomial
+ *  @param[in]  b  polynomial
+ *  @param[out] s  polynomial
+ *  @param[out] t  polynomial
+ */
+static void exteuclid(const umodpoly& a, const umodpoly& b, umodpoly& s, umodpoly& t)
+{
+       if ( degree(a) < degree(b) ) {
+               exteuclid(b, a, t, s);
+               return;
+       }
+
+       umodpoly one(1, a[0].ring()->one());
+       umodpoly c = a; normalize_in_field(c);
+       umodpoly d = b; normalize_in_field(d);
+       s = one;
+       t.clear();
+       umodpoly d1;
+       umodpoly d2 = one;
+       umodpoly q;
+       while ( true ) {
+               div(c, d, q);
+               umodpoly r = c - q * d;
+               umodpoly r1 = s - q * d1;
+               umodpoly r2 = t - q * d2;
+               c = d;
+               s = d1;
+               t = d2;
+               if ( r.empty() ) break;
+               d = r;
+               d1 = r1;
+               d2 = r2;
+       }
+       cl_MI fac = recip(lcoeff(a) * lcoeff(c));
+       umodpoly::iterator i = s.begin(), end = s.end();
+       for ( ; i!=end; ++i ) {
+               *i = *i * fac;
+       }
+       canonicalize(s);
+       fac = recip(lcoeff(b) * lcoeff(c));
+       i = t.begin(), end = t.end();
+       for ( ; i!=end; ++i ) {
+               *i = *i * fac;
+       }
+       canonicalize(t);
+}
+
+/** Replaces the leading coefficient in a polynomial by a given number.
+ *
+ *  @param[in] poly  polynomial to change
+ *  @param[in] lc    new leading coefficient
+ *  @return          changed polynomial
+ */
+static upoly replace_lc(const upoly& poly, const cl_I& lc)
+{
+       if ( poly.empty() ) return poly;
+       upoly r = poly;
+       r.back() = lc;
+       return r;
+}
+
+/** Calculates the bound for the modulus.
+ *  See [Mig].
+ */
+static inline cl_I calc_bound(const ex& a, const ex& x, int maxdeg)
+{
+       cl_I maxcoeff = 0;
+       cl_R coeff = 0;
+       for ( int i=a.degree(x); i>=a.ldegree(x); --i ) {
+               cl_I aa = abs(the<cl_I>(ex_to<numeric>(a.coeff(x, i)).to_cl_N()));
+               if ( aa > maxcoeff ) maxcoeff = aa;
+               coeff = coeff + square(aa);
+       }
+       cl_I coeffnorm = ceiling1(the<cl_R>(cln::sqrt(coeff)));
+       cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg));
+       return ( B > maxcoeff ) ? B : maxcoeff;
+}
+
+/** Calculates the bound for the modulus.
+ *  See [Mig].
+ */
+static inline cl_I calc_bound(const upoly& a, int maxdeg)
+{
+       cl_I maxcoeff = 0;
+       cl_R coeff = 0;
+       for ( int i=degree(a); i>=0; --i ) {
+               cl_I aa = abs(a[i]);
+               if ( aa > maxcoeff ) maxcoeff = aa;
+               coeff = coeff + square(aa);
+       }
+       cl_I coeffnorm = ceiling1(the<cl_R>(cln::sqrt(coeff)));
+       cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg));
+       return ( B > maxcoeff ) ? B : maxcoeff;
+}
+
+/** Hensel lifting as used by factor_univariate().
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param[in]  a_   primitive univariate polynomials
+ *  @param[in]  p    prime number that does not divide lcoeff(a)
+ *  @param[in]  u1_  modular factor of a (mod p)
+ *  @param[in]  w1_  modular factor of a (mod p), relatively prime to u1_,
+ *                   fulfilling  u1_*w1_ == a mod p
+ *  @param[out] u    lifted factor
+ *  @param[out] w    lifted factor, u*w = a
+ */
+static void hensel_univar(const upoly& a_, unsigned int p, const umodpoly& u1_, const umodpoly& w1_, upoly& u, upoly& w)
+{
+       upoly a = a_;
+       const cl_modint_ring& R = u1_[0].ring();
+
+       // calc bound B
+       int maxdeg = (degree(u1_) > degree(w1_)) ? degree(u1_) : degree(w1_);
+       cl_I maxmodulus = 2*calc_bound(a, maxdeg);
+
+       // step 1
+       cl_I alpha = lcoeff(a);
+       a = a * alpha;
+       umodpoly nu1 = u1_;
+       normalize_in_field(nu1);
+       umodpoly nw1 = w1_;
+       normalize_in_field(nw1);
+       upoly phi;
+       phi = umodpoly_to_upoly(nu1) * alpha;
+       umodpoly u1;
+       umodpoly_from_upoly(u1, phi, R);
+       phi = umodpoly_to_upoly(nw1) * alpha;
+       umodpoly w1;
+       umodpoly_from_upoly(w1, phi, R);
+
+       // step 2
+       umodpoly s;
+       umodpoly t;
+       exteuclid(u1, w1, s, t);
+
+       // step 3
+       u = replace_lc(umodpoly_to_upoly(u1), alpha);
+       w = replace_lc(umodpoly_to_upoly(w1), alpha);
+       upoly e = a - u * w;
+       cl_I modulus = p;
+
+       // step 4
+       while ( !e.empty() && modulus < maxmodulus ) {
+               upoly c = e / modulus;
+               phi = umodpoly_to_upoly(s) * c;
+               umodpoly sigmatilde;
+               umodpoly_from_upoly(sigmatilde, phi, R);
+               phi = umodpoly_to_upoly(t) * c;
+               umodpoly tautilde;
+               umodpoly_from_upoly(tautilde, phi, R);
+               umodpoly r, q;
+               remdiv(sigmatilde, w1, r, q);
+               umodpoly sigma = r;
+               phi = umodpoly_to_upoly(tautilde) + umodpoly_to_upoly(q) * umodpoly_to_upoly(u1);
+               umodpoly tau;
+               umodpoly_from_upoly(tau, phi, R);
+               u = u + umodpoly_to_upoly(tau) * modulus;
+               w = w + umodpoly_to_upoly(sigma) * modulus;
+               e = a - u * w;
+               modulus = modulus * p;
+       }
+
+       // step 5
+       if ( e.empty() ) {
+               cl_I g = u[0];
+               for ( size_t i=1; i<u.size(); ++i ) {
+                       g = gcd(g, u[i]);
+                       if ( g == 1 ) break;
+               }
+               if ( g != 1 ) {
+                       u = u / g;
+                       w = w * g;
+               }
+               if ( alpha != 1 ) {
+                       w = w / alpha;
+               }
+       }
+       else {
+               u.clear();
+       }
+}
+
+/** Returns a new prime number.
+ *
+ *  @param[in] p  prime number
+ *  @return       next prime number after p
+ */
+static unsigned int next_prime(unsigned int p)
+{
+       static vector<unsigned int> primes;
+       if ( primes.size() == 0 ) {
+               primes.push_back(3); primes.push_back(5); primes.push_back(7);
+       }
+       vector<unsigned int>::const_iterator it = primes.begin();
+       if ( p >= primes.back() ) {
+               unsigned int candidate = primes.back() + 2;
+               while ( true ) {
+                       size_t n = primes.size()/2;
+                       for ( size_t i=0; i<n; ++i ) {
+                               if ( candidate % primes[i] ) continue;
+                               candidate += 2;
+                               i=-1;
+                       }
+                       primes.push_back(candidate);
+                       if ( candidate > p ) break;
+               }
+               return candidate;
+       }
+       vector<unsigned int>::const_iterator end = primes.end();
+       for ( ; it!=end; ++it ) {
+               if ( *it > p ) {
+                       return *it;
+               }
+       }
+       throw logic_error("next_prime: should not reach this point!");
+}
+
+/** Manages the splitting a vector of of modular factors into two partitions.
+ */
+class factor_partition
+{
+public:
+       /** Takes the vector of modular factors and initializes the first partition */
+       factor_partition(const upvec& factors_) : factors(factors_)
+       {
+               n = factors.size();
+               k.resize(n, 0);
+               k[0] = 1;
+               cache.resize(n-1);
+               one.resize(1, factors.front()[0].ring()->one());
+               len = 1;
+               last = 0;
+               split();
+       }
+       int operator[](size_t i) const { return k[i]; }
+       size_t size() const { return n; }
+       size_t size_left() const { return n-len; }
+       size_t size_right() const { return len; }
+       /** Initializes the next partition.
+           Returns true, if there is one, false otherwise. */
+       bool next()
+       {
+               if ( last == n-1 ) {
+                       int rem = len - 1;
+                       int p = last - 1;
+                       while ( rem ) {
+                               if ( k[p] ) {
+                                       --rem;
+                                       --p;
+                                       continue;
+                               }
+                               last = p - 1;
+                               while ( k[last] == 0 ) { --last; }
+                               if ( last == 0 && n == 2*len ) return false;
+                               k[last++] = 0;
+                               for ( size_t i=0; i<=len-rem; ++i ) {
+                                       k[last] = 1;
+                                       ++last;
+                               }
+                               fill(k.begin()+last, k.end(), 0);
+                               --last;
+                               split();
+                               return true;
+                       }
+                       last = len;
+                       ++len;
+                       if ( len > n/2 ) return false;
+                       fill(k.begin(), k.begin()+len, 1);
+                       fill(k.begin()+len+1, k.end(), 0);
+               }
+               else {
+                       k[last++] = 0;
+                       k[last] = 1;
+               }
+               split();
+               return true;
+       }
+       /** Get first partition */
+       umodpoly& left() { return lr[0]; }
+       /** Get second partition */
+       umodpoly& right() { return lr[1]; }
+private:
+       void split_cached()
+       {
+               size_t i = 0;
+               do {
+                       size_t pos = i;
+                       int group = k[i++];
+                       size_t d = 0;
+                       while ( i < n && k[i] == group ) { ++d; ++i; }
+                       if ( d ) {
+                               if ( cache[pos].size() >= d ) {
+                                       lr[group] = lr[group] * cache[pos][d-1];
+                               }
+                               else {
+                                       if ( cache[pos].size() == 0 ) {
+                                               cache[pos].push_back(factors[pos] * factors[pos+1]);
+                                       }
+                                       size_t j = pos + cache[pos].size() + 1;
+                                       d -= cache[pos].size();
+                                       while ( d ) {
+                                               umodpoly buf = cache[pos].back() * factors[j];
+                                               cache[pos].push_back(buf);
+                                               --d;
+                                               ++j;
+                                       }
+                                       lr[group] = lr[group] * cache[pos].back();
+                               }
+                       }
+                       else {
+                               lr[group] = lr[group] * factors[pos];
+                       }
+               } while ( i < n );
+       }
+       void split()
+       {
+               lr[0] = one;
+               lr[1] = one;
+               if ( n > 6 ) {
+                       split_cached();
+               }
+               else {
+                       for ( size_t i=0; i<n; ++i ) {
+                               lr[k[i]] = lr[k[i]] * factors[i];
+                       }
+               }
+       }
+private:
+       umodpoly lr[2];
+       vector< vector<umodpoly> > cache;
+       upvec factors;
+       umodpoly one;
+       size_t n;
+       size_t len;
+       size_t last;
+       vector<int> k;
+};
+
+/** Contains a pair of univariate polynomial and its modular factors.
+ *  Used by factor_univariate().
+ */
+struct ModFactors
+{
+       upoly poly;
+       upvec factors;
+};
+
+/** Univariate polynomial factorization.
+ *
+ *  Modular factorization is tried for several primes to minimize the number of
+ *  modular factors. Then, Hensel lifting is performed.
+ *
+ *  @param[in]     poly   expanded square free univariate polynomial
+ *  @param[in]     x      symbol
+ *  @param[in,out] prime  prime number to start trying modular factorization with,
+ *                        output value is the prime number actually used
+ */
+static ex factor_univariate(const ex& poly, const ex& x, unsigned int& prime)
+{
+       ex unit, cont, prim_ex;
+       poly.unitcontprim(x, unit, cont, prim_ex);
+       upoly prim;
+       upoly_from_ex(prim, prim_ex, x);
+
+       // determine proper prime and minimize number of modular factors
+       prime = 3;
+       unsigned int lastp = prime;
+       cl_modint_ring R;
+       unsigned int trials = 0;
+       unsigned int minfactors = 0;
+
+       const numeric& cont_n = ex_to<numeric>(cont);
+       cl_I i_cont;
+       if (cont_n.is_integer()) {
+               i_cont = the<cl_I>(cont_n.to_cl_N());
+       } else {
+               // poly \in Q[x] => poly = q ipoly, ipoly \in Z[x], q \in Q
+               // factor(poly) \equiv q factor(ipoly)
+               i_cont = cl_I(1);
+       }
+       cl_I lc = lcoeff(prim)*i_cont;
+       upvec factors;
+       while ( trials < 2 ) {
+               umodpoly modpoly;
+               while ( true ) {
+                       prime = next_prime(prime);
+                       if ( !zerop(rem(lc, prime)) ) {
+                               R = find_modint_ring(prime);
+                               umodpoly_from_upoly(modpoly, prim, R);
+                               if ( squarefree(modpoly) ) break;
+                       }
+               }
+
+               // do modular factorization
+               upvec trialfactors;
+               factor_modular(modpoly, trialfactors);
+               if ( trialfactors.size() <= 1 ) {
+                       // irreducible for sure
+                       return poly;
+               }
+
+               if ( minfactors == 0 || trialfactors.size() < minfactors ) {
+                       factors = trialfactors;
+                       minfactors = trialfactors.size();
+                       lastp = prime;
+                       trials = 1;
+               }
+               else {
+                       ++trials;
+               }
+       }
+       prime = lastp;
+       R = find_modint_ring(prime);
+
+       // lift all factor combinations
+       stack<ModFactors> tocheck;
+       ModFactors mf;
+       mf.poly = prim;
+       mf.factors = factors;
+       tocheck.push(mf);
+       upoly f1, f2;
+       ex result = 1;
+       while ( tocheck.size() ) {
+               const size_t n = tocheck.top().factors.size();
+               factor_partition part(tocheck.top().factors);
+               while ( true ) {
+                       // call Hensel lifting
+                       hensel_univar(tocheck.top().poly, prime, part.left(), part.right(), f1, f2);
+                       if ( !f1.empty() ) {
+                               // successful, update the stack and the result
+                               if ( part.size_left() == 1 ) {
+                                       if ( part.size_right() == 1 ) {
+                                               result *= upoly_to_ex(f1, x) * upoly_to_ex(f2, x);
+                                               tocheck.pop();
+                                               break;
+                                       }
+                                       result *= upoly_to_ex(f1, x);
+                                       tocheck.top().poly = f2;
+                                       for ( size_t i=0; i<n; ++i ) {
+                                               if ( part[i] == 0 ) {
+                                                       tocheck.top().factors.erase(tocheck.top().factors.begin()+i);
+                                                       break;
+                                               }
+                                       }
+                                       break;
+                               }
+                               else if ( part.size_right() == 1 ) {
+                                       if ( part.size_left() == 1 ) {
+                                               result *= upoly_to_ex(f1, x) * upoly_to_ex(f2, x);
+                                               tocheck.pop();
+                                               break;
+                                       }
+                                       result *= upoly_to_ex(f2, x);
+                                       tocheck.top().poly = f1;
+                                       for ( size_t i=0; i<n; ++i ) {
+                                               if ( part[i] == 1 ) {
+                                                       tocheck.top().factors.erase(tocheck.top().factors.begin()+i);
+                                                       break;
+                                               }
+                                       }
+                                       break;
+                               }
+                               else {
+                                       upvec newfactors1(part.size_left()), newfactors2(part.size_right());
+                                       upvec::iterator i1 = newfactors1.begin(), i2 = newfactors2.begin();
+                                       for ( size_t i=0; i<n; ++i ) {
+                                               if ( part[i] ) {
+                                                       *i2++ = tocheck.top().factors[i];
+                                               }
+                                               else {
+                                                       *i1++ = tocheck.top().factors[i];
+                                               }
+                                       }
+                                       tocheck.top().factors = newfactors1;
+                                       tocheck.top().poly = f1;
+                                       ModFactors mf;
+                                       mf.factors = newfactors2;
+                                       mf.poly = f2;
+                                       tocheck.push(mf);
+                                       break;
+                               }
+                       }
+                       else {
+                               // not successful
+                               if ( !part.next() ) {
+                                       // if no more combinations left, return polynomial as
+                                       // irreducible
+                                       result *= upoly_to_ex(tocheck.top().poly, x);
+                                       tocheck.pop();
+                                       break;
+                               }
+                       }
+               }
+       }
+
+       return unit * cont * result;
+}
+
+/** Second interface to factor_univariate() to be used if the information about
+ *  the prime is not needed.
+ */
+static inline ex factor_univariate(const ex& poly, const ex& x)
+{
+       unsigned int prime;
+       return factor_univariate(poly, x, prime);
+}
+
+/** Represents an evaluation point (<symbol>==<integer>).
+ */
+struct EvalPoint
+{
+       ex x;
+       int evalpoint;
+};
+
+#ifdef DEBUGFACTOR
+ostream& operator<<(ostream& o, const vector<EvalPoint>& v)
+{
+       for ( size_t i=0; i<v.size(); ++i ) {
+               o << "(" << v[i].x << "==" << v[i].evalpoint << ") ";
+       }
+       return o;
+}
+#endif // def DEBUGFACTOR
+
+// forward declaration
+static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, const vector<EvalPoint>& I, unsigned int d, unsigned int p, unsigned int k);
+
+/** Utility function for multivariate Hensel lifting.
+ *
+ *  Solves the equation
+ *    s_1*b_1 + ... + s_r*b_r == 1 mod p^k
+ *  with deg(s_i) < deg(a_i)
+ *  and with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param[in]  a   vector of modular univariate polynomials
+ *  @param[in]  x   symbol
+ *  @param[in]  p   prime number
+ *  @param[in]  k   p^k is modulus
+ *  @return         vector of polynomials (s_i)
+ */
+static upvec multiterm_eea_lift(const upvec& a, const ex& x, unsigned int p, unsigned int k)
+{
+       const size_t r = a.size();
+       cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k));
+       upvec q(r-1);
+       q[r-2] = a[r-1];
+       for ( size_t j=r-2; j>=1; --j ) {
+               q[j-1] = a[j] * q[j];
+       }
+       umodpoly beta(1, R->one());
+       upvec s;
+       for ( size_t j=1; j<r; ++j ) {
+               vector<ex> mdarg(2);
+               mdarg[0] = umodpoly_to_ex(q[j-1], x);
+               mdarg[1] = umodpoly_to_ex(a[j-1], x);
+               vector<EvalPoint> empty;
+               vector<ex> exsigma = multivar_diophant(mdarg, x, umodpoly_to_ex(beta, x), empty, 0, p, k);
+               umodpoly sigma1;
+               umodpoly_from_ex(sigma1, exsigma[0], x, R);
+               umodpoly sigma2;
+               umodpoly_from_ex(sigma2, exsigma[1], x, R);
+               beta = sigma1;
+               s.push_back(sigma2);
+       }
+       s.push_back(beta);
+       return s;
+}
+
+/** Changes the modulus of a modular polynomial. Used by eea_lift().
+ *
+ *  @param[in]     R  new modular ring
+ *  @param[in,out] a  polynomial to change (in situ)
+ */
+static void change_modulus(const cl_modint_ring& R, umodpoly& a)
+{
+       if ( a.empty() ) return;
+       cl_modint_ring oldR = a[0].ring();
+       umodpoly::iterator i = a.begin(), end = a.end();
+       for ( ; i!=end; ++i ) {
+               *i = R->canonhom(oldR->retract(*i));
+       }
+       canonicalize(a);
+}
+
+/** Utility function for multivariate Hensel lifting.
+ *
+ *  Solves  s*a + t*b == 1 mod p^k  given a,b.
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param[in]  a   polynomial
+ *  @param[in]  b   polynomial
+ *  @param[in]  x   symbol
+ *  @param[in]  p   prime number
+ *  @param[in]  k   p^k is modulus
+ *  @param[out] s_  output polynomial
+ *  @param[out] t_  output polynomial
+ */
+static void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned int p, unsigned int k, umodpoly& s_, umodpoly& t_)
+{
+       cl_modint_ring R = find_modint_ring(p);
+       umodpoly amod = a;
+       change_modulus(R, amod);
+       umodpoly bmod = b;
+       change_modulus(R, bmod);
+
+       umodpoly smod;
+       umodpoly tmod;
+       exteuclid(amod, bmod, smod, tmod);
+
+       cl_modint_ring Rpk = find_modint_ring(expt_pos(cl_I(p),k));
+       umodpoly s = smod;
+       change_modulus(Rpk, s);
+       umodpoly t = tmod;
+       change_modulus(Rpk, t);
+
+       cl_I modulus(p);
+       umodpoly one(1, Rpk->one());
+       for ( size_t j=1; j<k; ++j ) {
+               umodpoly e = one - a * s - b * t;
+               reduce_coeff(e, modulus);
+               umodpoly c = e;
+               change_modulus(R, c);
+               umodpoly sigmabar = smod * c;
+               umodpoly taubar = tmod * c;
+               umodpoly sigma, q;
+               remdiv(sigmabar, bmod, sigma, q);
+               umodpoly tau = taubar + q * amod;
+               umodpoly sadd = sigma;
+               change_modulus(Rpk, sadd);
+               cl_MI modmodulus(Rpk, modulus);
+               s = s + sadd * modmodulus;
+               umodpoly tadd = tau;
+               change_modulus(Rpk, tadd);
+               t = t + tadd * modmodulus;
+               modulus = modulus * p;
+       }
+
+       s_ = s; t_ = t;
+}
+
+/** Utility function for multivariate Hensel lifting.
+ *
+ *  Solves the equation
+ *    s_1*b_1 + ... + s_r*b_r == x^m mod p^k
+ *  with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param a  vector with univariate polynomials mod p^k
+ *  @param x  symbol
+ *  @param m  exponent of x^m in the equation to solve
+ *  @param p  prime number
+ *  @param k  p^k is modulus
+ *  @return   vector of polynomials (s_i)
+ */
+static upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsigned int p, unsigned int k)
+{
+       cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k));
+
+       const size_t r = a.size();
+       upvec result;
+       if ( r > 2 ) {
+               upvec s = multiterm_eea_lift(a, x, p, k);
+               for ( size_t j=0; j<r; ++j ) {
+                       umodpoly bmod = umodpoly_to_umodpoly(s[j], R, m);
+                       umodpoly buf;
+                       rem(bmod, a[j], buf);
+                       result.push_back(buf);
+               }
+       }
+       else {
+               umodpoly s, t;
+               eea_lift(a[1], a[0], x, p, k, s, t);
+               umodpoly bmod = umodpoly_to_umodpoly(s, R, m);
+               umodpoly buf, q;
+               remdiv(bmod, a[0], buf, q);
+               result.push_back(buf);
+               umodpoly t1mod = umodpoly_to_umodpoly(t, R, m);
+               buf = t1mod + q * a[1];
+               result.push_back(buf);
+       }
+
+       return result;
+}
+
+/** Map used by function make_modular().
+ *  Finds every coefficient in a polynomial and replaces it by is value in the
+ *  given modular ring R (symmetric representation).
+ */
+struct make_modular_map : public map_function {
+       cl_modint_ring R;
+       make_modular_map(const cl_modint_ring& R_) : R(R_) { }
+       ex operator()(const ex& e)
+       {
+               if ( is_a<add>(e) || is_a<mul>(e) ) {
+                       return e.map(*this);
+               }
+               else if ( is_a<numeric>(e) ) {
+                       numeric mod(R->modulus);
+                       numeric halfmod = (mod-1)/2;
+                       cl_MI emod = R->canonhom(the<cl_I>(ex_to<numeric>(e).to_cl_N()));
+                       numeric n(R->retract(emod));
+                       if ( n > halfmod ) {
+                               return n-mod;
+                       }
+                       else {
+                               return n;
+                       }
+               }
+               return e;
+       }
+};
+
+/** Helps mimicking modular multivariate polynomial arithmetic.
+ *
+ *  @param e  expression of which to make the coefficients equal to their value
+ *            in the modular ring R (symmetric representation)
+ *  @param R  modular ring
+ *  @return   resulting expression
+ */
+static ex make_modular(const ex& e, const cl_modint_ring& R)
+{
+       make_modular_map map(R);
+       return map(e.expand());
+}
+
+/** Utility function for multivariate Hensel lifting.
+ *
+ *  Returns the polynomials s_i that fulfill
+ *    s_1*b_1 + ... + s_r*b_r == c mod <I^(d+1),p^k>
+ *  with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r
+ *
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *
+ *  @param a_  vector of multivariate factors mod p^k
+ *  @param x   symbol (equiv. x_1 in [GCL])
+ *  @param c   polynomial mod p^k
+ *  @param I   vector of evaluation points
+ *  @param d   maximum total degree of result
+ *  @param p   prime number
+ *  @param k   p^k is modulus
+ *  @return    vector of polynomials (s_i)
+ */
+static vector<ex> multivar_diophant(const vector<ex>& a_, const ex& x, const ex& c, const vector<EvalPoint>& I,
+                                    unsigned int d, unsigned int p, unsigned int k)
 {
-       Matrix Q(a.degree(), a.degree(), a.R->zero());
-       q_matrix(a, Q);
-       VecVec nu;
-       nullspace(Q, nu);
-       const unsigned int k = nu.size();
-       if ( k == 1 ) {
-               return;
-       }
+       vector<ex> a = a_;
 
-       list<UniPoly> factors;
-       factors.push_back(a);
-       unsigned int size = 1;
-       unsigned int r = 1;
-       unsigned int q = cl_I_to_uint(a.R->modulus);
+       const cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k));
+       const size_t r = a.size();
+       const size_t nu = I.size() + 1;
 
-       list<UniPoly>::iterator u = factors.begin();
+       vector<ex> sigma;
+       if ( nu > 1 ) {
+               ex xnu = I.back().x;
+               int alphanu = I.back().evalpoint;
 
-       while ( true ) {
-               for ( unsigned int s=0; s<q; ++s ) {
-                       UniPoly g(a.R);
-                       UniPoly nur(a.R, nu[r]);
-                       nur.set(0, nur[0] - cl_MI(a.R, s));
-                       gcd(nur, *u, g);
-                       if ( !is_one(g) && g != *u ) {
-                               UniPoly uo(a.R);
-                               div(*u, g, uo);
-                               if ( is_one(uo) ) {
-                                       throw logic_error("berlekamp: unexpected divisor.");
-                               }
-                               else {
-                                       *u = uo;
-                               }
-                               factors.push_back(g);
-                               ++size;
-                               if ( size == k ) {
-                                       list<UniPoly>::const_iterator i = factors.begin(), end = factors.end();
-                                       while ( i != end ) {
-                                               upv.push_back(*i++);
-                                       }
-                                       return;
-                               }
-                               if ( u->degree() < nur.degree() ) {
-                                       break;
+               ex A = 1;
+               for ( size_t i=0; i<r; ++i ) {
+                       A *= a[i];
+               }
+               vector<ex> b(r);
+               for ( size_t i=0; i<r; ++i ) {
+                       b[i] = normal(A / a[i]);
+               }
+
+               vector<ex> anew = a;
+               for ( size_t i=0; i<r; ++i ) {
+                       anew[i] = anew[i].subs(xnu == alphanu);
+               }
+               ex cnew = c.subs(xnu == alphanu);
+               vector<EvalPoint> Inew = I;
+               Inew.pop_back();
+               sigma = multivar_diophant(anew, x, cnew, Inew, d, p, k);
+
+               ex buf = c;
+               for ( size_t i=0; i<r; ++i ) {
+                       buf -= sigma[i] * b[i];
+               }
+               ex e = make_modular(buf, R);
+
+               ex monomial = 1;
+               for ( size_t m=1; !e.is_zero() && e.has(xnu) && m<=d; ++m ) {
+                       monomial *= (xnu - alphanu);
+                       monomial = expand(monomial);
+                       ex cm = e.diff(ex_to<symbol>(xnu), m).subs(xnu==alphanu) / factorial(m);
+                       cm = make_modular(cm, R);
+                       if ( !cm.is_zero() ) {
+                               vector<ex> delta_s = multivar_diophant(anew, x, cm, Inew, d, p, k);
+                               ex buf = e;
+                               for ( size_t j=0; j<delta_s.size(); ++j ) {
+                                       delta_s[j] *= monomial;
+                                       sigma[j] += delta_s[j];
+                                       buf -= delta_s[j] * b[j];
                                }
+                               e = make_modular(buf, R);
                        }
                }
-               if ( ++r == k ) {
-                       r = 1;
-                       ++u;
-               }
        }
-}
-
-static void factor_modular(const UniPoly& p, UniPolyVec& upv)
-{
-       berlekamp(p, upv);
-       return;
-}
+       else {
+               upvec amod;
+               for ( size_t i=0; i<a.size(); ++i ) {
+                       umodpoly up;
+                       umodpoly_from_ex(up, a[i], x, R);
+                       amod.push_back(up);
+               }
 
-static void exteuclid(const UniPoly& a, const UniPoly& b, UniPoly& g, UniPoly& s, UniPoly& t)
-{
-       if ( a.degree() < b.degree() ) {
-               exteuclid(b, a, g, t, s);
-               return;
+               sigma.insert(sigma.begin(), r, 0);
+               size_t nterms;
+               ex z;
+               if ( is_a<add>(c) ) {
+                       nterms = c.nops();
+                       z = c.op(0);
+               }
+               else {
+                       nterms = 1;
+                       z = c;
+               }
+               for ( size_t i=0; i<nterms; ++i ) {
+                       int m = z.degree(x);
+                       cl_I cm = the<cl_I>(ex_to<numeric>(z.lcoeff(x)).to_cl_N());
+                       upvec delta_s = univar_diophant(amod, x, m, p, k);
+                       cl_MI modcm;
+                       cl_I poscm = cm;
+                       while ( poscm < 0 ) {
+                               poscm = poscm + expt_pos(cl_I(p),k);
+                       }
+                       modcm = cl_MI(R, poscm);
+                       for ( size_t j=0; j<delta_s.size(); ++j ) {
+                               delta_s[j] = delta_s[j] * modcm;
+                               sigma[j] = sigma[j] + umodpoly_to_ex(delta_s[j], x);
+                       }
+                       if ( nterms > 1 ) {
+                               z = c.op(i+1);
+                       }
+               }
        }
-       UniPoly c1(a.R), c2(a.R), d1(a.R), d2(a.R), q(a.R), r(a.R), r1(a.R), r2(a.R);
-       UniPoly c = a; c.unit_normal();
-       UniPoly d = b; d.unit_normal();
-       c1.set(0, a.R->one());
-       d2.set(0, a.R->one());
-       while ( !d.zero() ) {
-               q.terms.clear();
-               div(c, d, q);
-               r = c - q * d;
-               r1 = c1 - q * d1;
-               r2 = c2 - q * d2;
-               c = d;
-               c1 = d1;
-               c2 = d2;
-               d = r;
-               d1 = r1;
-               d2 = r2;
+
+       for ( size_t i=0; i<sigma.size(); ++i ) {
+               sigma[i] = make_modular(sigma[i], R);
        }
-       g = c; g.unit_normal();
-       s = c1;
-       s.divide(a.unit());
-       s.divide(c.unit());
-       t = c2;
-       t.divide(b.unit());
-       t.divide(c.unit());
-}
 
-static ex replace_lc(const ex& poly, const ex& x, const ex& lc)
-{
-       ex r = expand(poly + (lc - poly.lcoeff(x)) * pow(x, poly.degree(x)));
-       return r;
+       return sigma;
 }
 
-static ex hensel_univar(const ex& a_, const ex& x, unsigned int p, const UniPoly& u1_, const UniPoly& w1_, const ex& gamma_ = 0)
+/** Multivariate Hensel lifting.
+ *  The implementation follows the algorithm in chapter 6 of [GCL].
+ *  Since we don't have a data type for modular multivariate polynomials, the
+ *  respective operations are done in a GiNaC::ex and the function
+ *  make_modular() is then called to make the coefficient modular p^l.
+ *
+ *  @param a    multivariate polynomial primitive in x
+ *  @param x    symbol (equiv. x_1 in [GCL])
+ *  @param I    vector of evaluation points (x_2==a_2,x_3==a_3,...)
+ *  @param p    prime number (should not divide lcoeff(a mod I))
+ *  @param l    p^l is the modulus of the lifted univariate field
+ *  @param u    vector of modular (mod p^l) factors of a mod I
+ *  @param lcU  correct leading coefficient of the univariate factors of a mod I
+ *  @return     list GiNaC::lst with lifted factors (multivariate factors of a),
+ *              empty if Hensel lifting did not succeed
+ */
+static ex hensel_multivar(const ex& a, const ex& x, const vector<EvalPoint>& I,
+                          unsigned int p, const cl_I& l, const upvec& u, const vector<ex>& lcU)
 {
-       ex a = a_;
-       const cl_modint_ring& R = u1_.R;
+       const size_t nu = I.size() + 1;
+       const cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),l));
 
-       // calc bound B
-       ex maxcoeff;
-       for ( int i=a.degree(x); i>=a.ldegree(x); --i ) {
-               maxcoeff += pow(abs(a.coeff(x, i)),2);
+       vector<ex> A(nu);
+       A[nu-1] = a;
+
+       for ( size_t j=nu; j>=2; --j ) {
+               ex x = I[j-2].x;
+               int alpha = I[j-2].evalpoint;
+               A[j-2] = A[j-1].subs(x==alpha);
+               A[j-2] = make_modular(A[j-2], R);
        }
-       cl_I normmc = ceiling1(the<cl_F>(cln::sqrt(ex_to<numeric>(maxcoeff).to_cl_N())));
-       unsigned int maxdegree = (u1_.degree() > w1_.degree()) ? u1_.degree() : w1_.degree();
-       unsigned int B = cl_I_to_uint(normmc * expt_pos(cl_I(2), maxdegree));
 
-       // step 1
-       ex alpha = a.lcoeff(x);
-       ex gamma = gamma_;
-       if ( gamma == 0 ) {
-               gamma = alpha;
-       }
-       unsigned int gamma_ui = ex_to<numeric>(abs(gamma)).to_int();
-       a = a * gamma;
-       UniPoly nu1 = u1_;
-       nu1.unit_normal();
-       UniPoly nw1 = w1_;
-       nw1.unit_normal();
-       ex phi;
-       phi = expand(gamma * nu1.to_ex(x));
-       UniPoly u1(R, phi, x);
-       phi = expand(alpha * nw1.to_ex(x));
-       UniPoly w1(R, phi, x);
+       int maxdeg = a.degree(I.front().x);
+       for ( size_t i=1; i<I.size(); ++i ) {
+               int maxdeg2 = a.degree(I[i].x);
+               if ( maxdeg2 > maxdeg ) maxdeg = maxdeg2;
+       }
 
-       // step 2
-       UniPoly s(R), t(R), g(R);
-       exteuclid(u1, w1, g, s, t);
+       const size_t n = u.size();
+       vector<ex> U(n);
+       for ( size_t i=0; i<n; ++i ) {
+               U[i] = umodpoly_to_ex(u[i], x);
+       }
 
-       // step 3
-       ex u = replace_lc(u1.to_ex(x), x, gamma);
-       ex w = replace_lc(w1.to_ex(x), x, alpha);
-       ex e = expand(a - u * w);
-       unsigned int modulus = p;
+       for ( size_t j=2; j<=nu; ++j ) {
+               vector<ex> U1 = U;
+               ex monomial = 1;
+               for ( size_t m=0; m<n; ++m) {
+                       if ( lcU[m] != 1 ) {
+                               ex coef = lcU[m];
+                               for ( size_t i=j-1; i<nu-1; ++i ) {
+                                       coef = coef.subs(I[i].x == I[i].evalpoint);
+                               }
+                               coef = make_modular(coef, R);
+                               int deg = U[m].degree(x);
+                               U[m] = U[m] - U[m].lcoeff(x) * pow(x,deg) + coef * pow(x,deg);
+                       }
+               }
+               ex Uprod = 1;
+               for ( size_t i=0; i<n; ++i ) {
+                       Uprod *= U[i];
+               }
+               ex e = expand(A[j-1] - Uprod);
 
-       // step 4
-       while ( !e.is_zero() && modulus < 2*B*gamma_ui ) {
-               ex c = e / modulus;
-               phi = expand(s.to_ex(x)*c);
-               UniPoly sigmatilde(R, phi, x);
-               phi = expand(t.to_ex(x)*c);
-               UniPoly tautilde(R, phi, x);
-               UniPoly q(R), r(R);
-               div(sigmatilde, w1, q);
-               rem(sigmatilde, w1, r);
-               UniPoly sigma = r;
-               phi = expand(tautilde.to_ex(x) + q.to_ex(x) * u1.to_ex(x));
-               UniPoly tau(R, phi, x);
-               u = expand(u + tau.to_ex(x) * modulus);
-               w = expand(w + sigma.to_ex(x) * modulus);
-               e = expand(a - u * w);
-               modulus = modulus * p;
+               vector<EvalPoint> newI;
+               for ( size_t i=1; i<=j-2; ++i ) {
+                       newI.push_back(I[i-1]);
+               }
+
+               ex xj = I[j-2].x;
+               int alphaj = I[j-2].evalpoint;
+               size_t deg = A[j-1].degree(xj);
+               for ( size_t k=1; k<=deg; ++k ) {
+                       if ( !e.is_zero() ) {
+                               monomial *= (xj - alphaj);
+                               monomial = expand(monomial);
+                               ex dif = e.diff(ex_to<symbol>(xj), k);
+                               ex c = dif.subs(xj==alphaj) / factorial(k);
+                               if ( !c.is_zero() ) {
+                                       vector<ex> deltaU = multivar_diophant(U1, x, c, newI, maxdeg, p, cl_I_to_uint(l));
+                                       for ( size_t i=0; i<n; ++i ) {
+                                               deltaU[i] *= monomial;
+                                               U[i] += deltaU[i];
+                                               U[i] = make_modular(U[i], R);
+                                       }
+                                       ex Uprod = 1;
+                                       for ( size_t i=0; i<n; ++i ) {
+                                               Uprod *= U[i];
+                                       }
+                                       e = A[j-1] - Uprod;
+                                       e = make_modular(e, R);
+                               }
+                       }
+               }
        }
 
-       // step 5
-       if ( e.is_zero() ) {
-               ex delta = u.content(x);
-               u = u / delta;
-               w = w / gamma * delta;
-               return lst(u, w);
+       ex acand = 1;
+       for ( size_t i=0; i<U.size(); ++i ) {
+               acand *= U[i];
+       }
+       if ( expand(a-acand).is_zero() ) {
+               lst res;
+               for ( size_t i=0; i<U.size(); ++i ) {
+                       res.append(U[i]);
+               }
+               return res;
        }
        else {
+               lst res;
                return lst();
        }
 }
 
-static unsigned int next_prime(unsigned int p)
+/** Takes a factorized expression and puts the factors in a lst. The exponents
+ *  of the factors are discarded, e.g. 7*x^2*(y+1)^4 --> {7,x,y+1}. The first
+ *  element of the list is always the numeric coefficient.
+ */
+static ex put_factors_into_lst(const ex& e)
 {
-       static vector<unsigned int> primes;
-       if ( primes.size() == 0 ) {
-               primes.push_back(3); primes.push_back(5); primes.push_back(7);
-       }
-       vector<unsigned int>::const_iterator it = primes.begin();
-       if ( p >= primes.back() ) {
-               unsigned int candidate = primes.back() + 2;
-               while ( true ) {
-                       size_t n = primes.size()/2;
-                       for ( size_t i=0; i<n; ++i ) {
-                               if ( candidate % primes[i] ) continue;
-                               candidate += 2;
-                               i=-1;
+       lst result;
+       if ( is_a<numeric>(e) ) {
+               result.append(e);
+               return result;
+       }
+       if ( is_a<power>(e) ) {
+               result.append(1);
+               result.append(e.op(0));
+               return result;
+       }
+       if ( is_a<symbol>(e) || is_a<add>(e) ) {
+               ex icont(e.integer_content());
+               result.append(icont);
+               result.append(e/icont);
+               return result;
+       }
+       if ( is_a<mul>(e) ) {
+               ex nfac = 1;
+               for ( size_t i=0; i<e.nops(); ++i ) {
+                       ex op = e.op(i);
+                       if ( is_a<numeric>(op) ) {
+                               nfac = op;
+                       }
+                       if ( is_a<power>(op) ) {
+                               result.append(op.op(0));
+                       }
+                       if ( is_a<symbol>(op) || is_a<add>(op) ) {
+                               result.append(op);
                        }
-                       primes.push_back(candidate);
-                       if ( candidate > p ) break;
-               }
-               return candidate;
-       }
-       vector<unsigned int>::const_iterator end = primes.end();
-       for ( ; it!=end; ++it ) {
-               if ( *it > p ) {
-                       return *it;
                }
+               result.prepend(nfac);
+               return result;
        }
-       throw logic_error("next_prime: should not reach this point!");
+       throw runtime_error("put_factors_into_lst: bad term.");
 }
 
-class Partition
+/** Checks a set of numbers for whether each number has a unique prime factor.
+ *
+ *  @param[in]  f  list of numbers to check
+ *  @return        true: if number set is bad, false: if set is okay (has unique
+ *                 prime factors)
+ */
+static bool checkdivisors(const lst& f)
 {
-public:
-       Partition(size_t n_) : n(n_)
-       {
-               k.resize(n, 1);
-               k[0] = 0;
-               sum = n-1;
-       }
-       int operator[](size_t i) const { return k[i]; }
-       size_t size() const { return n; }
-       size_t size_first() const { return n-sum; }
-       size_t size_second() const { return sum; }
-       bool next()
-       {
-               for ( size_t i=n-1; i>=1; --i ) {
-                       if ( k[i] ) {
-                               --k[i];
-                               --sum;
-                               return sum > 0;
+       const int k = f.nops();
+       numeric q, r;
+       vector<numeric> d(k);
+       d[0] = ex_to<numeric>(abs(f.op(0)));
+       for ( int i=1; i<k; ++i ) {
+               q = ex_to<numeric>(abs(f.op(i)));
+               for ( int j=i-1; j>=0; --j ) {
+                       r = d[j];
+                       do {
+                               r = gcd(r, q);
+                               q = q/r;
+                       } while ( r != 1 );
+                       if ( q == 1 ) {
+                               return true;
                        }
-                       ++k[i];
-                       ++sum;
                }
-               return false;
+               d[i] = q;
        }
-private:
-       size_t n, sum;
-       vector<int> k;
-};
+       return false;
+}
 
-static void split(const UniPolyVec& factors, const Partition& part, UniPoly& a, UniPoly& b)
+/** Generates a set of evaluation points for a multivariate polynomial.
+ *  The set fulfills the following conditions:
+ *  1. lcoeff(evaluated_polynomial) does not vanish
+ *  2. factors of lcoeff(evaluated_polynomial) have each a unique prime factor
+ *  3. evaluated_polynomial is square free
+ *  See [Wan] for more details.
+ *
+ *  @param[in]     u        multivariate polynomial to be factored
+ *  @param[in]     vn       leading coefficient of u in x (x==first symbol in syms)
+ *  @param[in]     syms     set of symbols that appear in u
+ *  @param[in]     f        lst containing the factors of the leading coefficient vn
+ *  @param[in,out] modulus  integer modulus for random number generation (i.e. |a_i| < modulus)
+ *  @param[out]    u0       returns the evaluated (univariate) polynomial
+ *  @param[out]    a        returns the valid evaluation points. must have initial size equal
+ *                          number of symbols-1 before calling generate_set
+ */
+static void generate_set(const ex& u, const ex& vn, const exset& syms, const lst& f,
+                         numeric& modulus, ex& u0, vector<numeric>& a)
 {
-       a.set(0, a.R->one());
-       b.set(0, a.R->one());
-       for ( size_t i=0; i<part.size(); ++i ) {
-               if ( part[i] ) {
-                       b = b * factors[i];
+       const ex& x = *syms.begin();
+       while ( true ) {
+               ++modulus;
+               // generate a set of integers ...
+               u0 = u;
+               ex vna = vn;
+               ex vnatry;
+               exset::const_iterator s = syms.begin();
+               ++s;
+               for ( size_t i=0; i<a.size(); ++i ) {
+                       do {
+                               a[i] = mod(numeric(rand()), 2*modulus) - modulus;
+                               vnatry = vna.subs(*s == a[i]);
+                               // ... for which the leading coefficient doesn't vanish ...
+                       } while ( vnatry == 0 );
+                       vna = vnatry;
+                       u0 = u0.subs(*s == a[i]);
+                       ++s;
                }
-               else {
-                       a = a * factors[i];
+               // ... for which u0 is square free ...
+               ex g = gcd(u0, u0.diff(ex_to<symbol>(x)));
+               if ( !is_a<numeric>(g) ) {
+                       continue;
+               }
+               if ( !is_a<numeric>(vn) ) {
+                       // ... and for which the evaluated factors have each an unique prime factor
+                       lst fnum = f;
+                       fnum.let_op(0) = fnum.op(0) * u0.content(x);
+                       for ( size_t i=1; i<fnum.nops(); ++i ) {
+                               if ( !is_a<numeric>(fnum.op(i)) ) {
+                                       s = syms.begin();
+                                       ++s;
+                                       for ( size_t j=0; j<a.size(); ++j, ++s ) {
+                                               fnum.let_op(i) = fnum.op(i).subs(*s == a[j]);
+                                       }
+                               }
+                       }
+                       if ( checkdivisors(fnum) ) {
+                               continue;
+                       }
                }
+               // ok, we have a valid set now
+               return;
        }
 }
 
-struct ModFactors
+// forward declaration
+static ex factor_sqrfree(const ex& poly);
+
+/** Multivariate factorization.
+ *  
+ *  The implementation is based on the algorithm described in [Wan].
+ *  An evaluation homomorphism (a set of integers) is determined that fulfills
+ *  certain criteria. The evaluated polynomial is univariate and is factorized
+ *  by factor_univariate(). The main work then is to find the correct leading
+ *  coefficients of the univariate factors. They have to correspond to the
+ *  factors of the (multivariate) leading coefficient of the input polynomial
+ *  (as defined for a specific variable x). After that the Hensel lifting can be
+ *  performed.
+ *
+ *  @param[in] poly  expanded, square free polynomial
+ *  @param[in] syms  contains the symbols in the polynomial
+ *  @return          factorized polynomial
+ */
+static ex factor_multivariate(const ex& poly, const exset& syms)
 {
-       ex poly;
-       UniPolyVec factors;
-};
+       exset::const_iterator s;
+       const ex& x = *syms.begin();
 
-static ex factor_univariate(const ex& poly, const ex& x)
-{
-       ex unit, cont, prim;
-       poly.unitcontprim(x, unit, cont, prim);
+       // make polynomial primitive
+       ex unit, cont, pp;
+       poly.unitcontprim(x, unit, cont, pp);
+       if ( !is_a<numeric>(cont) ) {
+               return factor_sqrfree(cont) * factor_sqrfree(pp);
+       }
 
-       // determine proper prime
-       unsigned int p = 3;
-       cl_modint_ring R = find_modint_ring(p);
-       while ( true ) {
-               if ( irem(ex_to<numeric>(prim.lcoeff(x)), p) != 0 ) {
-                       UniPoly modpoly(R, prim, x);
-                       UniFactorVec sqrfree_ufv;
-                       squarefree(modpoly, sqrfree_ufv);
-                       if ( sqrfree_ufv.factors.size() == 1 ) break;
-               }
-               p = next_prime(p);
-               R = find_modint_ring(p);
-       }
-
-       // do modular factorization
-       UniPoly modpoly(R, prim, x);
-       UniPolyVec factors;
-       factor_modular(modpoly, factors);
-       if ( factors.size() <= 1 ) {
-               // irreducible for sure
-               return poly;
+       // factor leading coefficient
+       ex vn = pp.collect(x).lcoeff(x);
+       ex vnlst;
+       if ( is_a<numeric>(vn) ) {
+               vnlst = lst(vn);
+       }
+       else {
+               ex vnfactors = factor(vn);
+               vnlst = put_factors_into_lst(vnfactors);
        }
 
-       // lift all factor combinations
-       stack<ModFactors> tocheck;
-       ModFactors mf;
-       mf.poly = prim;
-       mf.factors = factors;
-       tocheck.push(mf);
-       ex result = 1;
-       while ( tocheck.size() ) {
-               const size_t n = tocheck.top().factors.size();
-               Partition part(n);
-               while ( true ) {
-                       UniPoly a(R), b(R);
-                       split(tocheck.top().factors, part, a, b);
-
-                       ex answer = hensel_univar(tocheck.top().poly, x, p, a, b);
-                       if ( answer != lst() ) {
-                               if ( part.size_first() == 1 ) {
-                                       if ( part.size_second() == 1 ) {
-                                               result *= answer.op(0) * answer.op(1);
-                                               tocheck.pop();
-                                               break;
-                                       }
-                                       result *= answer.op(0);
-                                       tocheck.top().poly = answer.op(1);
-                                       for ( size_t i=0; i<n; ++i ) {
-                                               if ( part[i] == 0 ) {
-                                                       tocheck.top().factors.erase(tocheck.top().factors.begin()+i);
-                                                       break;
-                                               }
-                                       }
-                                       break;
+       const unsigned int maxtrials = 3;
+       numeric modulus = (vnlst.nops() > 3) ? vnlst.nops() : 3;
+       vector<numeric> a(syms.size()-1, 0);
+
+       // try now to factorize until we are successful
+       while ( true ) {
+
+               unsigned int trialcount = 0;
+               unsigned int prime;
+               int factor_count = 0;
+               int min_factor_count = -1;
+               ex u, delta;
+               ex ufac, ufaclst;
+
+               // try several evaluation points to reduce the number of factors
+               while ( trialcount < maxtrials ) {
+
+                       // generate a set of valid evaluation points
+                       generate_set(pp, vn, syms, ex_to<lst>(vnlst), modulus, u, a);
+
+                       ufac = factor_univariate(u, x, prime);
+                       ufaclst = put_factors_into_lst(ufac);
+                       factor_count = ufaclst.nops()-1;
+                       delta = ufaclst.op(0);
+
+                       if ( factor_count <= 1 ) {
+                               // irreducible
+                               return poly;
+                       }
+                       if ( min_factor_count < 0 ) {
+                               // first time here
+                               min_factor_count = factor_count;
+                       }
+                       else if ( min_factor_count == factor_count ) {
+                               // one less to try
+                               ++trialcount;
+                       }
+                       else if ( min_factor_count > factor_count ) {
+                               // new minimum, reset trial counter
+                               min_factor_count = factor_count;
+                               trialcount = 0;
+                       }
+               }
+
+               // determine true leading coefficients for the Hensel lifting
+               vector<ex> C(factor_count);
+               if ( is_a<numeric>(vn) ) {
+                       // easy case
+                       for ( size_t i=1; i<ufaclst.nops(); ++i ) {
+                               C[i-1] = ufaclst.op(i).lcoeff(x);
+                       }
+               }
+               else {
+                       // difficult case.
+                       // we use the property of the ftilde having a unique prime factor.
+                       // details can be found in [Wan].
+                       // calculate ftilde
+                       vector<numeric> ftilde(vnlst.nops()-1);
+                       for ( size_t i=0; i<ftilde.size(); ++i ) {
+                               ex ft = vnlst.op(i+1);
+                               s = syms.begin();
+                               ++s;
+                               for ( size_t j=0; j<a.size(); ++j ) {
+                                       ft = ft.subs(*s == a[j]);
+                                       ++s;
                                }
-                               else if ( part.size_second() == 1 ) {
-                                       if ( part.size_first() == 1 ) {
-                                               result *= answer.op(0) * answer.op(1);
-                                               tocheck.pop();
-                                               break;
-                                       }
-                                       result *= answer.op(1);
-                                       tocheck.top().poly = answer.op(0);
-                                       for ( size_t i=0; i<n; ++i ) {
-                                               if ( part[i] == 1 ) {
-                                                       tocheck.top().factors.erase(tocheck.top().factors.begin()+i);
-                                                       break;
+                               ftilde[i] = ex_to<numeric>(ft);
+                       }
+                       // calculate D and C
+                       vector<bool> used_flag(ftilde.size(), false);
+                       vector<ex> D(factor_count, 1);
+                       if ( delta == 1 ) {
+                               for ( int i=0; i<factor_count; ++i ) {
+                                       numeric prefac = ex_to<numeric>(ufaclst.op(i+1).lcoeff(x));
+                                       for ( int j=ftilde.size()-1; j>=0; --j ) {
+                                               int count = 0;
+                                               while ( irem(prefac, ftilde[j]) == 0 ) {
+                                                       prefac = iquo(prefac, ftilde[j]);
+                                                       ++count;
+                                               }
+                                               if ( count ) {
+                                                       used_flag[j] = true;
+                                                       D[i] = D[i] * pow(vnlst.op(j+1), count);
                                                }
                                        }
-                                       break;
+                                       C[i] = D[i] * prefac;
                                }
-                               else {
-                                       UniPolyVec newfactors1(part.size_first(), R), newfactors2(part.size_second(), R);
-                                       UniPolyVec::iterator i1 = newfactors1.begin(), i2 = newfactors2.begin();
-                                       for ( size_t i=0; i<n; ++i ) {
-                                               if ( part[i] ) {
-                                                       *i2++ = tocheck.top().factors[i];
+                       }
+                       else {
+                               for ( int i=0; i<factor_count; ++i ) {
+                                       numeric prefac = ex_to<numeric>(ufaclst.op(i+1).lcoeff(x));
+                                       for ( int j=ftilde.size()-1; j>=0; --j ) {
+                                               int count = 0;
+                                               while ( irem(prefac, ftilde[j]) == 0 ) {
+                                                       prefac = iquo(prefac, ftilde[j]);
+                                                       ++count;
                                                }
-                                               else {
-                                                       *i1++ = tocheck.top().factors[i];
+                                               while ( irem(ex_to<numeric>(delta)*prefac, ftilde[j]) == 0 ) {
+                                                       numeric g = gcd(prefac, ex_to<numeric>(ftilde[j]));
+                                                       prefac = iquo(prefac, g);
+                                                       delta = delta / (ftilde[j]/g);
+                                                       ufaclst.let_op(i+1) = ufaclst.op(i+1) * (ftilde[j]/g);
+                                                       ++count;
+                                               }
+                                               if ( count ) {
+                                                       used_flag[j] = true;
+                                                       D[i] = D[i] * pow(vnlst.op(j+1), count);
                                                }
                                        }
-                                       tocheck.top().factors = newfactors1;
-                                       tocheck.top().poly = answer.op(0);
-                                       ModFactors mf;
-                                       mf.factors = newfactors2;
-                                       mf.poly = answer.op(1);
-                                       tocheck.push(mf);
+                                       C[i] = D[i] * prefac;
                                }
                        }
-                       else {
-                               if ( !part.next() ) {
-                                       result *= tocheck.top().poly;
-                                       tocheck.pop();
+                       // check if something went wrong
+                       bool some_factor_unused = false;
+                       for ( size_t i=0; i<used_flag.size(); ++i ) {
+                               if ( !used_flag[i] ) {
+                                       some_factor_unused = true;
                                        break;
                                }
                        }
+                       if ( some_factor_unused ) {
+                               continue;
+                       }
+               }
+               
+               // multiply the remaining content of the univariate polynomial into the
+               // first factor
+               if ( delta != 1 ) {
+                       C[0] = C[0] * delta;
+                       ufaclst.let_op(1) = ufaclst.op(1) * delta;
                }
-       }
 
-       return unit * cont * result;
+               // set up evaluation points
+               EvalPoint ep;
+               vector<EvalPoint> epv;
+               s = syms.begin();
+               ++s;
+               for ( size_t i=0; i<a.size(); ++i ) {
+                       ep.x = *s++;
+                       ep.evalpoint = a[i].to_int();
+                       epv.push_back(ep);
+               }
+
+               // calc bound p^l
+               int maxdeg = 0;
+               for ( int i=1; i<=factor_count; ++i ) {
+                       if ( ufaclst.op(i).degree(x) > maxdeg ) {
+                               maxdeg = ufaclst[i].degree(x);
+                       }
+               }
+               cl_I B = 2*calc_bound(u, x, maxdeg);
+               cl_I l = 1;
+               cl_I pl = prime;
+               while ( pl < B ) {
+                       l = l + 1;
+                       pl = pl * prime;
+               }
+               
+               // set up modular factors (mod p^l)
+               cl_modint_ring R = find_modint_ring(expt_pos(cl_I(prime),l));
+               upvec modfactors(ufaclst.nops()-1);
+               for ( size_t i=1; i<ufaclst.nops(); ++i ) {
+                       umodpoly_from_ex(modfactors[i-1], ufaclst.op(i), x, R);
+               }
+
+               // try Hensel lifting
+               ex res = hensel_multivar(pp, x, epv, prime, l, modfactors, C);
+               if ( res != lst() ) {
+                       ex result = cont * unit;
+                       for ( size_t i=0; i<res.nops(); ++i ) {
+                               result *= res.op(i).content(x) * res.op(i).unit(x);
+                               result *= res.op(i).primpart(x);
+                       }
+                       return result;
+               }
+       }
 }
 
-struct FindSymbolsMap : public map_function {
+/** Finds all symbols in an expression. Used by factor_sqrfree() and factor().
+ */
+struct find_symbols_map : public map_function {
        exset syms;
        ex operator()(const ex& e)
        {
@@ -1133,18 +2470,23 @@ struct FindSymbolsMap : public map_function {
        }
 };
 
+/** Factorizes a polynomial that is square free. It calls either the univariate
+ *  or the multivariate factorization functions.
+ */
 static ex factor_sqrfree(const ex& poly)
 {
        // determine all symbols in poly
-       FindSymbolsMap findsymbols;
+       find_symbols_map findsymbols;
        findsymbols(poly);
        if ( findsymbols.syms.size() == 0 ) {
                return poly;
        }
 
        if ( findsymbols.syms.size() == 1 ) {
+               // univariate case
                const ex& x = *(findsymbols.syms.begin());
                if ( poly.ldegree(x) > 0 ) {
+                       // pull out direct factors
                        int ld = poly.ldegree(x);
                        ex res = factor_univariate(expand(poly/pow(x, ld)), x);
                        return res * pow(x,ld);
@@ -1155,16 +2497,60 @@ static ex factor_sqrfree(const ex& poly)
                }
        }
 
-       // multivariate case not yet implemented!
-       throw runtime_error("multivariate case not yet implemented!");
+       // multivariate case
+       ex res = factor_multivariate(poly, findsymbols.syms);
+       return res;
 }
 
+/** Map used by factor() when factor_options::all is given to access all
+ *  subexpressions and to call factor() on them.
+ */
+struct apply_factor_map : public map_function {
+       unsigned options;
+       apply_factor_map(unsigned options_) : options(options_) { }
+       ex operator()(const ex& e)
+       {
+               if ( e.info(info_flags::polynomial) ) {
+                       return factor(e, options);
+               }
+               if ( is_a<add>(e) ) {
+                       ex s1, s2;
+                       for ( size_t i=0; i<e.nops(); ++i ) {
+                               if ( e.op(i).info(info_flags::polynomial) ) {
+                                       s1 += e.op(i);
+                               }
+                               else {
+                                       s2 += e.op(i);
+                               }
+                       }
+                       s1 = s1.eval();
+                       s2 = s2.eval();
+                       return factor(s1, options) + s2.map(*this);
+               }
+               return e.map(*this);
+       }
+};
+
 } // anonymous namespace
 
-ex factor(const ex& poly)
+/** Interface function to the outside world. It checks the arguments, tries a
+ *  square free factorization, and then calls factor_sqrfree to do the hard
+ *  work.
+ */
+ex factor(const ex& poly, unsigned options)
 {
+       // check arguments
+       if ( !poly.info(info_flags::polynomial) ) {
+               if ( options & factor_options::all ) {
+                       options &= ~factor_options::all;
+                       apply_factor_map factor_map(options);
+                       return factor_map(poly);
+               }
+               return poly;
+       }
+
        // determine all symbols in poly
-       FindSymbolsMap findsymbols;
+       find_symbols_map findsymbols;
        findsymbols(poly);
        if ( findsymbols.syms.size() == 0 ) {
                return poly;
@@ -1176,7 +2562,7 @@ ex factor(const ex& poly)
        }
 
        // make poly square free
-       ex sfpoly = sqrfree(poly, syms);
+       ex sfpoly = sqrfree(poly.expand(), syms);
 
        // factorize the square free components
        if ( is_a<power>(sfpoly) ) {
@@ -1190,6 +2576,7 @@ ex factor(const ex& poly)
                return pow(f, sfpoly.op(1));
        }
        if ( is_a<mul>(sfpoly) ) {
+               // case: multiple factors
                ex res = 1;
                for ( size_t i=0; i<sfpoly.nops(); ++i ) {
                        const ex& t = sfpoly.op(i);
@@ -1213,9 +2600,16 @@ ex factor(const ex& poly)
                }
                return res;
        }
+       if ( is_a<symbol>(sfpoly) ) {
+               return poly;
+       }
        // case: (polynomial)
        ex f = factor_sqrfree(sfpoly);
        return f;
 }
 
 } // namespace GiNaC
+
+#ifdef DEBUGFACTOR
+#include "test.h"
+#endif