]> www.ginac.de Git - ginac.git/blobdiff - ginac/clifford.cpp
- fixed a problem where (p\-m*ONE)*(p\-m*ONE) would be automatically simplified
[ginac.git] / ginac / clifford.cpp
index c1c069dcb0ff8d0723048f91d0bcfec601804a4c..f6a511c4a3c8f21002b58daf1adf2b3e269759e7 100644 (file)
 #include "ex.h"
 #include "idx.h"
 #include "ncmul.h"
+#include "symbol.h"
+#include "numeric.h" // for I
+#include "symmetry.h"
+#include "lst.h"
+#include "relational.h"
+#include "mul.h"
+#include "print.h"
 #include "archive.h"
 #include "debugmsg.h"
 #include "utils.h"
@@ -35,54 +42,61 @@ namespace GiNaC {
 GINAC_IMPLEMENT_REGISTERED_CLASS(clifford, indexed)
 GINAC_IMPLEMENT_REGISTERED_CLASS(diracone, tensor)
 GINAC_IMPLEMENT_REGISTERED_CLASS(diracgamma, tensor)
+GINAC_IMPLEMENT_REGISTERED_CLASS(diracgamma5, tensor)
 
 //////////
 // default constructor, destructor, copy constructor assignment operator and helpers
 //////////
 
-clifford::clifford()
+clifford::clifford() : representation_label(0)
 {
        debugmsg("clifford default constructor", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_clifford;
 }
 
-DEFAULT_COPY(clifford)
+void clifford::copy(const clifford & other)
+{
+       inherited::copy(other);
+       representation_label = other.representation_label;
+}
+
 DEFAULT_DESTROY(clifford)
 DEFAULT_CTORS(diracone)
 DEFAULT_CTORS(diracgamma)
+DEFAULT_CTORS(diracgamma5)
 
 //////////
 // other constructors
 //////////
 
-/** Construct object with one Lorentz index. This constructor is for internal
- *  use only. Use the dirac_gamma() function instead.
- *  @see dirac_gamma */
-clifford::clifford(const ex & b, const ex & mu) : inherited(b, mu)
+/** Construct object without any indices. This constructor is for internal
+ *  use only. Use the dirac_ONE() function instead.
+ *  @see dirac_ONE */
+clifford::clifford(const ex & b, unsigned char rl) : inherited(b), representation_label(rl)
 {
-       debugmsg("clifford constructor from ex,ex", LOGLEVEL_CONSTRUCT);
-       GINAC_ASSERT(is_ex_of_type(mu, varidx));
+       debugmsg("clifford constructor from ex", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_clifford;
 }
 
-/** Construct object without any indices. This constructor is for internal
- *  use only. Use the dirac_one() function instead.
- *  @see dirac_one */
-clifford::clifford(const ex & b) : inherited(b)
+/** Construct object with one Lorentz index. This constructor is for internal
+ *  use only. Use the dirac_gamma() function instead.
+ *  @see dirac_gamma */
+clifford::clifford(const ex & b, const ex & mu, unsigned char rl) : inherited(b, mu), representation_label(rl)
 {
-       debugmsg("clifford constructor from ex", LOGLEVEL_CONSTRUCT);
+       debugmsg("clifford constructor from ex,ex", LOGLEVEL_CONSTRUCT);
+       GINAC_ASSERT(is_a<varidx>(mu));
        tinfo_key = TINFO_clifford;
 }
 
-clifford::clifford(const exvector & v, bool discardable) : inherited(indexed::unknown, v, discardable)
+clifford::clifford(unsigned char rl, const exvector & v, bool discardable) : inherited(sy_none(), v, discardable), representation_label(rl)
 {
-       debugmsg("clifford constructor from exvector", LOGLEVEL_CONSTRUCT);
+       debugmsg("clifford constructor from unsigned char,exvector", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_clifford;
 }
 
-clifford::clifford(exvector * vp) : inherited(indexed::unknown, vp)
+clifford::clifford(unsigned char rl, exvector * vp) : inherited(sy_none(), vp), representation_label(rl)
 {
-       debugmsg("clifford constructor from exvector *", LOGLEVEL_CONSTRUCT);
+       debugmsg("clifford constructor from unsigned char,exvector *", LOGLEVEL_CONSTRUCT);
        tinfo_key = TINFO_clifford;
 }
 
@@ -90,69 +104,166 @@ clifford::clifford(exvector * vp) : inherited(indexed::unknown, vp)
 // archiving
 //////////
 
-DEFAULT_ARCHIVING(clifford)
+clifford::clifford(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
+{
+       debugmsg("clifford constructor from archive_node", LOGLEVEL_CONSTRUCT);
+       unsigned rl;
+       n.find_unsigned("label", rl);
+       representation_label = rl;
+}
+
+void clifford::archive(archive_node &n) const
+{
+       inherited::archive(n);
+       n.add_unsigned("label", representation_label);
+}
+
+DEFAULT_UNARCHIVE(clifford)
 DEFAULT_ARCHIVING(diracone)
 DEFAULT_ARCHIVING(diracgamma)
+DEFAULT_ARCHIVING(diracgamma5)
 
 //////////
-// functions overriding virtual functions from bases classes
+// functions overriding virtual functions from base classes
 //////////
 
 int clifford::compare_same_type(const basic & other) const
 {
+       GINAC_ASSERT(is_of_type(other, clifford));
+       const clifford &o = static_cast<const clifford &>(other);
+
+       if (representation_label != o.representation_label) {
+               // different representation label
+               return representation_label < o.representation_label ? -1 : 1;
+       }
+
        return inherited::compare_same_type(other);
 }
 
+bool clifford::match_same_type(const basic & other) const
+{
+       GINAC_ASSERT(is_of_type(other, clifford));
+       const clifford &o = static_cast<const clifford &>(other);
+
+       return representation_label == o.representation_label;
+}
+
+void clifford::print(const print_context & c, unsigned level = 0) const
+{
+       if (!is_a<diracgamma5>(seq[0]) && !is_a<diracgamma>(seq[0]) && !is_a<diracone>(seq[0])) {
+
+               // dirac_slash() object is printed differently
+               if (is_a<print_tree>(c))
+                       inherited::print(c, level);
+               else if (is_a<print_latex>(c)) {
+                       c.s << "{";
+                       seq[0].print(c, level);
+                       c.s << "\\hspace{-1.0ex}/}";
+               } else {
+                       seq[0].print(c, level);
+                       c.s << "\\";
+               }
+
+       } else
+               inherited::print(c, level);
+}
+
 DEFAULT_COMPARE(diracone)
 DEFAULT_COMPARE(diracgamma)
-DEFAULT_PRINT(diracone, "ONE")
-DEFAULT_PRINT(diracgamma, "gamma")
+DEFAULT_COMPARE(diracgamma5)
+
+DEFAULT_PRINT_LATEX(diracone, "ONE", "\\mathbb{1}")
+DEFAULT_PRINT_LATEX(diracgamma, "gamma", "\\gamma")
+DEFAULT_PRINT_LATEX(diracgamma5, "gamma5", "{\\gamma^5}")
+
+/** This function decomposes gamma~mu -> (1, mu) and a\ -> (a.ix, ix) */
+static void base_and_index(const ex & c, ex & b, ex & i)
+{
+       GINAC_ASSERT(is_a<clifford>(c));
+       GINAC_ASSERT(c.nops() == 2);
+
+       if (is_a<diracgamma>(c.op(0))) { // proper dirac gamma object
+               i = c.op(1);
+               b = _ex1();
+       } else { // slash object, generate new dummy index
+               varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to<idx>(c.op(1)).get_dim());
+               b = indexed(c.op(0), ix.toggle_variance());
+               i = ix;
+       }
+}
 
 /** Contraction of a gamma matrix with something else. */
 bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
 {
-       GINAC_ASSERT(is_ex_of_type(*self, indexed));
-       GINAC_ASSERT(is_ex_of_type(*other, indexed));
-       GINAC_ASSERT(is_ex_of_type(self->op(0), diracgamma));
+       GINAC_ASSERT(is_a<clifford>(*self));
+       GINAC_ASSERT(is_a<indexed>(*other));
+       GINAC_ASSERT(is_a<diracgamma>(self->op(0)));
+       unsigned char rl = ex_to<clifford>(*self).get_representation_label();
 
-       if (is_ex_of_type(other->op(0), diracgamma)) {
+       if (is_a<clifford>(*other)) {
 
-               ex dim = ex_to_idx(self->op(1)).get_dim();
+               ex dim = ex_to<idx>(self->op(1)).get_dim();
 
-               // gamma~mu*gamma.mu = dim*ONE
+               // gamma~mu gamma.mu = dim ONE
                if (other - self == 1) {
                        *self = dim;
-                       *other = dirac_one();
+                       *other = dirac_ONE(rl);
                        return true;
 
-               // gamma~mu*gamma~alpha*gamma.mu = (2-dim)*gamma~alpha
+               // gamma~mu gamma~alpha gamma.mu = (2-dim) gamma~alpha
                } else if (other - self == 2
-                       && is_ex_of_type(self[1], clifford)) {
+                       && is_a<clifford>(self[1])) {
                        *self = 2 - dim;
                        *other = _ex1();
                        return true;
 
-               // gamma~mu*gamma~alpha*gamma~beta*gamma.mu = 4*g~alpha~beta+(dim-4)*gamam~alpha*gamma~beta
+               // gamma~mu gamma~alpha gamma~beta gamma.mu = 4 g~alpha~beta + (dim-4) gamam~alpha gamma~beta
                } else if (other - self == 3
-                       && is_ex_of_type(self[1], clifford)
-                       && is_ex_of_type(self[2], clifford)) {
-                       *self = 4 * metric_tensor(self[1].op(1), self[2].op(1)) * dirac_one() + (dim - 4) * self[1] * self[2];
+                       && is_a<clifford>(self[1])
+                       && is_a<clifford>(self[2])) {
+                       ex b1, i1, b2, i2;
+                       base_and_index(self[1], b1, i1);
+                       base_and_index(self[2], b2, i2);
+                       *self = 4 * lorentz_g(i1, i2) * b1 * b2 * dirac_ONE(rl) + (dim - 4) * self[1] * self[2];
                        self[1] = _ex1();
                        self[2] = _ex1();
                        *other = _ex1();
                        return true;
 
-               // gamma~mu*gamma~alpha*gamma~beta*gamma~delta*gamma.mu = -2*gamma~delta*gamma~beta*gamma~alpha+(4-dim)*gamma~alpha*gamma~beta*gamma~delta
+               // gamma~mu gamma~alpha gamma~beta gamma~delta gamma.mu = -2 gamma~delta gamma~beta gamma~alpha - (dim-4) gamam~alpha gamma~beta gamma~delta
                } else if (other - self == 4
-                       && is_ex_of_type(self[1], clifford)
-                       && is_ex_of_type(self[2], clifford)
-                       && is_ex_of_type(self[3], clifford)) {
-                       *self = -2 * self[3] * self[2] * self[1] + (4 - dim) * self[1] * self[2] * self[3];
+                       && is_a<clifford>(self[1])
+                       && is_a<clifford>(self[2])
+                       && is_a<clifford>(self[3])) {
+                       *self = -2 * self[3] * self[2] * self[1] - (dim - 4) * self[1] * self[2] * self[3];
                        self[1] = _ex1();
                        self[2] = _ex1();
                        self[3] = _ex1();
                        *other = _ex1();
                        return true;
+
+               // gamma~mu S gamma~alpha gamma.mu = 2 gamma~alpha S - gamma~mu S gamma.mu gamma~alpha
+               // (commutate contracted indices towards each other, simplify_indexed()
+               // will re-expand and re-run the simplification)
+               } else {
+                       exvector::iterator it = self + 1, next_to_last = other - 1;
+                       while (it != other) {
+                               if (!is_a<clifford>(*it))
+                                       return false;
+                               ++it;
+                       }
+
+                       it = self + 1;
+                       ex S = _ex1();
+                       while (it != next_to_last) {
+                               S *= *it;
+                               *it++ = _ex1();
+                       }
+
+                       *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last);
+                       *next_to_last = _ex1();
+                       *other = _ex1();
+                       return true;
                }
        }
 
@@ -160,52 +271,362 @@ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other
 }
 
 /** Perform automatic simplification on noncommutative product of clifford
- *  objects. This removes superfluous ONEs. */
+ *  objects. This removes superfluous ONEs, permutes gamma5's to the front
+ *  and removes squares of gamma objects. */
 ex clifford::simplify_ncmul(const exvector & v) const
 {
        exvector s;
        s.reserve(v.size());
 
-       exvector::const_iterator it = v.begin(), itend = v.end();
-       while (it != itend) {
-               if (!is_ex_of_type(it->op(0), diracone))
-                       s.push_back(*it);
-               it++;
+       // Remove superfluous ONEs
+       exvector::const_iterator cit = v.begin(), citend = v.end();
+       while (cit != citend) {
+               if (!is_a<diracone>(cit->op(0)))
+                       s.push_back(*cit);
+               cit++;
        }
 
-       if (s.size() == 0)
-               return clifford(diracone());
-       else if (s.size() == v.size())
-               return simplified_ncmul(v);
+       bool something_changed = false;
+       int sign = 1;
+
+       // Anticommute gamma5's to the front
+       if (s.size() >= 2) {
+               exvector::iterator first = s.begin(), next_to_last = s.end() - 2;
+               while (true) {
+                       exvector::iterator it = next_to_last;
+                       while (true) {
+                               exvector::iterator it2 = it + 1;
+                               if (!is_a<diracgamma5>(it->op(0)) && is_a<diracgamma5>(it2->op(0))) {
+                                       it->swap(*it2);
+                                       sign = -sign;
+                                       something_changed = true;
+                               }
+                               if (it == first)
+                                       break;
+                               --it;
+                       }
+                       if (next_to_last == first)
+                               break;
+                       --next_to_last;
+               }
+       }
+
+       // Remove squares of gamma5
+       while (s.size() >= 2 && is_a<diracgamma5>(s[0].op(0)) && is_a<diracgamma5>(s[1].op(0))) {
+               s.erase(s.begin(), s.begin() + 2);
+               something_changed = true;
+       }
+
+       // Remove equal adjacent gammas
+       if (s.size() >= 2) {
+               exvector::iterator it, itend = s.end() - 1;
+               for (it = s.begin(); it != itend; ++it) {
+                       if (!is_a<clifford>(it[0]))
+                               continue;
+                       ex & a = it[0];
+                       ex & b = it[1];
+                       if (is_a<diracgamma>(a.op(0)) && is_a<diracgamma>(b.op(0))) {
+                               const ex & ia = a.op(1);
+                               const ex & ib = b.op(1);
+                               if (ia.is_equal(ib)) { // gamma~alpha gamma~alpha -> g~alpha~alpha
+                                       a = lorentz_g(ia, ib);
+                                       b = dirac_ONE(representation_label);
+                                       something_changed = true;
+                               }
+                       } else if (!is_a<diracgamma>(a.op(0)) && !is_a<diracgamma>(b.op(0))) {
+                               const ex & ba = a.op(0);
+                               const ex & bb = b.op(0);
+                               if (ba.is_equal(bb)) { // a\ a\ -> a^2
+                                       varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to<idx>(a.op(1)).get_dim());
+                                       a = indexed(ba, ix) * indexed(bb, ix.toggle_variance());
+                                       b = dirac_ONE(representation_label);
+                                       something_changed = true;
+                               }
+                       }
+               }
+       }
+
+       if (s.empty())
+               return clifford(diracone(), representation_label) * sign;
+       if (something_changed)
+               return nonsimplified_ncmul(s) * sign;
        else
-               return simplified_ncmul(s);
+               return simplified_ncmul(s) * sign;
 }
 
 ex clifford::thisexprseq(const exvector & v) const
 {
-       return clifford(v);
+       return clifford(representation_label, v);
 }
 
 ex clifford::thisexprseq(exvector * vp) const
 {
-       return clifford(vp);
+       return clifford(representation_label, vp);
 }
 
 //////////
 // global functions
 //////////
 
-ex dirac_one(void)
+ex dirac_ONE(unsigned char rl)
 {
-       return clifford(diracone());
+       return clifford(diracone(), rl);
 }
 
-ex dirac_gamma(const ex & mu)
+ex dirac_gamma(const ex & mu, unsigned char rl)
 {
-       if (!is_ex_of_type(mu, varidx))
+       if (!is_a<varidx>(mu))
                throw(std::invalid_argument("index of Dirac gamma must be of type varidx"));
 
-       return clifford(diracgamma(), mu);
+       return clifford(diracgamma(), mu, rl);
+}
+
+ex dirac_gamma5(unsigned char rl)
+{
+       return clifford(diracgamma5(), rl);
+}
+
+ex dirac_gamma6(unsigned char rl)
+{
+       return clifford(diracone(), rl) + clifford(diracgamma5(), rl);
+}
+
+ex dirac_gamma7(unsigned char rl)
+{
+       return clifford(diracone(), rl) - clifford(diracgamma5(), rl);
+}
+
+ex dirac_slash(const ex & e, const ex & dim, unsigned char rl)
+{
+       // Slashed vectors are actually stored as a clifford object with the
+       // vector as its base expression and a (dummy) index that just serves
+       // for storing the space dimensionality
+       return clifford(e, varidx(0, dim), rl);
+}
+
+/** Check whether a given tinfo key (as returned by return_type_tinfo()
+ *  is that of a clifford object with the specified representation label. */
+static bool is_clifford_tinfo(unsigned ti, unsigned char rl)
+{
+       return ti == (TINFO_clifford + rl);
+}
+
+/** Check whether a given tinfo key (as returned by return_type_tinfo()
+ *  is that of a clifford object (with an arbitrary representation label). */
+static bool is_clifford_tinfo(unsigned ti)
+{
+       return (ti & ~0xff) == TINFO_clifford;
+}
+
+/** Take trace of a string of an even number of Dirac gammas given a vector
+ *  of indices. */
+static ex trace_string(exvector::const_iterator ix, unsigned num)
+{
+       // Tr gamma.mu gamma.nu = 4 g.mu.nu
+       if (num == 2)
+               return lorentz_g(ix[0], ix[1]);
+
+       // Tr gamma.mu gamma.nu gamma.rho gamma.sig = 4 (g.mu.nu g.rho.sig + g.nu.rho g.mu.sig - g.mu.rho g.nu.sig
+       else if (num == 4)
+               return lorentz_g(ix[0], ix[1]) * lorentz_g(ix[2], ix[3])
+                    + lorentz_g(ix[1], ix[2]) * lorentz_g(ix[0], ix[3])
+                    - lorentz_g(ix[0], ix[2]) * lorentz_g(ix[1], ix[3]);
+
+       // Traces of 6 or more gammas are computed recursively:
+       // Tr gamma.mu1 gamma.mu2 ... gamma.mun =
+       //   + g.mu1.mu2 * Tr gamma.mu3 ... gamma.mun
+       //   - g.mu1.mu3 * Tr gamma.mu2 gamma.mu4 ... gamma.mun
+       //   + g.mu1.mu4 * Tr gamma.mu3 gamma.mu3 gamma.mu5 ... gamma.mun
+       //   - ...
+       //   + g.mu1.mun * Tr gamma.mu2 ... gamma.mu(n-1)
+       exvector v(num - 2);
+       int sign = 1;
+       ex result;
+       for (unsigned i=1; i<num; i++) {
+               for (unsigned n=1, j=0; n<num; n++) {
+                       if (n == i)
+                               continue;
+                       v[j++] = ix[n];
+               }
+               result += sign * lorentz_g(ix[0], ix[i]) * trace_string(v.begin(), num-2);
+               sign = -sign;
+       }
+       return result;
+}
+
+ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE)
+{
+       if (is_a<clifford>(e)) {
+
+               if (ex_to<clifford>(e).get_representation_label() == rl
+                && is_a<diracone>(e.op(0)))
+                       return trONE;
+               else
+                       return _ex0();
+
+       } else if (is_ex_exactly_of_type(e, mul)) {
+
+               // Trace of product: pull out non-clifford factors
+               ex prod = _ex1();
+               for (unsigned i=0; i<e.nops(); i++) {
+                       const ex &o = e.op(i);
+                       if (is_clifford_tinfo(o.return_type_tinfo(), rl))
+                               prod *= dirac_trace(o, rl, trONE);
+                       else
+                               prod *= o;
+               }
+               return prod;
+
+       } else if (is_ex_exactly_of_type(e, ncmul)) {
+
+               if (!is_clifford_tinfo(e.return_type_tinfo(), rl))
+                       return _ex0();
+
+               // Expand product, if necessary
+               ex e_expanded = e.expand();
+               if (!is_a<ncmul>(e_expanded))
+                       return dirac_trace(e_expanded, rl, trONE);
+
+               // gamma5 gets moved to the front so this check is enough
+               bool has_gamma5 = is_a<diracgamma5>(e.op(0).op(0));
+               unsigned num = e.nops();
+
+               if (has_gamma5) {
+
+                       // Trace of gamma5 * odd number of gammas and trace of
+                       // gamma5 * gamma.mu * gamma.nu are zero
+                       if ((num & 1) == 0 || num == 3)
+                               return _ex0();
+
+                       // Tr gamma5 gamma.mu gamma.nu gamma.rho gamma.sigma = 4I * epsilon(mu, nu, rho, sigma)
+                       if (num == 5) {
+                               ex b1, i1, b2, i2, b3, i3, b4, i4;
+                               base_and_index(e.op(1), b1, i1);
+                               base_and_index(e.op(2), b2, i2);
+                               base_and_index(e.op(3), b3, i3);
+                               base_and_index(e.op(4), b4, i4);
+                               return trONE * I * (eps0123(i1, i2, i3, i4) * b1 * b2 * b3 * b4).simplify_indexed();
+                       }
+
+                       // Tr gamma5 S_2k =
+                       //   I/4! * epsilon0123.mu1.mu2.mu3.mu4 * Tr gamma.mu1 gamma.mu2 gamma.mu3 gamma.mu4 S_2k
+                       exvector ix(num-1), bv(num-1);
+                       for (unsigned i=1; i<num; i++)
+                               base_and_index(e.op(i), bv[i-1], ix[i-1]);
+                       num--;
+                       int *iv = new int[num];
+                       ex result;
+                       for (unsigned i=0; i<num-3; i++) {
+                               ex idx1 = ix[i];
+                               for (unsigned j=i+1; j<num-2; j++) {
+                                       ex idx2 = ix[j];
+                                       for (unsigned k=j+1; k<num-1; k++) {
+                                               ex idx3 = ix[k];
+                                               for (unsigned l=k+1; l<num; l++) {
+                                                       ex idx4 = ix[l];
+                                                       iv[0] = i; iv[1] = j; iv[2] = k; iv[3] = l;
+                                                       exvector v;
+                                                       v.reserve(num - 4);
+                                                       for (unsigned n=0, t=4; n<num; n++) {
+                                                               if (n == i || n == j || n == k || n == l)
+                                                                       continue;
+                                                               iv[t++] = n;
+                                                               v.push_back(ix[n]);
+                                                       }
+                                                       int sign = permutation_sign(iv, iv + num);
+                                                       result += sign * eps0123(idx1, idx2, idx3, idx4)
+                                                               * trace_string(v.begin(), num - 4);
+                                               }
+                                       }
+                               }
+                       }
+                       delete[] iv;
+                       return trONE * I * result * mul(bv);
+
+               } else { // no gamma5
+
+                       // Trace of odd number of gammas is zero
+                       if ((num & 1) == 1)
+                               return _ex0();
+
+                       // Tr gamma.mu gamma.nu = 4 g.mu.nu
+                       if (num == 2) {
+                               ex b1, i1, b2, i2;
+                               base_and_index(e.op(0), b1, i1);
+                               base_and_index(e.op(1), b2, i2);
+                               return trONE * (lorentz_g(i1, i2) * b1 * b2).simplify_indexed();
+                       }
+
+                       exvector iv(num), bv(num);
+                       for (unsigned i=0; i<num; i++)
+                               base_and_index(e.op(i), bv[i], iv[i]);
+
+                       return trONE * (trace_string(iv.begin(), num) * mul(bv)).simplify_indexed();
+               }
+
+       } else if (e.nops() > 0) {
+
+               // Trace maps to all other container classes (this includes sums)
+               pointer_to_map_function_2args<unsigned char, const ex &> fcn(dirac_trace, rl, trONE);
+               return e.map(fcn);
+
+       } else
+               return _ex0();
+}
+
+ex canonicalize_clifford(const ex & e)
+{
+       // Scan for any ncmul objects
+       lst srl;
+       ex aux = e.to_rational(srl);
+       for (unsigned i=0; i<srl.nops(); i++) {
+
+               ex lhs = srl.op(i).lhs();
+               ex rhs = srl.op(i).rhs();
+
+               if (is_ex_exactly_of_type(rhs, ncmul)
+                && rhs.return_type() == return_types::noncommutative
+                && is_clifford_tinfo(rhs.return_type_tinfo())) {
+
+                       // Expand product, if necessary
+                       ex rhs_expanded = rhs.expand();
+                       if (!is_a<ncmul>(rhs_expanded)) {
+                               srl.let_op(i) = (lhs == canonicalize_clifford(rhs_expanded));
+                               continue;
+
+                       } else if (!is_a<clifford>(rhs.op(0)))
+                               continue;
+
+                       exvector v;
+                       v.reserve(rhs.nops());
+                       for (unsigned j=0; j<rhs.nops(); j++)
+                               v.push_back(rhs.op(j));
+
+                       // Stupid recursive bubble sort because we only want to swap adjacent gammas
+                       exvector::iterator it = v.begin(), next_to_last = v.end() - 1;
+                       if (is_a<diracgamma5>(it->op(0)))
+                               ++it;
+                       while (it != next_to_last) {
+                               if (it[0].compare(it[1]) > 0) {
+                                       ex save0 = it[0], save1 = it[1];
+                                       ex b1, i1, b2, i2;
+                                       base_and_index(it[0], b1, i1);
+                                       base_and_index(it[1], b2, i2);
+                                       it[0] = (lorentz_g(i1, i2) * b1 * b2).simplify_indexed();
+                                       it[1] = _ex2();
+                                       ex sum = ncmul(v);
+                                       it[0] = save1;
+                                       it[1] = save0;
+                                       sum -= ncmul(v, true);
+                                       srl.let_op(i) = (lhs == canonicalize_clifford(sum));
+                                       goto next_sym;
+                               }
+                               ++it;
+                       }
+next_sym:      ;
+               }
+       }
+       return aux.subs(srl).simplify_indexed();
 }
 
 } // namespace GiNaC