]> www.ginac.de Git - ginac.git/blobdiff - ginac/clifford.cpp
Finalize 1.7.6 release.
[ginac.git] / ginac / clifford.cpp
index 99c5a65dc355ee81b9eff995539a9f25f89b9636..860cce464acb1a81a8a308420c2bdc414e999440 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's clifford algebra (Dirac gamma) objects. */
 
 /*
- *  GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
 #include "archive.h"
 #include "utils.h"
 
+#include <stdexcept>
+
 namespace GiNaC {
 
 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(clifford, indexed,
   print_func<print_dflt>(&clifford::do_print_dflt).
-  print_func<print_latex>(&clifford::do_print_latex))
+  print_func<print_latex>(&clifford::do_print_latex).
+  print_func<print_tree>(&clifford::do_print_tree))
 
 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracone, tensor,
   print_func<print_dflt>(&diracone::do_print).
@@ -72,15 +75,8 @@ GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(diracgammaR, tensor,
 // default constructors
 //////////
 
-static ex default_metric()
+clifford::clifford() : representation_label(0), metric(0), commutator_sign(-1)
 {
-       static ex m = (new minkmetric)->setflag(status_flags::dynallocated);
-       return m;
-}
-
-clifford::clifford() : representation_label(0), metric(default_metric())
-{
-       tinfo_key = TINFO_clifford;
 }
 
 DEFAULT_CTOR(diracone)
@@ -97,41 +93,45 @@ DEFAULT_CTOR(diracgammaR)
 /** Construct object without any indices. This constructor is for internal
  *  use only. Use the dirac_ONE() function instead.
  *  @see dirac_ONE */
-clifford::clifford(const ex & b, unsigned char rl) : inherited(b), representation_label(rl), metric(0)
+clifford::clifford(const ex & b, unsigned char rl) : inherited(b), representation_label(rl), metric(0), commutator_sign(-1)
 {
-       tinfo_key = TINFO_clifford;
 }
 
 /** Construct object with one Lorentz index. This constructor is for internal
  *  use only. Use the clifford_unit() or dirac_gamma() functions instead.
  *  @see clifford_unit
  *  @see dirac_gamma */
-clifford::clifford(const ex & b, const ex & mu, const ex & metr, unsigned char rl) : inherited(b, mu), representation_label(rl), metric(metr)
+clifford::clifford(const ex & b, const ex & mu, const ex & metr, unsigned char rl, int comm_sign) : inherited(b, mu), representation_label(rl), metric(metr), commutator_sign(comm_sign)
 {
-       GINAC_ASSERT(is_a<varidx>(mu));
-       tinfo_key = TINFO_clifford;
+       GINAC_ASSERT(is_a<idx>(mu));
 }
 
-clifford::clifford(unsigned char rl, const ex & metr, const exvector & v, bool discardable) : inherited(not_symmetric(), v, discardable), representation_label(rl), metric(metr)
+clifford::clifford(unsigned char rl, const ex & metr, int comm_sign, const exvector & v) : inherited(not_symmetric(), v), representation_label(rl), metric(metr), commutator_sign(comm_sign)
 {
-       tinfo_key = TINFO_clifford;
 }
 
-clifford::clifford(unsigned char rl, const ex & metr, std::auto_ptr<exvector> vp) : inherited(not_symmetric(), vp), representation_label(rl), metric(metr)
+clifford::clifford(unsigned char rl, const ex & metr, int comm_sign, exvector && v) : inherited(not_symmetric(), std::move(v)), representation_label(rl), metric(metr), commutator_sign(comm_sign)
 {
-       tinfo_key = TINFO_clifford;
+}
+
+return_type_t clifford::return_type_tinfo() const
+{
+       return make_return_type_t<clifford>(representation_label);
 }
 
 //////////
 // archiving
 //////////
 
-clifford::clifford(const archive_node & n, lst & sym_lst) : inherited(n, sym_lst)
+void clifford::read_archive(const archive_node& n, lst& sym_lst)
 {
+       inherited::read_archive(n, sym_lst);
        unsigned rl;
        n.find_unsigned("label", rl);
        representation_label = rl;
        n.find_ex("metric", metric, sym_lst);
+       n.find_unsigned("commutator_sign+1", rl);
+       commutator_sign = rl - 1;
 }
 
 void clifford::archive(archive_node & n) const
@@ -139,33 +139,96 @@ void clifford::archive(archive_node & n) const
        inherited::archive(n);
        n.add_unsigned("label", representation_label);
        n.add_ex("metric", metric);
+       n.add_unsigned("commutator_sign+1", commutator_sign+1);
+}
+
+GINAC_BIND_UNARCHIVER(clifford);
+GINAC_BIND_UNARCHIVER(cliffordunit);
+GINAC_BIND_UNARCHIVER(diracone);
+GINAC_BIND_UNARCHIVER(diracgamma);
+GINAC_BIND_UNARCHIVER(diracgamma5);
+GINAC_BIND_UNARCHIVER(diracgammaL);
+GINAC_BIND_UNARCHIVER(diracgammaR);
+
+
+ex clifford::get_metric(const ex & i, const ex & j, bool symmetrised) const
+{
+       if (is_a<indexed>(metric)) {
+               if (symmetrised && !(ex_to<symmetry>(ex_to<indexed>(metric).get_symmetry()).has_symmetry())) {
+                       if (is_a<matrix>(metric.op(0))) {
+                               return indexed((ex_to<matrix>(metric.op(0)).add(ex_to<matrix>(metric.op(0)).transpose())).mul(numeric(1, 2)),
+                                              symmetric2(), i, j);
+                       } else {
+                               return simplify_indexed(indexed(metric.op(0)*_ex1_2, i, j) + indexed(metric.op(0)*_ex1_2, j, i));
+                       }
+               } else {
+                       return metric.subs(lst{metric.op(1) == i, metric.op(2) == j}, subs_options::no_pattern);
+               }
+       } else {
+               exvector indices = metric.get_free_indices();
+               if (symmetrised)
+                       return _ex1_2*simplify_indexed(metric.subs(lst{indices[0] == i, indices[1] == j}, subs_options::no_pattern)
+                                                    + metric.subs(lst{indices[0] == j, indices[1] == i}, subs_options::no_pattern));
+               else
+                       return metric.subs(lst{indices[0] == i, indices[1] == j}, subs_options::no_pattern);
+       }
 }
 
-DEFAULT_UNARCHIVE(clifford)
-DEFAULT_ARCHIVING(diracone)
-DEFAULT_ARCHIVING(cliffordunit)
-DEFAULT_ARCHIVING(diracgamma)
-DEFAULT_ARCHIVING(diracgamma5)
-DEFAULT_ARCHIVING(diracgammaL)
-DEFAULT_ARCHIVING(diracgammaR)
+bool clifford::same_metric(const ex & other) const
+{
+       ex metr;
+       if (is_a<clifford>(other)) 
+               metr = ex_to<clifford>(other).get_metric();
+       else 
+               metr = other;
+
+       if (is_a<indexed>(metr))
+               return metr.op(0).is_equal(get_metric().op(0));
+       else {
+               exvector indices = metr.get_free_indices();
+               return  (indices.size() == 2) 
+                       && simplify_indexed(get_metric(indices[0], indices[1])-metr).is_zero();
+       }
+}
 
 //////////
 // functions overriding virtual functions from base classes
 //////////
 
-ex clifford::get_metric(const ex & i, const ex & j) const
+ex clifford::op(size_t i) const
 {
-       return indexed(metric, symmetric2(), i, j);
+       GINAC_ASSERT(i<nops());
+       if (nops()-i == 1)
+               return representation_label;
+       else 
+               return inherited::op(i);
 }
 
-bool clifford::same_metric(const ex & other) const
+ex & clifford::let_op(size_t i)
 {
-       if (is_a<clifford>(other)) {
-               return get_metric().is_equal(ex_to<clifford>(other).get_metric());
-       } else if (is_a<indexed>(other)) {
-               return get_metric(other.op(1), other.op(2)).is_equal(other);
-       } else
-               return false;
+        GINAC_ASSERT(i<nops());
+
+       static ex rl = numeric(representation_label);
+       ensure_if_modifiable();
+       if (nops()-i == 1)
+               return rl;
+       else 
+               return inherited::let_op(i);
+}
+
+ex clifford::subs(const exmap & m, unsigned options) const
+{
+       ex subsed = inherited::subs(m, options);
+       if(is_a<clifford>(subsed)) {
+               ex prevmetric = ex_to<clifford>(subsed).metric;
+               ex newmetric = prevmetric.subs(m, options);
+               if(!are_ex_trivially_equal(prevmetric, newmetric)) {
+                       clifford c = ex_to<clifford>(subsed);
+                       c.metric = newmetric;
+                       subsed = c;
+               }
+       }
+       return subsed;
 }
 
 int clifford::compare_same_type(const basic & other) const
@@ -186,7 +249,7 @@ bool clifford::match_same_type(const basic & other) const
        GINAC_ASSERT(is_a<clifford>(other));
        const clifford &o = static_cast<const clifford &>(other);
 
-       return (representation_label == o.representation_label) && same_metric(o);
+       return ((representation_label == o.representation_label) && (commutator_sign == o.get_commutator_sign()) && same_metric(o));
 }
 
 static bool is_dirac_slash(const ex & seq0)
@@ -202,8 +265,21 @@ void clifford::do_print_dflt(const print_dflt & c, unsigned level) const
        if (is_dirac_slash(seq[0])) {
                seq[0].print(c, precedence());
                c.s << "\\";
-       } else
-               this->print_dispatch<inherited>(c, level);
+       } else { // We do not print representation label if it is 0
+               if (representation_label == 0) {
+                       this->print_dispatch<inherited>(c, level);
+               } else { // otherwise we put it before indices in square brackets; the code is borrowed from indexed.cpp 
+                       if (precedence() <= level) {
+                               c.s << '(';
+                       }
+                       seq[0].print(c, precedence());
+                       c.s << '[' << int(representation_label) << ']';
+                       printindices(c, level);
+                       if (precedence() <= level) {
+                               c.s << ')';
+                       }
+               }
+       }
 }
 
 void clifford::do_print_latex(const print_latex & c, unsigned level) const
@@ -219,6 +295,17 @@ void clifford::do_print_latex(const print_latex & c, unsigned level) const
        }
 }
 
+void clifford::do_print_tree(const print_tree & c, unsigned level) const
+{
+       c.s << std::string(level, ' ') << class_name() << " @" << this
+           << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
+           << ", " << seq.size()-1 << " indices"
+           << ", symmetry=" << symtree << std::endl;
+       metric.print(c, level + c.delta_indent);
+       seq[0].print(c, level + c.delta_indent);
+       printindices(c, level + c.delta_indent);
+}
+
 DEFAULT_COMPARE(diracone)
 DEFAULT_COMPARE(cliffordunit)
 DEFAULT_COMPARE(diracgamma)
@@ -237,7 +324,7 @@ DEFAULT_PRINT_LATEX(diracgammaR, "gammaR", "{\\gamma_R}")
 static void base_and_index(const ex & c, ex & b, ex & i)
 {
        GINAC_ASSERT(is_a<clifford>(c));
-       GINAC_ASSERT(c.nops() == 2);
+       GINAC_ASSERT(c.nops() == 2+1);
 
        if (is_a<cliffordunit>(c.op(0))) { // proper dirac gamma object or clifford unit
                i = c.op(1);
@@ -246,14 +333,14 @@ static void base_and_index(const ex & c, ex & b, ex & i)
                i = _ex0;
                b = _ex1;
        } else { // slash object, generate new dummy index
-               varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to<idx>(c.op(1)).get_dim());
+               varidx ix(dynallocate<symbol>(), ex_to<idx>(c.op(1)).get_dim());
                b = indexed(c.op(0), ix.toggle_variance());
                i = ix;
        }
 }
 
 /** Predicate for finding non-clifford objects. */
-struct is_not_a_clifford : public std::unary_function<ex, bool> {
+struct is_not_a_clifford {
        bool operator()(const ex & e)
        {
                return !is_a<clifford>(e);
@@ -274,7 +361,7 @@ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other
 
        if (is_a<clifford>(*other)) {
 
-               // Contraction only makes sense if the represenation labels are equal
+               // Contraction only makes sense if the representation labels are equal
                if (ex_to<clifford>(*other).get_representation_label() != rl)
                        return false;
 
@@ -324,7 +411,7 @@ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other
                        if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
                                return false;
 
-                       *self = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(other), std::reverse_iterator<exvector::const_iterator>(self + 1)), true);
+                       *self = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(other), std::reverse_iterator<exvector::const_iterator>(self + 1)));
                        std::fill(self + 1, other, _ex1);
                        *other = _ex_2;
                        return true;
@@ -336,9 +423,9 @@ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other
                        if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
                                return false;
 
-                       exvector::iterator next_to_last = other - 1;
-                       ex S = ncmul(exvector(self + 1, next_to_last), true);
-                       ex SR = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(next_to_last), std::reverse_iterator<exvector::const_iterator>(self + 1)), true);
+                       auto next_to_last = other - 1;
+                       ex S = ncmul(exvector(self + 1, next_to_last));
+                       ex SR = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(next_to_last), std::reverse_iterator<exvector::const_iterator>(self + 1)));
 
                        *self = (*next_to_last) * S + SR * (*next_to_last);
                        std::fill(self + 1, other, _ex1);
@@ -352,8 +439,8 @@ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other
                        if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
                                return false;
 
-                       exvector::iterator next_to_last = other - 1;
-                       ex S = ncmul(exvector(self + 1, next_to_last), true);
+                       auto next_to_last = other - 1;
+                       ex S = ncmul(exvector(self + 1, next_to_last));
 
                        *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last);
                        std::fill(self + 1, other + 1, _ex1);
@@ -371,21 +458,6 @@ bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other
        return false;
 }
 
-/** An utility function looking for a given metric within an exvector,
- *  used in cliffordunit::contract_with(). */
-static int find_same_metric(exvector & v, ex & c)
-{
-       for (int i=0; i<v.size();i++) {
-               if (!is_a<clifford>(v[i]) && is_a<indexed>(v[i])
-                   && ex_to<clifford>(c).same_metric(v[i]) 
-                   && (ex_to<varidx>(c.op(1)) == ex_to<indexed>(v[i]).get_indices()[0]
-                       || ex_to<varidx>(c.op(1)).toggle_variance() == ex_to<indexed>(v[i]).get_indices()[0])) {
-                       return ++i; // next to found
-               }
-       }
-       return 0; //nothing found
-}
-
 /** Contraction of a Clifford unit with something else. */
 bool cliffordunit::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
 {
@@ -396,77 +468,58 @@ bool cliffordunit::contract_with(exvector::iterator self, exvector::iterator oth
        unsigned char rl = unit.get_representation_label();
 
        if (is_a<clifford>(*other)) {
-               // Contraction only makes sense if the represenation labels are equal
+               // Contraction only makes sense if the representation labels are equal
                // and the metrics are the same
                if ((ex_to<clifford>(*other).get_representation_label() != rl) 
                    && unit.same_metric(*other))
                        return false;
 
-               // Find if a previous contraction produces the square of self
-               int prev_square = find_same_metric(v, self[0]);
-               varidx d((new symbol)->setflag(status_flags::dynallocated), ex_to<idx>(self->op(1)).get_dim());
-               ex squared_metric = unit.get_metric(self->op(1), d) * unit.get_metric(d.toggle_variance(), other->op(1));
+               auto before_other = other - 1;
+               ex mu = self->op(1);
+               ex mu_toggle = other->op(1);
+               ex alpha = before_other->op(1);
 
                // e~mu e.mu = Tr ONE
                if (other - self == 1) {
-                       if (prev_square != 0) {
-                               *self = squared_metric;
-                               v[prev_square-1] = _ex1;
-                       } else
-                               *self = unit.get_metric(self->op(1), other->op(1));
+                       *self = unit.get_metric(mu, mu_toggle, true);
                        *other = dirac_ONE(rl);
                        return true;
 
-               // e~mu e~alpha e.mu = (2e~alpha^2-Tr) e~alpha
-               } else if (other - self == 2
-                       && is_a<clifford>(self[1])) {
+               } else if (other - self == 2) {
+                       if (is_a<clifford>(*before_other) && ex_to<clifford>(*before_other).get_representation_label() == rl) {
+                               // e~mu e~alpha e.mu = 2*e~mu B(alpha, mu.toggle_variance())-Tr(B) e~alpha
+                               *self = 2 * (*self) * unit.get_metric(alpha, mu_toggle, true) - unit.get_metric(mu, mu_toggle, true) * (*before_other);
+                               *before_other = _ex1;
+                               *other = _ex1;
+                               return true;
 
-                       const ex & ia = self[1].op(1);
-                       const ex & ib = self[1].op(1);
-                       if (is_a<tensmetric>(unit.get_metric()))
-                               *self = 2 - unit.get_metric(self->op(1), other->op(1));
-                       else if (prev_square != 0) {
-                               *self = 2-squared_metric;
-                               v[prev_square-1] = _ex1;
-                       } else 
-                               *self = 2*unit.get_metric(ia, ib) - unit.get_metric(self->op(1), other->op(1));
-                       *other = _ex1;
-                       return true;
-
-               // e~mu S e~alpha e.mu = 2 e~alpha^3 S - e~mu S e.mu e~alpha
+                       } else {
+                               // e~mu S e.mu = Tr S ONE
+                               *self = unit.get_metric(mu, mu_toggle, true);
+                               *other = dirac_ONE(rl);
+                               return true;
+                       }
+               } else {
+               // e~mu S e~alpha e.mu = 2 e~mu S B(alpha, mu.toggle_variance()) - e~mu S e.mu e~alpha
                // (commutate contracted indices towards each other, simplify_indexed()
                // will re-expand and re-run the simplification)
-               } else {
-                       exvector::iterator it = self + 1, next_to_last = other - 1;
-                       while (it != other) {
-                               if (!is_a<clifford>(*it))
-                                       return false;
-                               ++it;
+                       if (std::find_if(self + 1, other, is_not_a_clifford()) != other) {
+                               return false;
                        }
+                       
+                       ex S = ncmul(exvector(self + 1, before_other));
 
-                       it = self + 1;
-                       ex S = _ex1;
-                       while (it != next_to_last) {
-                               S *= *it;
-                               *it++ = _ex1;
+                       if (is_a<clifford>(*before_other) && ex_to<clifford>(*before_other).get_representation_label() == rl) {
+                               *self = 2 * (*self) * S * unit.get_metric(alpha, mu_toggle, true) - (*self) * S * (*other) * (*before_other);
+                       } else {
+                               // simply commutes
+                               *self = (*self) * S * (*other) * (*before_other);
                        }
-
-                       const ex & ia = next_to_last->op(1);
-                       const ex & ib = next_to_last->op(1);
-                       if (is_a<tensmetric>(unit.get_metric()))
-                               *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last);
-                       else if (prev_square != 0) {
-                               *self = 2 * (*next_to_last) * S  - (*self) * S * (*other) * (*next_to_last)*unit.get_metric(self->op(1),self->op(1));
-                               v[prev_square-1] = _ex1;
-                       } else 
-                               *self = 2 * (*next_to_last) * S* unit.get_metric(ia,ib) - (*self) * S * (*other) * (*next_to_last);
-                       *next_to_last = _ex1;
-                       *other = _ex1;
+                               
+                       std::fill(self + 1, other + 1, _ex1);
                        return true;
                }
-
-       } 
-
+       }
        return false;
 }
 
@@ -479,11 +532,9 @@ ex clifford::eval_ncmul(const exvector & v) const
        s.reserve(v.size());
 
        // Remove superfluous ONEs
-       exvector::const_iterator cit = v.begin(), citend = v.end();
-       while (cit != citend) {
-               if (!is_a<clifford>(*cit) || !is_a<diracone>(cit->op(0)))
-                       s.push_back(*cit);
-               cit++;
+       for (auto & it : v) {
+               if (!is_a<clifford>(it) || !is_a<diracone>(it.op(0)))
+                       s.push_back(it);
        }
 
        bool something_changed = false;
@@ -491,11 +542,11 @@ ex clifford::eval_ncmul(const exvector & v) const
 
        // Anticommutate gamma5/L/R's to the front
        if (s.size() >= 2) {
-               exvector::iterator first = s.begin(), next_to_last = s.end() - 2;
+               auto first = s.begin(), next_to_last = s.end() - 2;
                while (true) {
-                       exvector::iterator it = next_to_last;
+                       auto it = next_to_last;
                        while (true) {
-                               exvector::iterator it2 = it + 1;
+                               auto it2 = it + 1;
                                if (is_a<clifford>(*it) && is_a<clifford>(*it2)) {
                                        ex e1 = it->op(0), e2 = it2->op(0);
 
@@ -575,12 +626,14 @@ ex clifford::eval_ncmul(const exvector & v) const
                        bool a_is_cliffordunit = is_a<cliffordunit>(ag);
                        bool b_is_cliffordunit =  is_a<cliffordunit>(bg);
 
-                       if (a_is_cliffordunit && b_is_cliffordunit && ex_to<clifford>(a).same_metric(b)) {
-
+                       if (a_is_cliffordunit && b_is_cliffordunit && ex_to<clifford>(a).same_metric(b)
+                               && (ex_to<clifford>(a).get_commutator_sign() == -1)) {
+                               // This is done only for Clifford algebras 
+                               
                                const ex & ia = a.op(1);
                                const ex & ib = b.op(1);
                                if (ia.is_equal(ib)) { // gamma~alpha gamma~alpha -> g~alpha~alpha
-                                       a = ex_to<clifford>(a).get_metric(ia, ib);
+                                       a = ex_to<clifford>(a).get_metric(ia, ib, true);
                                        b = dirac_ONE(representation_label);
                                        something_changed = true;
                                }
@@ -620,7 +673,7 @@ ex clifford::eval_ncmul(const exvector & v) const
                        } else if (!a_is_cliffordunit && !b_is_cliffordunit && ag.is_equal(bg)) {
 
                                // a\ a\ -> a^2
-                               varidx ix((new symbol)->setflag(status_flags::dynallocated), ex_to<idx>(a.op(1)).minimal_dim(ex_to<idx>(b.op(1))));
+                               varidx ix(dynallocate<symbol>(), ex_to<idx>(a.op(1)).minimal_dim(ex_to<idx>(b.op(1))));
                                
                                a = indexed(ag, ix) * indexed(ag, ix.toggle_variance());
                                b = dirac_ONE(representation_label);
@@ -630,7 +683,7 @@ ex clifford::eval_ncmul(const exvector & v) const
        }
 
        if (s.empty())
-               return clifford(diracone(), representation_label) * sign;
+               return dirac_ONE(representation_label) * sign;
        if (something_changed)
                return reeval_ncmul(s) * sign;
        else
@@ -639,12 +692,12 @@ ex clifford::eval_ncmul(const exvector & v) const
 
 ex clifford::thiscontainer(const exvector & v) const
 {
-       return clifford(representation_label, get_metric(), v);
+       return clifford(representation_label, metric, commutator_sign, v);
 }
 
-ex clifford::thiscontainer(std::auto_ptr<exvector> vp) const
+ex clifford::thiscontainer(exvector && v) const
 {
-       return clifford(representation_label, get_metric(), vp);
+       return clifford(representation_label, metric, commutator_sign, std::move(v));
 }
 
 ex diracgamma5::conjugate() const
@@ -654,12 +707,12 @@ ex diracgamma5::conjugate() const
 
 ex diracgammaL::conjugate() const
 {
-       return (new diracgammaR)->setflag(status_flags::dynallocated);
+       return dynallocate<diracgammaR>();
 }
 
 ex diracgammaR::conjugate() const
 {
-       return (new diracgammaL)->setflag(status_flags::dynallocated);
+       return dynallocate<diracgammaL>();
 }
 
 //////////
@@ -668,50 +721,90 @@ ex diracgammaR::conjugate() const
 
 ex dirac_ONE(unsigned char rl)
 {
-       static ex ONE = (new diracone)->setflag(status_flags::dynallocated);
+       static ex ONE = dynallocate<diracone>();
        return clifford(ONE, rl);
 }
 
+static unsigned get_dim_uint(const ex& e)
+{
+       if (!is_a<idx>(e))
+               throw std::invalid_argument("get_dim_uint: argument is not an index");
+       ex dim = ex_to<idx>(e).get_dim();
+       if (!dim.info(info_flags::posint))
+               throw std::invalid_argument("get_dim_uint: dimension of index should be a positive integer");
+       unsigned d = ex_to<numeric>(dim).to_int();
+       return d;
+}
+
 ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl)
 {
-       static ex unit = (new cliffordunit)->setflag(status_flags::dynallocated);
+       ex unit = dynallocate<cliffordunit>();
 
-       if (!is_a<varidx>(mu))
-               throw(std::invalid_argument("index of Clifford unit must be of type varidx"));
+       if (!is_a<idx>(mu))
+               throw(std::invalid_argument("clifford_unit(): index of Clifford unit must be of type idx or varidx"));
 
-       if (is_a<indexed>(metr))
-               return clifford(unit, mu, metr.op(0), rl);
-       else if(is_a<tensmetric>(metr) || is_a<matrix>(metr)) 
+       exvector indices = metr.get_free_indices();
+
+       if (indices.size() == 2) {
                return clifford(unit, mu, metr, rl);
-       else
-               throw(std::invalid_argument("metric for Clifford unit must be of type indexed, tensormetric or matrix"));
+       } else if (is_a<matrix>(metr)) {
+               matrix M = ex_to<matrix>(metr);
+               unsigned n = M.rows();
+               bool symmetric = true;
+
+               //static idx xi(dynallocate<symbol>(), n),
+               //           chi(dynallocate<symbol>(), n);
+               idx xi(dynallocate<symbol>(), n),
+                   chi(dynallocate<symbol>(), n);
+               if ((n ==  M.cols()) && (n == get_dim_uint(mu))) {
+                       for (unsigned i = 0; i < n; i++) {
+                               for (unsigned j = i+1; j < n; j++) {
+                                       if (!M(i, j).is_equal(M(j, i))) {
+                                               symmetric = false;
+                                       }
+                               }
+                       }
+                       return clifford(unit, mu, indexed(metr, symmetric?symmetric2():not_symmetric(), xi, chi), rl);
+               } else {
+                       throw(std::invalid_argument("clifford_unit(): metric for Clifford unit must be a square matrix with the same dimensions as index"));
+               }
+       } else if (indices.size() == 0) { // a tensor or other expression without indices
+               //static varidx xi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim()),
+               //              chi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim());
+               varidx xi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim()),
+                      chi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim());
+               return clifford(unit, mu, indexed(metr, xi, chi), rl);
+       }  else 
+               throw(std::invalid_argument("clifford_unit(): metric for Clifford unit must be of type tensor, matrix or an expression with two free indices"));
 }
 
 ex dirac_gamma(const ex & mu, unsigned char rl)
 {
-       static ex gamma = (new diracgamma)->setflag(status_flags::dynallocated);
+       static ex gamma = dynallocate<diracgamma>();
 
        if (!is_a<varidx>(mu))
-               throw(std::invalid_argument("index of Dirac gamma must be of type varidx"));
+               throw(std::invalid_argument("dirac_gamma(): index of Dirac gamma must be of type varidx"));
 
-       return clifford(gamma, mu, default_metric(), rl);
+       static varidx xi(dynallocate<symbol>(), ex_to<varidx>(mu).get_dim()),
+                     chi(dynallocate<symbol>(), ex_to<varidx>(mu).get_dim());
+       return clifford(gamma, mu, indexed(dynallocate<minkmetric>(), symmetric2(), xi, chi), rl);
 }
 
 ex dirac_gamma5(unsigned char rl)
 {
-       static ex gamma5 = (new diracgamma5)->setflag(status_flags::dynallocated);
+       static ex gamma5 = dynallocate<diracgamma5>();
        return clifford(gamma5, rl);
 }
 
 ex dirac_gammaL(unsigned char rl)
 {
-       static ex gammaL = (new diracgammaL)->setflag(status_flags::dynallocated);
+       static ex gammaL = dynallocate<diracgammaL>();
        return clifford(gammaL, rl);
 }
 
 ex dirac_gammaR(unsigned char rl)
 {
-       static ex gammaR = (new diracgammaR)->setflag(status_flags::dynallocated);
+       static ex gammaR = dynallocate<diracgammaR>();
        return clifford(gammaR, rl);
 }
 
@@ -720,28 +813,17 @@ ex dirac_slash(const ex & e, const ex & dim, unsigned char rl)
        // Slashed vectors are actually stored as a clifford object with the
        // vector as its base expression and a (dummy) index that just serves
        // for storing the space dimensionality
-       return clifford(e, varidx(0, dim), default_metric(), rl);
-}
 
-/** Check whether a given tinfo key (as returned by return_type_tinfo()
- *  is that of a clifford object with the specified representation label. */
-static bool is_clifford_tinfo(unsigned ti, unsigned char rl)
-{
-       return ti == (TINFO_clifford + rl);
-}
-
-/** Check whether a given tinfo key (as returned by return_type_tinfo()
- *  is that of a clifford object (with an arbitrary representation label). */
-static bool is_clifford_tinfo(unsigned ti)
-{
-       return (ti & ~0xff) == TINFO_clifford;
+       static varidx xi(dynallocate<symbol>(), dim),
+                     chi(dynallocate<symbol>(), dim);
+       return clifford(e, varidx(0, dim), indexed(dynallocate<minkmetric>(), symmetric2(), xi, chi), rl);
 }
 
 /** Extract representation label from tinfo key (as returned by
  *  return_type_tinfo()). */
-static unsigned char get_representation_label(unsigned ti)
+static unsigned char get_representation_label(const return_type_t& ti)
 {
-       return ti & 0xff;
+       return (unsigned char)ti.rl;
 }
 
 /** Take trace of a string of an even number of Dirac gammas given a vector
@@ -821,10 +903,10 @@ ex dirac_trace(const ex & e, const std::set<unsigned char> & rls, const ex & trO
                        return e;
 
                // Substitute gammaL/R and expand product, if necessary
-               ex e_expanded = e.subs(lst(
+               ex e_expanded = e.subs(lst{
                        dirac_gammaL(rl) == (dirac_ONE(rl)-dirac_gamma5(rl))/2,
                        dirac_gammaR(rl) == (dirac_ONE(rl)+dirac_gamma5(rl))/2
-               ), subs_options::no_pattern).expand();
+               }, subs_options::no_pattern).expand();
                if (!is_a<ncmul>(e_expanded))
                        return dirac_trace(e_expanded, rls, trONE);
 
@@ -850,7 +932,7 @@ ex dirac_trace(const ex & e, const std::set<unsigned char> & rls, const ex & trO
                                return trONE * I * (lorentz_eps(ex_to<idx>(i1).replace_dim(_ex4), ex_to<idx>(i2).replace_dim(_ex4), ex_to<idx>(i3).replace_dim(_ex4), ex_to<idx>(i4).replace_dim(_ex4)) * b1 * b2 * b3 * b4).simplify_indexed();
                        }
 
-                       // Tr gamma5 S_2k =
+                       // Tr gamma5 S_2k =
                        //   I/4! * epsilon0123.mu1.mu2.mu3.mu4 * Tr gamma.mu1 gamma.mu2 gamma.mu3 gamma.mu4 S_2k
                        // (the epsilon is always 4-dimensional)
                        exvector ix(num-1), bv(num-1);
@@ -921,9 +1003,9 @@ ex dirac_trace(const ex & e, const lst & rll, const ex & trONE)
 {
        // Convert list to set
        std::set<unsigned char> rls;
-       for (lst::const_iterator i = rll.begin(); i != rll.end(); ++i) {
-               if (i->info(info_flags::nonnegint))
-                       rls.insert(ex_to<numeric>(*i).to_int());
+       for (const auto & i : rll) {
+               if (i.info(info_flags::nonnegint))
+                       rls.insert(ex_to<numeric>(i).to_int());
        }
 
        return dirac_trace(e, rls, trONE);
@@ -944,17 +1026,17 @@ ex canonicalize_clifford(const ex & e_)
        pointer_to_map_function fcn(canonicalize_clifford);
 
        if (is_a<matrix>(e_)    // || is_a<pseries>(e) || is_a<integral>(e)
-               || is_a<lst>(e_)) {
+               || e_.info(info_flags::list)) {
                return e_.map(fcn);
        } else {
                ex e=simplify_indexed(e_);
                // Scan for any ncmul objects
                exmap srl;
                ex aux = e.to_rational(srl);
-               for (exmap::iterator i = srl.begin(); i != srl.end(); ++i) {
+               for (auto & i : srl) {
 
-                       ex lhs = i->first;
-                       ex rhs = i->second;
+                       ex lhs = i.first;
+                       ex rhs = i.second;
 
                        if (is_exactly_a<ncmul>(rhs)
                                        && rhs.return_type() == return_types::noncommutative
@@ -963,7 +1045,7 @@ ex canonicalize_clifford(const ex & e_)
                                // Expand product, if necessary
                                ex rhs_expanded = rhs.expand();
                                if (!is_a<ncmul>(rhs_expanded)) {
-                                       i->second = canonicalize_clifford(rhs_expanded);
+                                       i.second = canonicalize_clifford(rhs_expanded);
                                        continue;
 
                                } else if (!is_a<clifford>(rhs.op(0)))
@@ -975,22 +1057,25 @@ ex canonicalize_clifford(const ex & e_)
                                        v.push_back(rhs.op(j));
 
                                // Stupid recursive bubble sort because we only want to swap adjacent gammas
-                               exvector::iterator it = v.begin(), next_to_last = v.end() - 1;
+                               auto it = v.begin(), next_to_last = v.end() - 1;
                                if (is_a<diracgamma5>(it->op(0)) || is_a<diracgammaL>(it->op(0)) || is_a<diracgammaR>(it->op(0)))
                                        ++it;
+
                                while (it != next_to_last) {
                                        if (it[0].compare(it[1]) > 0) {
+
                                                ex save0 = it[0], save1 = it[1];
                                                ex b1, i1, b2, i2;
                                                base_and_index(it[0], b1, i1);
                                                base_and_index(it[1], b2, i2);
-                                               it[0] = (ex_to<clifford>(save0).get_metric(i1, i2) * b1 * b2).simplify_indexed();
-                                               it[1] = v.size() == 2 ? _ex2 * dirac_ONE(ex_to<clifford>(it[1]).get_representation_label()) : _ex2;
+                                               // for Clifford algebras (commutator_sign == -1) metric should be symmetrised
+                                               it[0] = (ex_to<clifford>(save0).get_metric(i1, i2, ex_to<clifford>(save0).get_commutator_sign() == -1) * b1 * b2).simplify_indexed();
+                                               it[1] = v.size() ? _ex2 * dirac_ONE(ex_to<clifford>(save0).get_representation_label()) : _ex2;
                                                ex sum = ncmul(v);
                                                it[0] = save1;
                                                it[1] = save0;
-                                               sum -= ncmul(v, true);
-                                               i->second = canonicalize_clifford(sum);
+                                               sum += ex_to<clifford>(save0).get_commutator_sign() * ncmul(std::move(v));
+                                               i.second = canonicalize_clifford(sum);
                                                goto next_sym;
                                        }
                                        ++it;
@@ -1002,13 +1087,54 @@ next_sym:       ;
        }
 }
 
+ex clifford_star_bar(const ex & e, bool do_bar, unsigned options)
+{
+       pointer_to_map_function_2args<bool, unsigned> fcn(clifford_star_bar, do_bar, options | 1);
+
+       // is a child, no need to expand
+       ex e1= (options & 1 ? e : e.expand());
+
+       if (is_a<ncmul>(e1) ) { // reversing order of clifford units
+               exvector ev, cv;
+               ev.reserve(e1.nops());
+               cv.reserve(e1.nops());
+               // separate clifford and non-clifford entries
+               for (int i= 0; i < e1.nops(); ++i) {
+                       if (is_a<clifford>(e1.op(i)) && is_a<cliffordunit>(e1.op(i).op(0)))
+                               cv.push_back(e1.op(i));
+                       else
+                               ev.push_back(e1.op(i));
+               }
+               for (auto i=cv.rbegin(); i!=cv.rend(); ++i) { // reverse order of Clifford units
+                       ev.push_back(i->conjugate());
+               }
+               // For clifford_bar an odd number of clifford units reverts the sign
+               if (do_bar && (cv.size() % 2 == 1))
+                       return -dynallocate<ncmul>(std::move(ev));
+               else
+                       return dynallocate<ncmul>(std::move(ev));
+       } else if (is_a<clifford>(e1) && is_a<cliffordunit>(e1.op(0))) {
+               if (do_bar)
+                       return -e;
+               else
+                       return e;
+       } else if (is_a<power>(e1)) {
+               // apply the procedure to the base of a power
+               return pow(clifford_star_bar(e1.op(0), do_bar, 0), e1.op(1));
+       } else if (is_a<add>(e1) || is_a<mul>(e1) || e.info(info_flags::list)) {
+               // recurse into subexpressions
+               return e1.map(fcn);
+       } else  // nothing meaningful can be done
+               return e;
+}
+
 ex clifford_prime(const ex & e)
 {
        pointer_to_map_function fcn(clifford_prime);
        if (is_a<clifford>(e) && is_a<cliffordunit>(e.op(0))) {
                return -e;
        } else if (is_a<add>(e) || is_a<ncmul>(e) || is_a<mul>(e) //|| is_a<pseries>(e) || is_a<integral>(e)
-                          || is_a<matrix>(e) || is_a<lst>(e)) {
+                          || is_a<matrix>(e) || e.info(info_flags::list)) {
                return e.map(fcn);
        } else if (is_a<power>(e)) {
                return pow(clifford_prime(e.op(0)), e.op(1));
@@ -1016,41 +1142,80 @@ ex clifford_prime(const ex & e)
                return e;
 }
 
-ex remove_dirac_ONE(const ex & e,  unsigned char rl)
+ex remove_dirac_ONE(const ex & e, unsigned char rl, unsigned options)
 {
-       pointer_to_map_function_1arg<unsigned char> fcn(remove_dirac_ONE, rl);
-       if (is_a<clifford>(e) && ex_to<clifford>(e).get_representation_label() >= rl) {
-               if (is_a<diracone>(e.op(0)))
+       pointer_to_map_function_2args<unsigned char, unsigned> fcn(remove_dirac_ONE, rl, options | 1);
+       bool need_reevaluation = false;
+       ex e1 = e;
+       if (! (options & 1) )  { // is not a child
+               if (options & 2)
+                       e1 = expand_dummy_sum(e, true);
+               e1 = canonicalize_clifford(e1);
+       }
+       
+       if (is_a<clifford>(e1) && ex_to<clifford>(e1).get_representation_label() >= rl) {
+               if (is_a<diracone>(e1.op(0)))
                        return 1;
+               else 
+                       throw(std::invalid_argument("remove_dirac_ONE(): expression is a non-scalar Clifford number!"));
+       } else if (is_a<add>(e1) || is_a<ncmul>(e1) || is_a<mul>(e1)  
+                          || is_a<matrix>(e1) || e1.info(info_flags::list)) {
+               if (options & 3) // is a child or was already expanded
+                       return e1.map(fcn);
                else
-                       throw(std::invalid_argument("Expression is a non-scalar Clifford number!"));
-       } else if (is_a<add>(e) || is_a<ncmul>(e) || is_a<mul>(e)  // || is_a<pseries>(e) || is_a<integral>(e)
-                          || is_a<matrix>(e) || is_a<lst>(e)) {
-               return e.map(fcn);
-       } else if (is_a<power>(e)) {
-               return pow(remove_dirac_ONE(e.op(0)), e.op(1));
-       } else
-               return e;
+                       try {
+                               return e1.map(fcn);
+                       } catch (std::exception &p) {
+                               need_reevaluation = true;
+                       }
+       } else if (is_a<power>(e1)) {
+               if (options & 3) // is a child or was already expanded
+                       return pow(remove_dirac_ONE(e1.op(0), rl, options | 1), e1.op(1));
+               else
+                       try {
+                               return pow(remove_dirac_ONE(e1.op(0), rl, options | 1), e1.op(1));
+                       } catch (std::exception &p) {
+                               need_reevaluation = true;
+                       }
+       } 
+       if (need_reevaluation)
+               return remove_dirac_ONE(e, rl, options | 2);
+       return e1;
 }
 
-ex clifford_norm(const ex & e)
+int clifford_max_label(const ex & e, bool ignore_ONE)
 {
-       return sqrt(remove_dirac_ONE(canonicalize_clifford(e * clifford_bar(e)).simplify_indexed()));
+       if (is_a<clifford>(e))
+               if (ignore_ONE && is_a<diracone>(e.op(0)))
+                       return -1;
+               else
+                       return ex_to<clifford>(e).get_representation_label();
+       else {
+               int rl = -1;
+               for (size_t i=0; i < e.nops(); i++) 
+                       rl = (rl > clifford_max_label(e.op(i), ignore_ONE)) ? rl : clifford_max_label(e.op(i), ignore_ONE);
+               return rl;
+       }
 }
 
+ex clifford_norm(const ex & e)
+{
+       return sqrt(remove_dirac_ONE(e * clifford_bar(e)));
+}
+       
 ex clifford_inverse(const ex & e)
 {
        ex norm = clifford_norm(e);
        if (!norm.is_zero())
                return clifford_bar(e) / pow(norm, 2);
        else 
-               throw(std::invalid_argument("Cannot find inverse of Clifford number with zero norm!"));
+               throw(std::invalid_argument("clifford_inverse(): cannot find inverse of Clifford number with zero norm!"));
 }
 
 ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr, unsigned char rl)
 {
        if (!ex_to<idx>(mu).is_dim_numeric())
-               throw(std::invalid_argument("Index should have a numeric dimension"));
+               throw(std::invalid_argument("lst_to_clifford(): Index should have a numeric dimension"));
        ex e = clifford_unit(mu, metr, rl);
        return lst_to_clifford(v, e);
 }
@@ -1059,8 +1224,10 @@ ex lst_to_clifford(const ex & v, const ex & e) {
        unsigned min, max;
 
        if (is_a<clifford>(e)) {
-               varidx mu = ex_to<varidx>(e.op(1));
-               unsigned dim = (ex_to<numeric>(mu.get_dim())).to_int();
+               ex mu = e.op(1);
+               ex mu_toggle
+                       = is_a<varidx>(mu) ? ex_to<varidx>(mu).toggle_variance() : mu;
+               unsigned dim = get_dim_uint(mu);
 
                if (is_a<matrix>(v)) {
                        if (ex_to<matrix>(v).cols() > ex_to<matrix>(v).rows()) {
@@ -1072,102 +1239,133 @@ ex lst_to_clifford(const ex & v, const ex & e) {
                        }
                        if (min == 1) {
                                if (dim == max)
-                                       return indexed(v, ex_to<varidx>(mu).toggle_variance()) * e;
-                               else
-                                       throw(std::invalid_argument("Dimensions of vector and clifford unit mismatch"));
+                                       return indexed(v, mu_toggle) * e;
+                               else if (max - dim == 1) {
+                                       if (ex_to<matrix>(v).cols() > ex_to<matrix>(v).rows())
+                                               return v.op(0) * dirac_ONE(ex_to<clifford>(e).get_representation_label()) + indexed(sub_matrix(ex_to<matrix>(v), 0, 1, 1, dim), mu_toggle) * e;
+                                       else 
+                                               return v.op(0) * dirac_ONE(ex_to<clifford>(e).get_representation_label()) + indexed(sub_matrix(ex_to<matrix>(v), 1, dim, 0, 1), mu_toggle) * e;
+                               } else
+                                       throw(std::invalid_argument("lst_to_clifford(): dimensions of vector and clifford unit mismatch"));
                        } else
-                               throw(std::invalid_argument("First argument should be a vector vector"));
-               } else if (is_a<lst>(v)) {
+                               throw(std::invalid_argument("lst_to_clifford(): first argument should be a vector (nx1 or 1xn matrix)"));
+               } else if (v.info(info_flags::list)) {
                        if (dim == ex_to<lst>(v).nops())
-                               return indexed(matrix(dim, 1, ex_to<lst>(v)), ex_to<varidx>(mu).toggle_variance()) * e;
+                               return indexed(matrix(dim, 1, ex_to<lst>(v)), mu_toggle) * e;
+                       else if (ex_to<lst>(v).nops() - dim == 1)
+                               return v.op(0) * dirac_ONE(ex_to<clifford>(e).get_representation_label()) + indexed(sub_matrix(matrix(dim+1, 1, ex_to<lst>(v)), 1, dim, 0, 1), mu_toggle) * e;
                        else
-                               throw(std::invalid_argument("List length and dimension of clifford unit mismatch"));
+                               throw(std::invalid_argument("lst_to_clifford(): list length and dimension of clifford unit mismatch"));
                } else
-                       throw(std::invalid_argument("Cannot construct from anything but list or vector"));
+                       throw(std::invalid_argument("lst_to_clifford(): cannot construct from anything but list or vector"));
        } else
-               throw(std::invalid_argument("The second argument should be a Clifford unit"));
+               throw(std::invalid_argument("lst_to_clifford(): the second argument should be a Clifford unit"));
 }
 
 /** Auxiliary structure to define a function for striping one Clifford unit
  * from vectors. Used in  clifford_to_lst(). */
-static ex get_clifford_comp(const ex & e, const ex & c
+static ex get_clifford_comp(const ex & e, const ex & c, bool root=true)
 {
-       pointer_to_map_function_1arg<const ex &> fcn(get_clifford_comp, c);
-       int ival = ex_to<numeric>(ex_to<varidx>(c.op(1)).get_value()).to_int();
-               
-       if (is_a<add>(e) || is_a<lst>(e) // || is_a<pseries>(e) || is_a<integral>(e)
-               || is_a<matrix>(e)) 
-               return e.map(fcn);
-       else if (is_a<ncmul>(e) || is_a<mul>(e)) {
-               // find a Clifford unit with the same metric, delete it and substitute its index
-               size_t ind = e.nops() + 1;
-               for (size_t j = 0; j < e.nops(); j++) 
-                       if (is_a<clifford>(e.op(j)) && ex_to<clifford>(c).same_metric(e.op(j)))
-                               if (ind > e.nops()) 
-                                       ind = j;
-                               else 
-                                       throw(std::invalid_argument("Expression is a Clifford multi-vector"));
-               if (ind < e.nops()) {
-                       ex S = 1;
-                       bool same_value_index, found_dummy;
-                       same_value_index = ( ex_to<varidx>(e.op(ind).op(1)).is_numeric()
-                                                                &&  (ival == ex_to<numeric>(ex_to<varidx>(e.op(ind).op(1)).get_value()).to_int()) );
-                       found_dummy = same_value_index;
-                       for(size_t j=0; j < e.nops(); j++)
-                               if (j != ind) 
-                                       if (same_value_index) 
-                                               S = S * e.op(j);
-                                       else {
-                                               exvector ind_vec = ex_to<indexed>(e.op(j)).get_dummy_indices(ex_to<indexed>(e.op(ind)));
-                                               if (ind_vec.size() > 0) {
-                                                       found_dummy = true;
-                                                       exvector::const_iterator it = ind_vec.begin(), itend = ind_vec.end();
-                                                       while (it != itend) {
-                                                               S = S * e.op(j).subs(lst(ex_to<varidx>(*it) == ival, ex_to<varidx>(*it).toggle_variance() == ival), subs_options::no_pattern);
-                                                               ++it;
-                                                       }
-                                               } else
-                                                       S = S * e.op(j);
-                                       }
-                       return (found_dummy ? S : 0);
-               } else
-                       throw(std::invalid_argument("Expression is not a Clifford vector to the given units"));
-       } else if (e.is_zero()) 
-               return e;
-       else if (is_a<clifford>(e) && ex_to<clifford>(e).same_metric(c))
-               if ( ex_to<varidx>(e.op(1)).is_numeric() &&
-                        (ival != ex_to<numeric>(ex_to<varidx>(e.op(1)).get_value()).to_int()) )
+       // make expansion on the top-level call only
+       ex e1=(root? e.expand() : e);
+
+       pointer_to_map_function_2args<const ex &, bool> fcn(get_clifford_comp, c, false);
+       int ival = ex_to<numeric>(ex_to<idx>(c.op(1)).get_value()).to_int();
+       int rl=ex_to<clifford>(c).get_representation_label();
+
+       if ( (is_a<add>(e1) || e1.info(info_flags::list) || is_a<matrix>(e1))) {
+               return e1.map(fcn);
+       } else if (is_a<ncmul>(e1) || is_a<mul>(e1)) {
+               // searches are done within products only
+               exvector ev, all_dummy=get_all_dummy_indices(e1);
+               bool found=false, same_value_found=false;
+               ex dummy_ind=0;
+               ev.reserve(e1.nops());
+               for (int i=0; i < e1.nops();++i) {
+                       // look for a Clifford unit with the same metric and representation label,
+                       // if found remember its index
+                       if (is_a<clifford>(e1.op(i)) && ex_to<clifford>(e1.op(i)).get_representation_label() == rl
+                               && is_a<cliffordunit>(e1.op(i).op(0)) && ex_to<clifford>(e1.op(i)).same_metric(c)) { // same Clifford unit
+                               if (found)
+                                       throw(std::invalid_argument("get_clifford_comp(): expression is a Clifford multi-vector"));
+                               found=true;
+                               if (ex_to<idx>(e1.op(i).op(1)).is_numeric() &&
+                                   (ival == ex_to<numeric>(ex_to<idx>(e1.op(i).op(1)).get_value()).to_int())) {
+                                       same_value_found = true; // desired index value is found
+                               } else if ((std::find(all_dummy.begin(), all_dummy.end(), e1.op(i).op(1)) != all_dummy.end())
+                                          || (is_a<varidx>(e1.op(i).op(1))
+                                              && std::find(all_dummy.begin(), all_dummy.end(),
+                                                           ex_to<varidx>(e1.op(i).op(1)).toggle_variance()) != all_dummy.end())) {
+                                       dummy_ind=(e1.op(i).op(1)); // suitable dummy index found
+                               } else
+                                       ev.push_back(e.op(i)); // another index value
+                       } else
+                               ev.push_back(e1.op(i));
+               }
+
+               if (! found) // no Clifford units found at all
+                       throw(std::invalid_argument("get_clifford_comp(): expression is not a Clifford vector to the given units"));
+
+               ex res=dynallocate<ncmul>(std::move(ev));
+               if (same_value_found) {
+                       return  res;
+               } else if (! dummy_ind.is_zero()) { // a dummy index was found
+                       if (is_a<varidx>(dummy_ind))
+                               dummy_ind = ex_to<varidx>(dummy_ind).toggle_variance();
+                       return res.subs(dummy_ind==ival, subs_options::no_pattern);
+               } else // found a Clifford unit with another index
                        return 0;
-               else 
+       } else if (e1.is_zero()) {
+               return 0;
+       } else if (is_a<clifford>(e1) && is_a<cliffordunit>(e1.op(0)) && ex_to<clifford>(e1).same_metric(c)) {
+               if (ex_to<idx>(e1.op(1)).is_numeric() &&
+                   (ival == ex_to<numeric>(ex_to<idx>(e1.op(1)).get_value()).to_int()) )
                        return 1;
-       else
-               throw(std::invalid_argument("Expression is not usable as a Clifford vector"));
+               else
+                       return 0;
+       } else
+               throw(std::invalid_argument("get_clifford_comp(): expression is not usable as a Clifford vector"));
 }
 
-
 lst clifford_to_lst(const ex & e, const ex & c, bool algebraic)
 {
        GINAC_ASSERT(is_a<clifford>(c));
-       varidx mu = ex_to<varidx>(c.op(1));
-       if (! mu.is_dim_numeric())
-               throw(std::invalid_argument("Index should have a numeric dimension"));
-       unsigned int D = ex_to<numeric>(mu.get_dim()).to_int();
+       ex mu = c.op(1);
+       if (! ex_to<idx>(mu).is_dim_numeric())
+               throw(std::invalid_argument("clifford_to_lst(): index should have a numeric dimension"));
+       unsigned int D = ex_to<numeric>(ex_to<idx>(mu).get_dim()).to_int();
 
        if (algebraic) // check if algebraic method is applicable
                for (unsigned int i = 0; i < D; i++) 
-                       if (pow(c.subs(mu == i), 2).is_zero() 
-                               or (not is_a<numeric>(pow(c.subs(mu == i), 2))))
+                       if (pow(c.subs(mu == i, subs_options::no_pattern), 2).is_zero() 
+                               || (! is_a<numeric>(pow(c.subs(mu == i, subs_options::no_pattern), 2))))
                                algebraic = false;
        lst V; 
-       if (algebraic) 
+       ex v0 = remove_dirac_ONE(canonicalize_clifford(e+clifford_prime(e)))/2;
+       if (! v0.is_zero())
+               V.append(v0);
+       ex e1 = canonicalize_clifford(e - v0 * dirac_ONE(ex_to<clifford>(c).get_representation_label())); 
+       if (algebraic) {
                for (unsigned int i = 0; i < D; i++) 
                        V.append(remove_dirac_ONE(
-                                               simplify_indexed(canonicalize_clifford(e * c.subs(mu == i) +  c.subs(mu == i) * e))
-                                               / (2*pow(c.subs(mu == i), 2))));
-       else {
-               ex e1 = canonicalize_clifford(e);
-               for (unsigned int i = 0; i < D; i++) 
-                       V.append(get_clifford_comp(e1, c.subs(c.op(1) == i)));
+                                               simplify_indexed(canonicalize_clifford(e1 * c.subs(mu == i, subs_options::no_pattern) +  c.subs(mu == i, subs_options::no_pattern) * e1))
+                                               / (2*pow(c.subs(mu == i, subs_options::no_pattern), 2))));
+       } else {
+               try {
+                       for (unsigned int i = 0; i < D; i++)
+                               V.append(get_clifford_comp(e1, c.subs(c.op(1) == i, subs_options::no_pattern)));
+               } catch  (std::exception &p) {
+                       /* Try to expand dummy summations to simplify the expression*/
+                       e1 = canonicalize_clifford(expand_dummy_sum(e, true));
+                       V.remove_all();
+                       v0 = remove_dirac_ONE(canonicalize_clifford(e1+clifford_prime(e1)))/2;
+                       if (! v0.is_zero()) {
+                               V.append(v0);
+                               e1 = canonicalize_clifford(e1 - v0 * dirac_ONE(ex_to<clifford>(c).get_representation_label())); 
+                       }
+                       for (unsigned int i = 0; i < D; i++) 
+                               V.append(get_clifford_comp(e1, c.subs(c.op(1) == i, subs_options::no_pattern)));
+               }
        }
        return V;
 }
@@ -1177,34 +1375,35 @@ ex clifford_moebius_map(const ex & a, const ex & b, const ex & c, const ex & d,
 {
        ex x, D, cu;
        
-       if (! is_a<matrix>(v) && ! is_a<lst>(v))
-               throw(std::invalid_argument("parameter v should be either vector or list"));
+       if (! is_a<matrix>(v) && ! v.info(info_flags::list))
+               throw(std::invalid_argument("clifford_moebius_map(): parameter v should be either vector or list"));
        
        if (is_a<clifford>(G)) {
                cu = G;
        } else {
-               if (is_a<indexed>(G)) 
-                       D = ex_to<varidx>(G.op(1)).get_dim();
-               else if (is_a<matrix>(G)) 
+               if (is_a<indexed>(G)) {
+                       D = ex_to<idx>(G.op(1)).get_dim();
+                       varidx mu(dynallocate<symbol>(), D);
+                       cu = clifford_unit(mu, G, rl);
+               } else if (is_a<matrix>(G)) {
                        D = ex_to<matrix>(G).rows(); 
-               else throw(std::invalid_argument("metric should be an indexed object, matrix, or a Clifford unit"));
+                       idx mu(dynallocate<symbol>(), D);
+                       cu = clifford_unit(mu, G, rl);
+               } else throw(std::invalid_argument("clifford_moebius_map(): metric should be an indexed object, matrix, or a Clifford unit"));
                
-               varidx mu((new symbol)->setflag(status_flags::dynallocated), D);
-               cu = clifford_unit(mu, G, rl);
        }
-
+       
        x = lst_to_clifford(v, cu); 
-       ex e = simplify_indexed(canonicalize_clifford((a * x + b) * clifford_inverse(c * x + d)));
-       return clifford_to_lst(e, cu, false);
+       ex e = clifford_to_lst(simplify_indexed(canonicalize_clifford((a * x + b) * clifford_inverse(c * x + d))), cu, false);
+       return (is_a<matrix>(v) ? matrix(ex_to<matrix>(v).rows(), ex_to<matrix>(v).cols(), ex_to<lst>(e)) : e);
 }
 
 ex clifford_moebius_map(const ex & M, const ex & v, const ex & G, unsigned char rl)
 {
-       if (is_a<matrix>(M)) 
-               return clifford_moebius_map(ex_to<matrix>(M)(0,0), ex_to<matrix>(M)(0,1), 
-                                               ex_to<matrix>(M)(1,0), ex_to<matrix>(M)(1,1), v, G, rl);
+       if (is_a<matrix>(M) && (ex_to<matrix>(M).rows() == 2) && (ex_to<matrix>(M).cols() == 2)) 
+               return clifford_moebius_map(M.op(0), M.op(1), M.op(2), M.op(3), v, G, rl);
        else
-               throw(std::invalid_argument("parameter M should be a matrix"));
+               throw(std::invalid_argument("clifford_moebius_map(): parameter M should be a 2x2 matrix"));
 }
 
 } // namespace GiNaC