]> www.ginac.de Git - ginac.git/blobdiff - ginac/clifford.cpp
* Indentation and alignment fixes.
[ginac.git] / ginac / clifford.cpp
index f8d503ff6e68ea15f8bdcd8fdc107d85e72f2081..b337cd70c6c848490cba467236eac6c8bc86f487 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's clifford algebra (Dirac gamma) objects. */
 
 /*
- *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -155,7 +155,7 @@ DEFAULT_ARCHIVING(diracgammaR)
 
 ex clifford::get_metric(const ex & i, const ex & j) const
 {
-       return indexed(metric, symmetric2(), i, j);
+       return indexed(metric, i, j);
 }
 
 bool clifford::same_metric(const ex & other) const
@@ -213,8 +213,10 @@ void clifford::do_print_latex(const print_latex & c, unsigned level) const
                c.s << "{";
                seq[0].print(c, level);
                c.s << "\\hspace{-1.0ex}/}";
-       } else
+       } else {
+               c.s << "\\clifford[" << int(representation_label) << "]";
                this->print_dispatch<inherited>(c, level);
+       }
 }
 
 DEFAULT_COMPARE(diracone)
@@ -224,7 +226,7 @@ DEFAULT_COMPARE(diracgamma5)
 DEFAULT_COMPARE(diracgammaL)
 DEFAULT_COMPARE(diracgammaR)
 
-DEFAULT_PRINT_LATEX(diracone, "ONE", "\\mathbb{1}")
+DEFAULT_PRINT_LATEX(diracone, "ONE", "\\mathbf{1}")
 DEFAULT_PRINT_LATEX(cliffordunit, "e", "e")
 DEFAULT_PRINT_LATEX(diracgamma, "gamma", "\\gamma")
 DEFAULT_PRINT_LATEX(diracgamma5, "gamma5", "{\\gamma^5}")
@@ -250,6 +252,14 @@ static void base_and_index(const ex & c, ex & b, ex & i)
        }
 }
 
+/** Predicate for finding non-clifford objects. */
+struct is_not_a_clifford : public std::unary_function<ex, bool> {
+       bool operator()(const ex & e)
+       {
+               return !is_a<clifford>(e);
+       }
+};
+
 /** Contraction of a gamma matrix with something else. */
 bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
 {
@@ -268,21 +278,23 @@ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other
                if (ex_to<clifford>(*other).get_representation_label() != rl)
                        return false;
 
+               size_t num = other - self;
+
                // gamma~mu gamma.mu = dim ONE
-               if (other - self == 1) {
+               if (num == 1) {
                        *self = dim;
                        *other = dirac_ONE(rl);
                        return true;
 
                // gamma~mu gamma~alpha gamma.mu = (2-dim) gamma~alpha
-               } else if (other - self == 2
+               } else if (num == 2
                        && is_a<clifford>(self[1])) {
                        *self = 2 - dim;
                        *other = _ex1;
                        return true;
 
                // gamma~mu gamma~alpha gamma~beta gamma.mu = 4 g~alpha~beta + (dim-4) gamam~alpha gamma~beta
-               } else if (other - self == 3
+               } else if (num == 3
                        && is_a<clifford>(self[1])
                        && is_a<clifford>(self[2])) {
                        ex b1, i1, b2, i2;
@@ -295,7 +307,7 @@ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other
                        return true;
 
                // gamma~mu gamma~alpha gamma~beta gamma~delta gamma.mu = -2 gamma~delta gamma~beta gamma~alpha - (dim-4) gamam~alpha gamma~beta gamma~delta
-               } else if (other - self == 4
+               } else if (num == 4
                        && is_a<clifford>(self[1])
                        && is_a<clifford>(self[2])
                        && is_a<clifford>(self[3])) {
@@ -306,27 +318,45 @@ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other
                        *other = _ex1;
                        return true;
 
+               // gamma~mu Sodd gamma.mu = -2 Sodd_R
+               // (Chisholm identity in 4 dimensions)
+               } else if (!((other - self) & 1) && dim.is_equal(4)) {
+                       if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
+                               return false;
+
+                       *self = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(other), std::reverse_iterator<exvector::const_iterator>(self + 1)), true);
+                       std::fill(self + 1, other, _ex1);
+                       *other = _ex_2;
+                       return true;
+
+               // gamma~mu Sodd gamma~alpha gamma.mu = 2 gamma~alpha Sodd + 2 Sodd_R gamma~alpha
+               // (commutate contracted indices towards each other, then use
+               // Chisholm identity in 4 dimensions)
+               } else if (((other - self) & 1) && dim.is_equal(4)) {
+                       if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
+                               return false;
+
+                       exvector::iterator next_to_last = other - 1;
+                       ex S = ncmul(exvector(self + 1, next_to_last), true);
+                       ex SR = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(next_to_last), std::reverse_iterator<exvector::const_iterator>(self + 1)), true);
+
+                       *self = (*next_to_last) * S + SR * (*next_to_last);
+                       std::fill(self + 1, other, _ex1);
+                       *other = _ex2;
+                       return true;
+
                // gamma~mu S gamma~alpha gamma.mu = 2 gamma~alpha S - gamma~mu S gamma.mu gamma~alpha
                // (commutate contracted indices towards each other, simplify_indexed()
                // will re-expand and re-run the simplification)
                } else {
-                       exvector::iterator it = self + 1, next_to_last = other - 1;
-                       while (it != other) {
-                               if (!is_a<clifford>(*it))
-                                       return false;
-                               ++it;
-                       }
+                       if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
+                               return false;
 
-                       it = self + 1;
-                       ex S = _ex1;
-                       while (it != next_to_last) {
-                               S *= *it;
-                               *it++ = _ex1;
-                       }
+                       exvector::iterator next_to_last = other - 1;
+                       ex S = ncmul(exvector(self + 1, next_to_last), true);
 
                        *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last);
-                       *next_to_last = _ex1;
-                       *other = _ex1;
+                       std::fill(self + 1, other + 1, _ex1);
                        return true;
                }
 
@@ -374,7 +404,7 @@ bool cliffordunit::contract_with(exvector::iterator self, exvector::iterator oth
 
                // Find if a previous contraction produces the square of self
                int prev_square = find_same_metric(v, self[0]);
-               varidx d((new symbol)->setflag(status_flags::dynallocated), ex_to<idx>(ex_to<idx>(self->op(1)).get_dim()));
+               varidx d((new symbol)->setflag(status_flags::dynallocated), ex_to<idx>(self->op(1)).get_dim());
                ex squared_metric = unit.get_metric(self->op(1), d) * unit.get_metric(d.toggle_variance(), other->op(1));
 
                // e~mu e.mu = Tr ONE
@@ -649,7 +679,12 @@ ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl)
        if (!is_a<varidx>(mu))
                throw(std::invalid_argument("index of Clifford unit must be of type varidx"));
 
-       return clifford(unit, mu, metr, rl);
+       if (is_a<indexed>(metr))
+               return clifford(unit, mu, metr.op(0), rl);
+       else if(is_a<tensmetric>(metr) || is_a<matrix>(metr)) 
+               return clifford(unit, mu, metr, rl);
+       else
+               throw(std::invalid_argument("metric for Clifford unit must be of type indexed, tensormetric or matrix"));
 }
 
 ex dirac_gamma(const ex & mu, unsigned char rl)
@@ -702,6 +737,13 @@ static bool is_clifford_tinfo(unsigned ti)
        return (ti & ~0xff) == TINFO_clifford;
 }
 
+/** Extract representation label from tinfo key (as returned by
+ *  return_type_tinfo()). */
+static unsigned char get_representation_label(unsigned ti)
+{
+       return ti & 0xff;
+}
+
 /** Take trace of a string of an even number of Dirac gammas given a vector
  *  of indices. */
 static ex trace_string(exvector::const_iterator ix, size_t num)
@@ -738,12 +780,17 @@ static ex trace_string(exvector::const_iterator ix, size_t num)
        return result;
 }
 
-ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE)
+ex dirac_trace(const ex & e, const std::set<unsigned char> & rls, const ex & trONE)
 {
        if (is_a<clifford>(e)) {
 
-               if (!ex_to<clifford>(e).get_representation_label() == rl)
-                       return _ex0;
+               unsigned char rl = ex_to<clifford>(e).get_representation_label();
+
+               // Are we taking the trace over this object's representation label?
+               if (rls.find(rl) == rls.end())
+                       return e;
+
+               // Yes, all elements are traceless, except for dirac_ONE and dirac_L/R
                const ex & g = e.op(0);
                if (is_a<diracone>(g))
                        return trONE;
@@ -758,8 +805,8 @@ ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE)
                ex prod = _ex1;
                for (size_t i=0; i<e.nops(); i++) {
                        const ex &o = e.op(i);
-                       if (is_clifford_tinfo(o.return_type_tinfo(), rl))
-                               prod *= dirac_trace(o, rl, trONE);
+                       if (is_clifford_tinfo(o.return_type_tinfo()))
+                               prod *= dirac_trace(o, rls, trONE);
                        else
                                prod *= o;
                }
@@ -767,8 +814,11 @@ ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE)
 
        } else if (is_exactly_a<ncmul>(e)) {
 
-               if (!is_clifford_tinfo(e.return_type_tinfo(), rl))
-                       return _ex0;
+               unsigned char rl = get_representation_label(e.return_type_tinfo());
+
+               // Are we taking the trace over this string's representation label?
+               if (rls.find(rl) == rls.end())
+                       return e;
 
                // Substitute gammaL/R and expand product, if necessary
                ex e_expanded = e.subs(lst(
@@ -776,7 +826,7 @@ ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE)
                        dirac_gammaR(rl) == (dirac_ONE(rl)+dirac_gamma5(rl))/2
                ), subs_options::no_pattern).expand();
                if (!is_a<ncmul>(e_expanded))
-                       return dirac_trace(e_expanded, rl, trONE);
+                       return dirac_trace(e_expanded, rls, trONE);
 
                // gamma5 gets moved to the front so this check is enough
                bool has_gamma5 = is_a<diracgamma5>(e.op(0).op(0));
@@ -860,76 +910,105 @@ ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE)
        } else if (e.nops() > 0) {
 
                // Trace maps to all other container classes (this includes sums)
-               pointer_to_map_function_2args<unsigned char, const ex &> fcn(dirac_trace, rl, trONE);
+               pointer_to_map_function_2args<const std::set<unsigned char> &, const ex &> fcn(dirac_trace, rls, trONE);
                return e.map(fcn);
 
        } else
                return _ex0;
 }
 
-ex canonicalize_clifford(const ex & e)
+ex dirac_trace(const ex & e, const lst & rll, const ex & trONE)
 {
-       // Scan for any ncmul objects
-       exmap srl;
-       ex aux = e.to_rational(srl);
-       for (exmap::iterator i = srl.begin(); i != srl.end(); ++i) {
-
-               ex lhs = i->first;
-               ex rhs = i->second;
+       // Convert list to set
+       std::set<unsigned char> rls;
+       for (lst::const_iterator i = rll.begin(); i != rll.end(); ++i) {
+               if (i->info(info_flags::nonnegint))
+                       rls.insert(ex_to<numeric>(*i).to_int());
+       }
 
-               if (is_exactly_a<ncmul>(rhs)
-                && rhs.return_type() == return_types::noncommutative
-                && is_clifford_tinfo(rhs.return_type_tinfo())) {
+       return dirac_trace(e, rls, trONE);
+}
 
-                       // Expand product, if necessary
-                       ex rhs_expanded = rhs.expand();
-                       if (!is_a<ncmul>(rhs_expanded)) {
-                               i->second = canonicalize_clifford(rhs_expanded);
-                               continue;
+ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE)
+{
+       // Convert label to set
+       std::set<unsigned char> rls;
+       rls.insert(rl);
 
-                       } else if (!is_a<clifford>(rhs.op(0)))
-                               continue;
+       return dirac_trace(e, rls, trONE);
+}
 
-                       exvector v;
-                       v.reserve(rhs.nops());
-                       for (size_t j=0; j<rhs.nops(); j++)
-                               v.push_back(rhs.op(j));
 
-                       // Stupid recursive bubble sort because we only want to swap adjacent gammas
-                       exvector::iterator it = v.begin(), next_to_last = v.end() - 1;
-                       if (is_a<diracgamma5>(it->op(0)) || is_a<diracgammaL>(it->op(0)) || is_a<diracgammaR>(it->op(0)))
-                               ++it;
-                       while (it != next_to_last) {
-                               if (it[0].compare(it[1]) > 0) {
-                                       ex save0 = it[0], save1 = it[1];
-                                       ex b1, i1, b2, i2;
-                                       base_and_index(it[0], b1, i1);
-                                       base_and_index(it[1], b2, i2);
-                                       it[0] = (ex_to<clifford>(save0).get_metric(i1, i2) * b1 * b2).simplify_indexed();
-                                       it[1] = v.size() == 2 ? _ex2 * dirac_ONE(ex_to<clifford>(it[1]).get_representation_label()) : _ex2;
-                                       ex sum = ncmul(v);
-                                       it[0] = save1;
-                                       it[1] = save0;
-                                       sum -= ncmul(v, true);
-                                       i->second = canonicalize_clifford(sum);
-                                       goto next_sym;
+ex canonicalize_clifford(const ex & e_)
+{
+       pointer_to_map_function fcn(canonicalize_clifford);
+
+       if (is_a<matrix>(e_)    // || is_a<pseries>(e) || is_a<integral>(e)
+               || is_a<lst>(e_)) {
+               return e_.map(fcn);
+       } else {
+               ex e=simplify_indexed(e_);
+               // Scan for any ncmul objects
+               exmap srl;
+               ex aux = e.to_rational(srl);
+               for (exmap::iterator i = srl.begin(); i != srl.end(); ++i) {
+
+                       ex lhs = i->first;
+                       ex rhs = i->second;
+
+                       if (is_exactly_a<ncmul>(rhs)
+                                       && rhs.return_type() == return_types::noncommutative
+                                       && is_clifford_tinfo(rhs.return_type_tinfo())) {
+
+                               // Expand product, if necessary
+                               ex rhs_expanded = rhs.expand();
+                               if (!is_a<ncmul>(rhs_expanded)) {
+                                       i->second = canonicalize_clifford(rhs_expanded);
+                                       continue;
+
+                               } else if (!is_a<clifford>(rhs.op(0)))
+                                       continue;
+
+                               exvector v;
+                               v.reserve(rhs.nops());
+                               for (size_t j=0; j<rhs.nops(); j++)
+                                       v.push_back(rhs.op(j));
+
+                               // Stupid recursive bubble sort because we only want to swap adjacent gammas
+                               exvector::iterator it = v.begin(), next_to_last = v.end() - 1;
+                               if (is_a<diracgamma5>(it->op(0)) || is_a<diracgammaL>(it->op(0)) || is_a<diracgammaR>(it->op(0)))
+                                       ++it;
+                               while (it != next_to_last) {
+                                       if (it[0].compare(it[1]) > 0) {
+                                               ex save0 = it[0], save1 = it[1];
+                                               ex b1, i1, b2, i2;
+                                               base_and_index(it[0], b1, i1);
+                                               base_and_index(it[1], b2, i2);
+                                               it[0] = (ex_to<clifford>(save0).get_metric(i1, i2) * b1 * b2).simplify_indexed();
+                                               it[1] = v.size() == 2 ? _ex2 * dirac_ONE(ex_to<clifford>(it[1]).get_representation_label()) : _ex2;
+                                               ex sum = ncmul(v);
+                                               it[0] = save1;
+                                               it[1] = save0;
+                                               sum -= ncmul(v, true);
+                                               i->second = canonicalize_clifford(sum);
+                                               goto next_sym;
+                                       }
+                                       ++it;
                                }
-                               ++it;
-                       }
 next_sym:      ;
+                       }
                }
+               return aux.subs(srl, subs_options::no_pattern).simplify_indexed();
        }
-       return aux.subs(srl, subs_options::no_pattern).simplify_indexed();
 }
 
-ex clifford_prime(const ex &e)
+ex clifford_prime(const ex & e)
 {
        pointer_to_map_function fcn(clifford_prime);
        if (is_a<clifford>(e) && is_a<cliffordunit>(e.op(0))) {
                return -e;
-       } else if (is_a<add>(e)) {
-               return e.map(fcn);
-       } else if (is_a<ncmul>(e)) {
+       } else if (is_a<add>(e) || is_a<ncmul>(e) || is_a<mul>(e) //|| is_a<pseries>(e) || is_a<integral>(e)
+                          || is_a<matrix>(e) || is_a<lst>(e)) {
                return e.map(fcn);
        } else if (is_a<power>(e)) {
                return pow(clifford_prime(e.op(0)), e.op(1));
@@ -937,68 +1016,195 @@ ex clifford_prime(const ex &e)
                return e;
 }
 
-ex delete_ONE(const ex &e)
+ex remove_dirac_ONE(const ex & e,  unsigned char rl)
 {
-       pointer_to_map_function fcn(delete_ONE);
-       if (is_a<clifford>(e) && is_a<diracone>(e.op(0))) {
-               return 1;
-       } else if (is_a<add>(e)) {
-               return e.map(fcn);
-       } else if (is_a<ncmul>(e)) {
-               return e.map(fcn);
-       } else if (is_a<mul>(e)) {
+       pointer_to_map_function_1arg<unsigned char> fcn(remove_dirac_ONE, rl);
+       if (is_a<clifford>(e) && ex_to<clifford>(e).get_representation_label() >= rl) {
+               if (is_a<diracone>(e.op(0)))
+                       return 1;
+               else
+                       throw(std::invalid_argument("Expression is a non-scalar Clifford number!"));
+       } else if (is_a<add>(e) || is_a<ncmul>(e) || is_a<mul>(e)  // || is_a<pseries>(e) || is_a<integral>(e)
+                          || is_a<matrix>(e) || is_a<lst>(e)) {
                return e.map(fcn);
        } else if (is_a<power>(e)) {
-               return pow(delete_ONE(e.op(0)), e.op(1));
+               return pow(remove_dirac_ONE(e.op(0)), e.op(1));
        } else
                return e;
 }
 
-ex clifford_norm(const ex &e)
+ex clifford_norm(const ex & e)
 {
-       return sqrt(delete_ONE((e * clifford_bar(e)).simplify_indexed()));
+       return sqrt(remove_dirac_ONE(canonicalize_clifford(e * clifford_bar(e)).simplify_indexed()));
 }
 
-ex clifford_inverse(const ex &e)
+ex clifford_inverse(const ex & e)
 {
        ex norm = clifford_norm(e);
        if (!norm.is_zero())
                return clifford_bar(e) / pow(norm, 2);
+       else 
+               throw(std::invalid_argument("Cannot find inverse of Clifford number with zero norm!"));
 }
 
 ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr, unsigned char rl)
 {
-       unsigned min, max;
        if (!ex_to<idx>(mu).is_dim_numeric())
                throw(std::invalid_argument("Index should have a numeric dimension"));
-       unsigned dim = (ex_to<numeric>(ex_to<idx>(mu).get_dim())).to_int();
-       ex c = clifford_unit(mu, metr, rl);
+       ex e = clifford_unit(mu, metr, rl);
+       return lst_to_clifford(v, e);
+}
 
-       if (is_a<matrix>(v)) {
-               if (ex_to<matrix>(v).cols() > ex_to<matrix>(v).rows()) {
-                       min = ex_to<matrix>(v).rows();
-                       max = ex_to<matrix>(v).cols();
-               } else {
-                       min = ex_to<matrix>(v).cols();
-                       max = ex_to<matrix>(v).rows();
-               }
-               if (min == 1) {
-                       if (dim == max)
-                               if (is_a<varidx>(mu)) // need to swap variance
-                                       return indexed(v, ex_to<varidx>(mu).toggle_variance()) * c;
+ex lst_to_clifford(const ex & v, const ex & e) {
+       unsigned min, max;
+
+       if (is_a<clifford>(e)) {
+               varidx mu = ex_to<varidx>(e.op(1));
+               unsigned dim = (ex_to<numeric>(mu.get_dim())).to_int();
+
+               if (is_a<matrix>(v)) {
+                       if (ex_to<matrix>(v).cols() > ex_to<matrix>(v).rows()) {
+                               min = ex_to<matrix>(v).rows();
+                               max = ex_to<matrix>(v).cols();
+                       } else {
+                               min = ex_to<matrix>(v).cols();
+                               max = ex_to<matrix>(v).rows();
+                       }
+                       if (min == 1) {
+                               if (dim == max)
+                                       return indexed(v, ex_to<varidx>(mu).toggle_variance()) * e;
                                else
-                                       return indexed(v, mu) * c;
+                                       throw(std::invalid_argument("Dimensions of vector and clifford unit mismatch"));
+                       } else
+                               throw(std::invalid_argument("First argument should be a vector vector"));
+               } else if (is_a<lst>(v)) {
+                       if (dim == ex_to<lst>(v).nops())
+                               return indexed(matrix(dim, 1, ex_to<lst>(v)), ex_to<varidx>(mu).toggle_variance()) * e;
                        else
-                               throw(std::invalid_argument("Dimensions of vector and clifford unit mismatch"));
+                               throw(std::invalid_argument("List length and dimension of clifford unit mismatch"));
                } else
-                       throw(std::invalid_argument("First argument should be a vector vector"));
-       } else if (is_a<lst>(v)) {
-               if (dim == ex_to<lst>(v).nops())
-                       return indexed(matrix(dim, 1, ex_to<lst>(v)), ex_to<varidx>(mu).toggle_variance()) * c;
-               else
-                       throw(std::invalid_argument("List length and dimension of clifford unit mismatch"));
+                       throw(std::invalid_argument("Cannot construct from anything but list or vector"));
        } else
-               throw(std::invalid_argument("Cannot construct from anything but list or vector"));
+               throw(std::invalid_argument("The second argument should be a Clifford unit"));
 }
+
+/** Auxiliary structure to define a function for striping one Clifford unit
+ * from vectors. Used in  clifford_to_lst(). */
+static ex get_clifford_comp(const ex & e, const ex & c) 
+{
+       pointer_to_map_function_1arg<const ex &> fcn(get_clifford_comp, c);
+       int ival = ex_to<numeric>(ex_to<varidx>(c.op(1)).get_value()).to_int();
+               
+       if (is_a<add>(e) || is_a<lst>(e) // || is_a<pseries>(e) || is_a<integral>(e)
+               || is_a<matrix>(e)) 
+               return e.map(fcn);
+       else if (is_a<ncmul>(e) || is_a<mul>(e)) {
+               // find a Clifford unit with the same metric, delete it and substitute its index
+               size_t ind = e.nops() + 1;
+               for (size_t j = 0; j < e.nops(); j++) 
+                       if (is_a<clifford>(e.op(j)) && ex_to<clifford>(c).same_metric(e.op(j)))
+                               if (ind > e.nops()) 
+                                       ind = j;
+                               else 
+                                       throw(std::invalid_argument("Expression is a Clifford multi-vector"));
+               if (ind < e.nops()) {
+                       ex S = 1;
+                       bool same_value_index, found_dummy;
+                       same_value_index = ( ex_to<varidx>(e.op(ind).op(1)).is_numeric()
+                                                                &&  (ival == ex_to<numeric>(ex_to<varidx>(e.op(ind).op(1)).get_value()).to_int()) );
+                       found_dummy = same_value_index;
+                       for(size_t j=0; j < e.nops(); j++)
+                               if (j != ind) 
+                                       if (same_value_index) 
+                                               S = S * e.op(j);
+                                       else {
+                                               exvector ind_vec = ex_to<indexed>(e.op(j)).get_dummy_indices(ex_to<indexed>(e.op(ind)));
+                                               if (ind_vec.size() > 0) {
+                                                       found_dummy = true;
+                                                       exvector::const_iterator it = ind_vec.begin(), itend = ind_vec.end();
+                                                       while (it != itend) {
+                                                               S = S * e.op(j).subs(lst(ex_to<varidx>(*it) == ival, ex_to<varidx>(*it).toggle_variance() == ival), subs_options::no_pattern);
+                                                               ++it;
+                                                       }
+                                               } else
+                                                       S = S * e.op(j);
+                                       }
+                       return (found_dummy ? S : 0);
+               } else
+                       throw(std::invalid_argument("Expression is not a Clifford vector to the given units"));
+       } else if (e.is_zero()) 
+               return e;
+       else if (is_a<clifford>(e) && ex_to<clifford>(e).same_metric(c))
+               if ( ex_to<varidx>(e.op(1)).is_numeric() &&
+                        (ival != ex_to<numeric>(ex_to<varidx>(e.op(1)).get_value()).to_int()) )
+                       return 0;
+               else 
+                       return 1;
+       else
+               throw(std::invalid_argument("Expression is not usable as a Clifford vector"));
+}
+
+
+lst clifford_to_lst(const ex & e, const ex & c, bool algebraic)
+{
+       GINAC_ASSERT(is_a<clifford>(c));
+       varidx mu = ex_to<varidx>(c.op(1));
+       if (! mu.is_dim_numeric())
+               throw(std::invalid_argument("Index should have a numeric dimension"));
+       unsigned int D = ex_to<numeric>(mu.get_dim()).to_int();
+
+       if (algebraic) // check if algebraic method is applicable
+               for (unsigned int i = 0; i < D; i++) 
+                       if (pow(c.subs(mu == i), 2).is_zero() 
+                               or (not is_a<numeric>(pow(c.subs(mu == i), 2))))
+                               algebraic = false;
+       lst V; 
+       if (algebraic) 
+               for (unsigned int i = 0; i < D; i++) 
+                       V.append(remove_dirac_ONE(
+                                               simplify_indexed(canonicalize_clifford(e * c.subs(mu == i) +  c.subs(mu == i) * e))
+                                               / (2*pow(c.subs(mu == i), 2))));
+       else {
+               ex e1 = canonicalize_clifford(e);
+               for (unsigned int i = 0; i < D; i++) 
+                       V.append(get_clifford_comp(e1, c.subs(c.op(1) == i)));
+       }
+       return V;
+}
+
+
+ex clifford_moebius_map(const ex & a, const ex & b, const ex & c, const ex & d, const ex & v, const ex & G, unsigned char rl)
+{
+       ex x, D, cu;
+       
+       if (! is_a<matrix>(v) && ! is_a<lst>(v))
+               throw(std::invalid_argument("parameter v should be either vector or list"));
+       
+       if (is_a<clifford>(G)) {
+               cu = G;
+       } else {
+               if (is_a<indexed>(G)) 
+                       D = ex_to<varidx>(G.op(1)).get_dim();
+               else if (is_a<matrix>(G)) 
+                       D = ex_to<matrix>(G).rows(); 
+               else throw(std::invalid_argument("metric should be an indexed object, matrix, or a Clifford unit"));
+               
+               varidx mu((new symbol)->setflag(status_flags::dynallocated), D);
+               cu = clifford_unit(mu, G, rl);
+       }
+
+       x = lst_to_clifford(v, cu); 
+       ex e = simplify_indexed(canonicalize_clifford((a * x + b) * clifford_inverse(c * x + d)));
+       return clifford_to_lst(e, cu, false);
+}
+
+ex clifford_moebius_map(const ex & M, const ex & v, const ex & G, unsigned char rl)
+{
+       if (is_a<matrix>(M)) 
+               return clifford_moebius_map(ex_to<matrix>(M)(0,0), ex_to<matrix>(M)(0,1), 
+                                               ex_to<matrix>(M)(1,0), ex_to<matrix>(M)(1,1), v, G, rl);
+       else
+               throw(std::invalid_argument("parameter M should be a matrix"));
+}
+
 } // namespace GiNaC