]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
* Document the rounding behavior as dicussed on ginac-list.
[ginac.git] / doc / tutorial / ginac.texi
index 04c5024adf7edaf585c933afe397acf09730aa6e..fb90f25af093b943088d80551bee20c29291752d 100644 (file)
@@ -101,7 +101,7 @@ The motivation behind GiNaC derives from the observation that most
 present day computer algebra systems (CAS) are linguistically and
 semantically impoverished.  Although they are quite powerful tools for
 learning math and solving particular problems they lack modern
-linguistical structures that allow for the creation of large-scale
+linguistic structures that allow for the creation of large-scale
 projects.  GiNaC is an attempt to overcome this situation by extending a
 well established and standardized computer language (C++) by some
 fundamental symbolic capabilities, thus allowing for integrated systems
@@ -179,6 +179,7 @@ manipulations.  Here is how to generate and print a simple (and rather
 pointless) bivariate polynomial with some large coefficients:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -213,6 +214,7 @@ Next, there is a more meaningful C++ program that calls a function which
 generates Hermite polynomials in a specified free variable.
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -345,19 +347,28 @@ conclude that @code{42*Pi} is equal to @code{0}.)
 Linear equation systems can be solved along with basic linear
 algebra manipulations over symbolic expressions.  In C++ GiNaC offers
 a matrix class for this purpose but we can see what it can do using
-@command{ginsh}'s notation of double brackets to type them in:
+@command{ginsh}'s bracket notation to type them in:
 
 @example
 > lsolve(a+x*y==z,x);
 y^(-1)*(z-a);
-> lsolve([3*x+5*y == 7, -2*x+10*y == -5], [x, y]);
-[x==19/8,y==-1/40]
-> M = [[ [[1, 3]], [[-3, 2]] ]];
-[[ [[1,3]], [[-3,2]] ]]
+> lsolve(@{3*x+5*y == 7, -2*x+10*y == -5@}, @{x, y@});
+@{x==19/8,y==-1/40@}
+> M = [ [1, 3], [-3, 2] ];
+[[1,3],[-3,2]]
 > determinant(M);
 11
 > charpoly(M,lambda);
 lambda^2-3*lambda+11
+> A = [ [1, 1], [2, -1] ];
+[[1,1],[2,-1]]
+> A+2*M;
+[[1,1],[2,-1]]+2*[[1,3],[-3,2]]
+> evalm(%);
+[[3,7],[-4,3]]
+> B = [ [0, 0, a], [b, 1, -b], [-1/a, 0, 0] ];
+> evalm(B^(2^12345));
+[[1,0,0],[0,1,0],[0,0,1]]
 @end example
 
 Multivariate polynomials and rational functions may be expanded,
@@ -395,7 +406,7 @@ x^(-1)-1/3*x+Order(x^2)
 > series(tgamma(x),x==0,3);
 x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+
 (-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3)
-> evalf(");
+> evalf(%);
 x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
 -(0.90747907608088628905)*x^2+Order(x^3)
 > series(tgamma(2*sin(x)-2),x==Pi/2,6);
@@ -403,7 +414,7 @@ x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
 -Euler-1/12+Order((x-1/2*Pi)^3)
 @end example
 
-Here we have made use of the @command{ginsh}-command @code{"} to pop the
+Here we have made use of the @command{ginsh}-command @code{%} to pop the
 previously evaluated element from @command{ginsh}'s internal stack.
 
 If you ever wanted to convert units in C or C++ and found this is
@@ -444,15 +455,14 @@ installation.
 
 In order to install GiNaC on your system, some prerequisites need to be
 met.  First of all, you need to have a C++-compiler adhering to the
-ANSI-standard @cite{ISO/IEC 14882:1998(E)}.  We used @acronym{GCC} for
-development so if you have a different compiler you are on your own.
-For the configuration to succeed you need a Posix compliant shell
-installed in @file{/bin/sh}, GNU @command{bash} is fine.  Perl is needed
-by the built process as well, since some of the source files are
-automatically generated by Perl scripts.  Last but not least, Bruno
-Haible's library @acronym{CLN} is extensively used and needs to be
-installed on your system.  Please get it either from
-@uref{ftp://ftp.santafe.edu/pub/gnu/}, from
+ANSI-standard @cite{ISO/IEC 14882:1998(E)}.  We used GCC for development
+so if you have a different compiler you are on your own.  For the
+configuration to succeed you need a Posix compliant shell installed in
+@file{/bin/sh}, GNU @command{bash} is fine.  Perl is needed by the built
+process as well, since some of the source files are automatically
+generated by Perl scripts.  Last but not least, Bruno Haible's library
+CLN is extensively used and needs to be installed on your system.
+Please get it either from @uref{ftp://ftp.santafe.edu/pub/gnu/}, from
 @uref{ftp://ftpthep.physik.uni-mainz.de/pub/gnu/, GiNaC's FTP site} or
 from @uref{ftp://ftp.ilog.fr/pub/Users/haible/gnu/, Bruno Haible's FTP
 site} (it is covered by GPL) and install it prior to trying to install
@@ -513,15 +523,20 @@ want to have the documentation installed in some other directory than
 
 @end itemize
 
-In addition, you may specify some environment variables.
-@env{CXX} holds the path and the name of the C++ compiler
-in case you want to override the default in your path.  (The
-@command{configure} script searches your path for @command{c++},
-@command{g++}, @command{gcc}, @command{CC}, @command{cxx}
-and @command{cc++} in that order.)  It may be very useful to
-define some compiler flags with the @env{CXXFLAGS} environment
-variable, like optimization, debugging information and warning
-levels.  If omitted, it defaults to @option{-g -O2}.
+In addition, you may specify some environment variables.  @env{CXX}
+holds the path and the name of the C++ compiler in case you want to
+override the default in your path.  (The @command{configure} script
+searches your path for @command{c++}, @command{g++}, @command{gcc},
+@command{CC}, @command{cxx} and @command{cc++} in that order.)  It may
+be very useful to define some compiler flags with the @env{CXXFLAGS}
+environment variable, like optimization, debugging information and
+warning levels.  If omitted, it defaults to @option{-g
+-O2}.@footnote{The @command{configure} script is itself generated from
+the file @file{configure.ac}.  It is only distributed in packaged
+releases of GiNaC.  If you got the naked sources, e.g. from CVS, you
+must generate @command{configure} along with the various
+@file{Makefile.in} by using the @command{autogen.sh} script.  This will
+require a fair amount of support from your local toolchain, though.}
 
 The whole process is illustrated in the following two
 examples. (Substitute @command{setenv @var{VARIABLE} @var{value}} for
@@ -537,14 +552,14 @@ $ ./configure
 @end example
 
 And here is a configuration for a private static GiNaC library with
-several components sitting in custom places (site-wide @acronym{GCC} and
-private @acronym{CLN}).  The compiler is pursuaded to be picky and full
-assertions and debugging information are switched on:
+several components sitting in custom places (site-wide GCC and private
+CLN).  The compiler is persuaded to be picky and full assertions and
+debugging information are switched on:
 
 @example
 $ export CXX=/usr/local/gnu/bin/c++
 $ export CPPFLAGS="$(CPPFLAGS) -I$(HOME)/include"
-$ export CXXFLAGS="$(CXXFLAGS) -DDO_GINAC_ASSERT -ggdb -Wall -ansi -pedantic"
+$ export CXXFLAGS="$(CXXFLAGS) -DDO_GINAC_ASSERT -ggdb -Wall -pedantic"
 $ export LDFLAGS="$(LDFLAGS) -L$(HOME)/lib"
 $ ./configure --disable-shared --prefix=$(HOME)
 @end example
@@ -588,8 +603,8 @@ machine catches fire.  Another quite important intent is to allow people
 to fiddle around with optimization.
 
 Generally, the top-level Makefile runs recursively to the
-subdirectories.  It is therfore safe to go into any subdirectory
-(@code{doc/}, @code{ginsh/}, ...) and simply type @code{make}
+subdirectories.  It is therefore safe to go into any subdirectory
+(@code{doc/}, @code{ginsh/}, @dots{}) and simply type @code{make}
 @var{target} there in case something went wrong.
 
 
@@ -658,6 +673,7 @@ meta-class for storing all mathematical objects.
 @menu
 * Expressions::                  The fundamental GiNaC class.
 * The Class Hierarchy::          Overview of GiNaC's classes.
+* Error handling::               How the library reports errors.
 * Symbols::                      Symbolic objects.
 * Numbers::                      Numerical objects.
 * Constants::                    Pre-defined constants.
@@ -665,6 +681,7 @@ meta-class for storing all mathematical objects.
 * Lists::                        Lists of expressions.
 * Mathematical functions::       Mathematical functions.
 * Relations::                    Equality, Inequality and all that.
+* Matrices::                     Matrices.
 * Indexed objects::              Handling indexed quantities.
 * Non-commutative objects::      Algebras with non-commutative products.
 @end menu
@@ -678,7 +695,7 @@ meta-class for storing all mathematical objects.
 
 The most common class of objects a user deals with is the expression
 @code{ex}, representing a mathematical object like a variable, number,
-function, sum, product, etc...  Expressions may be put together to form
+function, sum, product, etc@dots{}  Expressions may be put together to form
 new expressions, passed as arguments to functions, and so on.  Here is a
 little collection of valid expressions:
 
@@ -704,7 +721,7 @@ hierarchy and describe the classes of objects that are handled by
 @code{ex}.
 
 
-@node The Class Hierarchy, Symbols, Expressions, Basic Concepts
+@node The Class Hierarchy, Error handling, Expressions, Basic Concepts
 @c    node-name, next, previous, up
 @section The Class Hierarchy
 
@@ -758,8 +775,8 @@ $\sqrt{2}$
 @dots{}
 @item @code{pseries} @tab Power Series, e.g. @math{x-1/6*x^3+1/120*x^5+O(x^7)}
 @item @code{function} @tab A symbolic function like @math{sin(2*x)}
-@item @code{lst} @tab Lists of expressions [@math{x}, @math{2*y}, @math{3+z}]
-@item @code{matrix} @tab @math{n}x@math{m} matrices of expressions
+@item @code{lst} @tab Lists of expressions @{@math{x}, @math{2*y}, @math{3+z}@}
+@item @code{matrix} @tab @math{m}x@math{n} matrices of expressions
 @item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
 @item @code{indexed} @tab Indexed object like @math{A_ij}
 @item @code{tensor} @tab Special tensor like the delta and metric tensors
@@ -770,7 +787,64 @@ $\sqrt{2}$
 @end multitable
 @end cartouche
 
-@node Symbols, Numbers, The Class Hierarchy, Basic Concepts
+
+@node Error handling, Symbols, The Class Hierarchy, Basic Concepts
+@c    node-name, next, previous, up
+@section Error handling
+@cindex exceptions
+@cindex @code{pole_error} (class)
+
+GiNaC reports run-time errors by throwing C++ exceptions. All exceptions
+generated by GiNaC are subclassed from the standard @code{exception} class
+defined in the @file{<stdexcept>} header. In addition to the predefined
+@code{logic_error}, @code{domain_error}, @code{out_of_range},
+@code{invalid_argument}, @code{runtime_error}, @code{range_error} and
+@code{overflow_error} types, GiNaC also defines a @code{pole_error}
+exception that gets thrown when trying to evaluate a mathematical function
+at a singularity.
+
+The @code{pole_error} class has a member function
+
+@example
+int pole_error::degree(void) const;
+@end example
+
+that returns the order of the singularity (or 0 when the pole is
+logarithmic or the order is undefined).
+
+When using GiNaC it is useful to arrange for exceptions to be catched in
+the main program even if you don't want to do any special error handling.
+Otherwise whenever an error occurs in GiNaC, it will be delegated to the
+default exception handler of your C++ compiler's run-time system which
+usually only aborts the program without giving any information what went
+wrong.
+
+Here is an example for a @code{main()} function that catches and prints
+exceptions generated by GiNaC:
+
+@example
+#include <iostream>
+#include <stdexcept>
+#include <ginac/ginac.h>
+using namespace std;
+using namespace GiNaC;
+
+int main(void)
+@{
+    try @{
+        ...
+        // code using GiNaC
+        ...
+    @} catch (exception &p) @{
+        cerr << p.what() << endl;
+        return 1;
+    @}
+    return 0;
+@}
+@end example
+
+
+@node Symbols, Numbers, Error handling, Basic Concepts
 @c    node-name, next, previous, up
 @section Symbols
 @cindex @code{symbol} (class)
@@ -806,8 +880,7 @@ for instance) will always reveal their difference.  Watch out, please.
 Although symbols can be assigned expressions for internal reasons, you
 should not do it (and we are not going to tell you how it is done).  If
 you want to replace a symbol with something else in an expression, you
-can use the expression's @code{.subs()} method (@xref{Substituting Expressions},
-for more information).
+can use the expression's @code{.subs()} method (@pxref{Substituting Expressions}).
 
 
 @node Numbers, Constants, Symbols, Basic Concepts
@@ -819,25 +892,24 @@ for more information).
 @cindex CLN
 @cindex rational
 @cindex fraction
-For storing numerical things, GiNaC uses Bruno Haible's library
-@acronym{CLN}.  The classes therein serve as foundation classes for
-GiNaC.  @acronym{CLN} stands for Class Library for Numbers or
-alternatively for Common Lisp Numbers.  In order to find out more about
-@acronym{CLN}'s internals the reader is refered to the documentation of
-that library.  @inforef{Introduction, , cln}, for more
-information. Suffice to say that it is by itself build on top of another
-library, the GNU Multiple Precision library @acronym{GMP}, which is an
+For storing numerical things, GiNaC uses Bruno Haible's library CLN.
+The classes therein serve as foundation classes for GiNaC.  CLN stands
+for Class Library for Numbers or alternatively for Common Lisp Numbers.
+In order to find out more about CLN's internals the reader is refered to
+the documentation of that library.  @inforef{Introduction, , cln}, for
+more information. Suffice to say that it is by itself build on top of
+another library, the GNU Multiple Precision library GMP, which is an
 extremely fast library for arbitrary long integers and rationals as well
 as arbitrary precision floating point numbers.  It is very commonly used
-by several popular cryptographic applications.  @acronym{CLN} extends
-@acronym{GMP} by several useful things: First, it introduces the complex
-number field over either reals (i.e. floating point numbers with
-arbitrary precision) or rationals.  Second, it automatically converts
-rationals to integers if the denominator is unity and complex numbers to
-real numbers if the imaginary part vanishes and also correctly treats
-algebraic functions.  Third it provides good implementations of
-state-of-the-art algorithms for all trigonometric and hyperbolic
-functions as well as for calculation of some useful constants.
+by several popular cryptographic applications.  CLN extends GMP by
+several useful things: First, it introduces the complex number field
+over either reals (i.e. floating point numbers with arbitrary precision)
+or rationals.  Second, it automatically converts rationals to integers
+if the denominator is unity and complex numbers to real numbers if the
+imaginary part vanishes and also correctly treats algebraic functions.
+Third it provides good implementations of state-of-the-art algorithms
+for all trigonometric and hyperbolic functions as well as for
+calculation of some useful constants.
 
 The user can construct an object of class @code{numeric} in several
 ways.  The following example shows the four most important constructors.
@@ -845,15 +917,16 @@ It uses construction from C-integer, construction of fractions from two
 integers, construction from C-float and construction from a string:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace GiNaC;
 
 int main()
 @{
-    numeric two(2);                       // exact integer 2
+    numeric two = 2;                      // exact integer 2
     numeric r(2,3);                       // exact fraction 2/3
     numeric e(2.71828);                   // floating point number
-    numeric p("3.1415926535897932385");   // floating point number
+    numeric p = "3.14159265358979323846"; // constructor from string
     // Trott's constant in scientific notation:
     numeric trott("1.0841015122311136151E-2");
     
@@ -861,18 +934,6 @@ int main()
 @}
 @end example
 
-Note that all those constructors are @emph{explicit} which means you are
-not allowed to write @code{numeric two=2;}.  This is because the basic
-objects to be handled by GiNaC are the expressions @code{ex} and we want
-to keep things simple and wish objects like @code{pow(x,2)} to be
-handled the same way as @code{pow(x,a)}, which means that we need to
-allow a general @code{ex} as base and exponent.  Therefore there is an
-implicit constructor from C-integers directly to expressions handling
-numerics at work in most of our examples.  This design really becomes
-convenient when one declares own functions having more than one
-parameter but it forbids using implicit constructors because that would
-lead to compile-time ambiguities.
-
 It may be tempting to construct numbers writing @code{numeric r(3/2)}.
 This would, however, call C's built-in operator @code{/} for integers
 first and result in a numeric holding a plain integer 1.  @strong{Never
@@ -895,6 +956,7 @@ then on will be stored with a precision matching that number of decimal
 digits:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -922,13 +984,22 @@ The above example prints the following output to screen:
 
 @example
 in 17 digits:
-0.333333333333333333
-3.14159265358979324
+0.33333333333333333334
+3.1415926535897932385
 in 60 digits:
-0.333333333333333333333333333333333333333333333333333333333333333333
-3.14159265358979323846264338327950288419716939937510582097494459231
+0.33333333333333333333333333333333333333333333333333333333333333333334
+3.1415926535897932384626433832795028841971693993751058209749445923078
 @end example
 
+@cindex rounding
+Note that the last number is not necessarily rounded as you would
+naively expect it to be rounded in the decimal system.  But note also,
+that in both cases you got a couple of extra digits.  This is because
+numbers are internally stored by CLN as chunks of binary digits in order
+to match your machine's word size and to not waste precision.  Thus, on
+architectures with differnt word size, the above output might even
+differ with regard to actually computed digits.
+
 It should be clear that objects of class @code{numeric} should be used
 for constructing numbers or for doing arithmetic with them.  The objects
 one deals with most of the time are the polymorphic expressions @code{ex}.
@@ -946,6 +1017,7 @@ As an example, let's construct some rational number, multiply it with
 some multiple of its denominator and test what comes out:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -971,13 +1043,12 @@ by @code{numeric}'s copy constructor but in an intermediate step it
 holds a rational number represented as integer numerator and integer
 denominator.  When multiplied by 10, the denominator becomes unity and
 the result is automatically converted to a pure integer again.
-Internally, the underlying @acronym{CLN} is responsible for this
-behaviour and we refer the reader to @acronym{CLN}'s documentation.
-Suffice to say that the same behaviour applies to complex numbers as
-well as return values of certain functions.  Complex numbers are
-automatically converted to real numbers if the imaginary part becomes
-zero.  The full set of tests that can be applied is listed in the
-following table.
+Internally, the underlying CLN is responsible for this behavior and we
+refer the reader to CLN's documentation.  Suffice to say that
+the same behavior applies to complex numbers as well as return values of
+certain functions.  Complex numbers are automatically converted to real
+numbers if the imaginary part becomes zero.  The full set of tests that
+can be applied is listed in the following table.
 
 @cartouche
 @multitable @columnfractions .30 .70
@@ -1082,7 +1153,7 @@ interpret this as @code{x^(a^b)}.
 Also, expressions involving integer exponents are very frequently used,
 which makes it even more dangerous to overload @code{^} since it is then
 hard to distinguish between the semantics as exponentiation and the one
-for exclusive or.  (It would be embarassing to return @code{1} where one
+for exclusive or.  (It would be embarrassing to return @code{1} where one
 has requested @code{2^3}.)
 @end itemize
 
@@ -1129,13 +1200,15 @@ canonical form.
 @cindex @code{op()}
 @cindex @code{append()}
 @cindex @code{prepend()}
+@cindex @code{remove_first()}
+@cindex @code{remove_last()}
 
-The GiNaC class @code{lst} serves for holding a list of arbitrary expressions.
-These are sometimes used to supply a variable number of arguments of the same
-type to GiNaC methods such as @code{subs()} and @code{to_rational()}, so you
-should have a basic understanding about them.
+The GiNaC class @code{lst} serves for holding a @dfn{list} of arbitrary
+expressions. These are sometimes used to supply a variable number of
+arguments of the same type to GiNaC methods such as @code{subs()} and
+@code{to_rational()}, so you should have a basic understanding about them.
 
-Lists of up to 15 expressions can be directly constructed from single
+Lists of up to 16 expressions can be directly constructed from single
 expressions:
 
 @example
@@ -1156,13 +1229,23 @@ a list and the @code{op()} method to access individual elements:
     // ...
 @end example
 
-Finally you can append or prepend an expression to a list with the
-@code{append()} and @code{prepend()} methods:
+You can append or prepend an expression to a list with the @code{append()}
+and @code{prepend()} methods:
+
+@example
+    // ...
+    l.append(4*x);   // l is now @{x, 2, y, x+y, 4*x@}
+    l.prepend(0);    // l is now @{0, x, 2, y, x+y, 4*x@}
+    // ...
+@end example
+
+Finally you can remove the first or last element of a list with
+@code{remove_first()} and @code{remove_last()}:
 
 @example
     // ...
-    l.append(4*x);   // l is now [x, 2, y, x+y, 4*x]
-    l.prepend(0);    // l is now [0, x, 2, y, x+y, 4*x]
+    l.remove_first();   // l is now @{x, 2, y, x+y, 4*x@}
+    l.remove_last();    // l is now @{x, 2, y, x+y@}
 @}
 @end example
 
@@ -1178,11 +1261,12 @@ There are quite a number of useful functions hard-wired into GiNaC.  For
 instance, all trigonometric and hyperbolic functions are implemented
 (@xref{Built-in Functions}, for a complete list).
 
-These functions are all objects of class @code{function}.  They accept
-one or more expressions as arguments and return one expression.  If the
-arguments are not numerical, the evaluation of the function may be
-halted, as it does in the next example, showing how a function returns
-itself twice and finally an expression that may be really useful:
+These functions (better called @emph{pseudofunctions}) are all objects
+of class @code{function}.  They accept one or more expressions as
+arguments and return one expression.  If the arguments are not
+numerical, the evaluation of the function may be halted, as it does in
+the next example, showing how a function returns itself twice and
+finally an expression that may be really useful:
 
 @cindex Gamma function
 @cindex @code{subs()}
@@ -1205,8 +1289,20 @@ Besides evaluation most of these functions allow differentiation, series
 expansion and so on.  Read the next chapter in order to learn more about
 this.
 
+It must be noted that these pseudofunctions are created by inline
+functions, where the argument list is templated.  This means that
+whenever you call @code{GiNaC::sin(1)} it is equivalent to
+@code{sin(ex(1))} and will therefore not result in a floating point
+number.  Unless of course the function prototype is explicitly
+overridden -- which is the case for arguments of type @code{numeric}
+(not wrapped inside an @code{ex}).  Hence, in order to obtain a floating
+point number of class @code{numeric} you should call
+@code{sin(numeric(1))}.  This is almost the same as calling
+@code{sin(1).evalf()} except that the latter will return a numeric
+wrapped inside an @code{ex}.
 
-@node Relations, Indexed objects, Mathematical functions, Basic Concepts
+
+@node Relations, Matrices, Mathematical functions, Basic Concepts
 @c    node-name, next, previous, up
 @section Relations
 @cindex @code{relational} (class)
@@ -1233,7 +1329,171 @@ however, that @code{==} here does not perform any simplifications, hence
 @code{expand()} must be called explicitly.
 
 
-@node Indexed objects, Non-commutative objects, Relations, Basic Concepts
+@node Matrices, Indexed objects, Relations, Basic Concepts
+@c    node-name, next, previous, up
+@section Matrices
+@cindex @code{matrix} (class)
+
+A @dfn{matrix} is a two-dimensional array of expressions. The elements of a
+matrix with @math{m} rows and @math{n} columns are accessed with two
+@code{unsigned} indices, the first one in the range 0@dots{}@math{m-1}, the
+second one in the range 0@dots{}@math{n-1}.
+
+There are a couple of ways to construct matrices, with or without preset
+elements:
+
+@example
+matrix::matrix(unsigned r, unsigned c);
+matrix::matrix(unsigned r, unsigned c, const lst & l);
+ex lst_to_matrix(const lst & l);
+ex diag_matrix(const lst & l);
+@end example
+
+The first two functions are @code{matrix} constructors which create a matrix
+with @samp{r} rows and @samp{c} columns. The matrix elements can be
+initialized from a (flat) list of expressions @samp{l}. Otherwise they are
+all set to zero. The @code{lst_to_matrix()} function constructs a matrix
+from a list of lists, each list representing a matrix row. Finally,
+@code{diag_matrix()} constructs a diagonal matrix given the list of diagonal
+elements. Note that the last two functions return expressions, not matrix
+objects.
+
+Matrix elements can be accessed and set using the parenthesis (function call)
+operator:
+
+@example
+const ex & matrix::operator()(unsigned r, unsigned c) const;
+ex & matrix::operator()(unsigned r, unsigned c);
+@end example
+
+It is also possible to access the matrix elements in a linear fashion with
+the @code{op()} method. But C++-style subscripting with square brackets
+@samp{[]} is not available.
+
+Here are a couple of examples that all construct the same 2x2 diagonal
+matrix:
+
+@example
+@{
+    symbol a("a"), b("b");
+    ex e;
+
+    matrix M(2, 2);
+    M(0, 0) = a;
+    M(1, 1) = b;
+    e = M;
+
+    e = matrix(2, 2, lst(a, 0, 0, b));
+
+    e = lst_to_matrix(lst(lst(a, 0), lst(0, b)));
+
+    e = diag_matrix(lst(a, b));
+
+    cout << e << endl;
+     // -> [[a,0],[0,b]]
+@}
+@end example
+
+@cindex @code{transpose()}
+@cindex @code{inverse()}
+There are three ways to do arithmetic with matrices. The first (and most
+efficient one) is to use the methods provided by the @code{matrix} class:
+
+@example
+matrix matrix::add(const matrix & other) const;
+matrix matrix::sub(const matrix & other) const;
+matrix matrix::mul(const matrix & other) const;
+matrix matrix::mul_scalar(const ex & other) const;
+matrix matrix::pow(const ex & expn) const;
+matrix matrix::transpose(void) const;
+matrix matrix::inverse(void) const;
+@end example
+
+All of these methods return the result as a new matrix object. Here is an
+example that calculates @math{A*B-2*C} for three matrices @math{A}, @math{B}
+and @math{C}:
+
+@example
+@{
+    matrix A(2, 2, lst(1, 2, 3, 4));
+    matrix B(2, 2, lst(-1, 0, 2, 1));
+    matrix C(2, 2, lst(8, 4, 2, 1));
+
+    matrix result = A.mul(B).sub(C.mul_scalar(2));
+    cout << result << endl;
+     // -> [[-13,-6],[1,2]]
+    ...
+@}
+@end example
+
+@cindex @code{evalm()}
+The second (and probably the most natural) way is to construct an expression
+containing matrices with the usual arithmetic operators and @code{pow()}.
+For efficiency reasons, expressions with sums, products and powers of
+matrices are not automatically evaluated in GiNaC. You have to call the
+method
+
+@example
+ex ex::evalm() const;
+@end example
+
+to obtain the result:
+
+@example
+@{
+    ...
+    ex e = A*B - 2*C;
+    cout << e << endl;
+     // -> [[1,2],[3,4]]*[[-1,0],[2,1]]-2*[[8,4],[2,1]]
+    cout << e.evalm() << endl;
+     // -> [[-13,-6],[1,2]]
+    ...
+@}
+@end example
+
+The non-commutativity of the product @code{A*B} in this example is
+automatically recognized by GiNaC. There is no need to use a special
+operator here. @xref{Non-commutative objects}, for more information about
+dealing with non-commutative expressions.
+
+Finally, you can work with indexed matrices and call @code{simplify_indexed()}
+to perform the arithmetic:
+
+@example
+@{
+    ...
+    idx i(symbol("i"), 2), j(symbol("j"), 2), k(symbol("k"), 2);
+    e = indexed(A, i, k) * indexed(B, k, j) - 2 * indexed(C, i, j);
+    cout << e << endl;
+     // -> -2*[[8,4],[2,1]].i.j+[[-1,0],[2,1]].k.j*[[1,2],[3,4]].i.k
+    cout << e.simplify_indexed() << endl;
+     // -> [[-13,-6],[1,2]].i.j
+@}
+@end example
+
+Using indices is most useful when working with rectangular matrices and
+one-dimensional vectors because you don't have to worry about having to
+transpose matrices before multiplying them. @xref{Indexed objects}, for
+more information about using matrices with indices, and about indices in
+general.
+
+The @code{matrix} class provides a couple of additional methods for
+computing determinants, traces, and characteristic polynomials:
+
+@example
+ex matrix::determinant(unsigned algo = determinant_algo::automatic) const;
+ex matrix::trace(void) const;
+ex matrix::charpoly(const symbol & lambda) const;
+@end example
+
+The @samp{algo} argument of @code{determinant()} allows to select between
+different algorithms for calculating the determinant. The possible values
+are defined in the @file{flags.h} header file. By default, GiNaC uses a
+heuristic to automatically select an algorithm that is likely to give the
+result most quickly.
+
+
+@node Indexed objects, Non-commutative objects, Matrices, Basic Concepts
 @c    node-name, next, previous, up
 @section Indexed objects
 
@@ -1282,6 +1542,7 @@ not visible in the output.
 A simple example shall illustrate the concepts:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -1307,7 +1568,7 @@ the symbol @code{A} as its base expression and the two indices @code{i} and
 @code{j}.
 
 Note the difference between the indices @code{i} and @code{j} which are of
-class @code{idx}, and the index values which are the sybols @code{i_sym}
+class @code{idx}, and the index values which are the symbols @code{i_sym}
 and @code{j_sym}. The indices of indexed objects cannot directly be symbols
 or numbers but must be index objects. For example, the following is not
 correct and will raise an exception:
@@ -1361,7 +1622,7 @@ ex idx::get_dimension(void);
 return the value and dimension of an @code{idx} object. If you have an index
 in an expression, such as returned by calling @code{.op()} on an indexed
 object, you can get a reference to the @code{idx} object with the function
-@code{ex_to_idx()} on the expression.
+@code{ex_to<idx>()} on the expression.
 
 There are also the methods
 
@@ -1404,7 +1665,7 @@ bool varidx::is_covariant(void);
 bool varidx::is_contravariant(void);
 @end example
 
-allow you to check the variance of a @code{varidx} object (use @code{ex_to_varidx()}
+allow you to check the variance of a @code{varidx} object (use @code{ex_to<varidx>()}
 to get the object reference from an expression). There's also the very useful
 method
 
@@ -1448,7 +1709,7 @@ bool spinidx::is_undotted(void);
 @end example
 
 allow you to check whether or not a @code{spinidx} object is dotted (use
-@code{ex_to_spinidx()} to get the object reference from an expression).
+@code{ex_to<spinidx>()} to get the object reference from an expression).
 Finally, the two methods
 
 @example
@@ -1515,22 +1776,99 @@ expected:
 @end example
 
 @subsection Symmetries
+@cindex @code{symmetry} (class)
+@cindex @code{sy_none()}
+@cindex @code{sy_symm()}
+@cindex @code{sy_anti()}
+@cindex @code{sy_cycl()}
 
-Indexed objects can be declared as being totally symmetric or antisymmetric
-with respect to their indices. In this case, GiNaC will automatically bring
-the indices into a canonical order which allows for some immediate
-simplifications:
+Indexed objects can have certain symmetry properties with respect to their
+indices. Symmetries are specified as a tree of objects of class @code{symmetry}
+that is constructed with the helper functions
+
+@example
+symmetry sy_none(...);
+symmetry sy_symm(...);
+symmetry sy_anti(...);
+symmetry sy_cycl(...);
+@end example
+
+@code{sy_none()} stands for no symmetry, @code{sy_symm()} and @code{sy_anti()}
+specify fully symmetric or antisymmetric, respectively, and @code{sy_cycl()}
+represents a cyclic symmetry. Each of these functions accepts up to four
+arguments which can be either symmetry objects themselves or unsigned integer
+numbers that represent an index position (counting from 0). A symmetry
+specification that consists of only a single @code{sy_symm()}, @code{sy_anti()}
+or @code{sy_cycl()} with no arguments specifies the respective symmetry for
+all indices.
+
+Here are some examples of symmetry definitions:
 
 @example
     ...
-    cout << indexed(A, indexed::symmetric, i, j)
-          + indexed(A, indexed::symmetric, j, i) << endl;
+    // No symmetry:
+    e = indexed(A, i, j);
+    e = indexed(A, sy_none(), i, j);     // equivalent
+    e = indexed(A, sy_none(0, 1), i, j); // equivalent
+
+    // Symmetric in all three indices:
+    e = indexed(A, sy_symm(), i, j, k);
+    e = indexed(A, sy_symm(0, 1, 2), i, j, k); // equivalent
+    e = indexed(A, sy_symm(2, 0, 1), i, j, k); // same symmetry, but yields a
+                                               // different canonical order
+
+    // Symmetric in the first two indices only:
+    e = indexed(A, sy_symm(0, 1), i, j, k);
+    e = indexed(A, sy_none(sy_symm(0, 1), 2), i, j, k); // equivalent
+
+    // Antisymmetric in the first and last index only (index ranges need not
+    // be contiguous):
+    e = indexed(A, sy_anti(0, 2), i, j, k);
+    e = indexed(A, sy_none(sy_anti(0, 2), 1), i, j, k); // equivalent
+
+    // An example of a mixed symmetry: antisymmetric in the first two and
+    // last two indices, symmetric when swapping the first and last index
+    // pairs (like the Riemann curvature tensor):
+    e = indexed(A, sy_symm(sy_anti(0, 1), sy_anti(2, 3)), i, j, k, l);
+
+    // Cyclic symmetry in all three indices:
+    e = indexed(A, sy_cycl(), i, j, k);
+    e = indexed(A, sy_cycl(0, 1, 2), i, j, k); // equivalent
+
+    // The following examples are invalid constructions that will throw
+    // an exception at run time.
+
+    // An index may not appear multiple times:
+    e = indexed(A, sy_symm(0, 0, 1), i, j, k); // ERROR
+    e = indexed(A, sy_none(sy_symm(0, 1), sy_anti(0, 2)), i, j, k); // ERROR
+
+    // Every child of sy_symm(), sy_anti() and sy_cycl() must refer to the
+    // same number of indices:
+    e = indexed(A, sy_symm(sy_anti(0, 1), 2), i, j, k); // ERROR
+
+    // And of course, you cannot specify indices which are not there:
+    e = indexed(A, sy_symm(0, 1, 2, 3), i, j, k); // ERROR
+    ...
+@end example
+
+If you need to specify more than four indices, you have to use the
+@code{.add()} method of the @code{symmetry} class. For example, to specify
+full symmetry in the first six indices you would write
+@code{sy_symm(0, 1, 2, 3).add(4).add(5)}.
+
+If an indexed object has a symmetry, GiNaC will automatically bring the
+indices into a canonical order which allows for some immediate simplifications:
+
+@example
+    ...
+    cout << indexed(A, sy_symm(), i, j)
+          + indexed(A, sy_symm(), j, i) << endl;
      // -> 2*A.j.i
-    cout << indexed(B, indexed::antisymmetric, i, j)
-          + indexed(B, indexed::antisymmetric, j, j) << endl;
+    cout << indexed(B, sy_anti(), i, j)
+          + indexed(B, sy_anti(), j, i) << endl;
      // -> -B.j.i
-    cout << indexed(B, indexed::antisymmetric, i, j)
-          + indexed(B, indexed::antisymmetric, j, i) << endl;
+    cout << indexed(B, sy_anti(), i, j, k)
+          + indexed(B, sy_anti(), j, i, k) << endl;
      // -> 0
     ...
 @end example
@@ -1606,11 +1944,13 @@ that performs some more expensive operations:
 @itemize
 @item it checks the consistency of free indices in sums in the same way
   @code{get_free_indices()} does
-@item it tries to give dumy indices that appear in different terms of a sum
+@item it tries to give dummy indices that appear in different terms of a sum
   the same name to allow simplifications like @math{a_i*b_i-a_j*b_j=0}
 @item it (symbolically) calculates all possible dummy index summations/contractions
   with the predefined tensors (this will be explained in more detail in the
   next section)
+@item it detects contractions that vanish for symmetry reasons, for example
+  the contraction of a symmetric and a totally antisymmetric tensor
 @item as a special case of dummy index summation, it can replace scalar products
   of two tensors with a user-defined value
 @end itemize
@@ -1666,7 +2006,7 @@ indices are specified).
 @subsubsection Delta tensor
 
 The delta tensor takes two indices, is symmetric and has the matrix
-representation @code{diag(1,1,1,...)}. It is constructed by the function
+representation @code{diag(1, 1, 1, ...)}. It is constructed by the function
 @code{delta_tensor()}:
 
 @example
@@ -1786,7 +2126,7 @@ It is output as @samp{eps}:
 @}
 @end example
 
-The matrix representation of the spinor metric is @code{[[ [[ 0, 1 ]], [[ -1, 0 ]] ]]}.
+The matrix representation of the spinor metric is @code{[[0, 1], [-1, 0]]}.
 
 @cindex @code{epsilon_tensor()}
 @cindex @code{lorentz_eps()}
@@ -1795,7 +2135,7 @@ The matrix representation of the spinor metric is @code{[[ [[ 0, 1 ]], [[ -1, 0
 The epsilon tensor is totally antisymmetric, its number of indices is equal
 to the dimension of the index space (the indices must all be of the same
 numeric dimension), and @samp{eps.1.2.3...} (resp. @samp{eps~0~1~2...}) is
-defined to be 1. Its behaviour with indices that have a variance also
+defined to be 1. Its behavior with indices that have a variance also
 depends on the signature of the metric. Epsilon tensors are output as
 @samp{eps}.
 
@@ -1812,7 +2152,27 @@ The first two functions create an epsilon tensor in 2 or 3 Euclidean
 dimensions, the last function creates an epsilon tensor in a 4-dimensional
 Minkowski space (the last @code{bool} argument specifies whether the metric
 has negative or positive signature, as in the case of the Minkowski metric
-tensor).
+tensor):
+
+@example
+@{
+    varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4),
+           sig(symbol("sig"), 4), lam(symbol("lam"), 4), bet(symbol("bet"), 4);
+    e = lorentz_eps(mu, nu, rho, sig) *
+        lorentz_eps(mu.toggle_variance(), nu.toggle_variance(), lam, bet);
+    cout << simplify_indexed(e) << endl;
+     // -> 2*eta~bet~rho*eta~sig~lam-2*eta~sig~bet*eta~rho~lam
+
+    idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
+    symbol A("A"), B("B");
+    e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(B, k);
+    cout << simplify_indexed(e) << endl;
+     // -> -B.k*A.j*eps.i.k.j
+    e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(A, k);
+    cout << simplify_indexed(e) << endl;
+     // -> 0
+@}
+@end example
 
 @subsection Linear algebra
 
@@ -1825,6 +2185,7 @@ and scalar products):
     idx i(symbol("i"), 2), j(symbol("j"), 2);
     symbol x("x"), y("y");
 
+    // A is a 2x2 matrix, X is a 2x1 vector
     matrix A(2, 2, lst(1, 2, 3, 4)), X(2, 1, lst(x, y));
 
     cout << indexed(A, i, i) << endl;
@@ -1832,17 +2193,17 @@ and scalar products):
 
     ex e = indexed(A, i, j) * indexed(X, j);
     cout << e.simplify_indexed() << endl;
-     // -> [[ [[2*y+x]], [[4*y+3*x]] ]].i
+     // -> [[2*y+x],[4*y+3*x]].i
 
     e = indexed(A, i, j) * indexed(X, i) + indexed(X, j) * 2;
     cout << e.simplify_indexed() << endl;
-     // -> [[ [[3*y+3*x,6*y+2*x]] ]].j
+     // -> [[3*y+3*x,6*y+2*x]].j
 @}
 @end example
 
 You can of course obtain the same results with the @code{matrix::add()},
-@code{matrix::mul()} and @code{matrix::trace()} methods but with indices you
-don't have to worry about transposing matrices.
+@code{matrix::mul()} and @code{matrix::trace()} methods (@pxref{Matrices})
+but with indices you don't have to worry about transposing matrices.
 
 Matrix indices always start at 0 and their dimension must match the number
 of rows/columns of the matrix. Matrices with one row or one column are
@@ -1871,8 +2232,9 @@ physics:
 @end itemize
 
 The @code{clifford} and @code{color} classes are subclasses of
-@code{indexed} because the elements of these algebras ususally carry
-indices.
+@code{indexed} because the elements of these algebras usually carry
+indices. The @code{matrix} class is described in more detail in
+@ref{Matrices}.
 
 Unlike most computer algebra systems, GiNaC does not primarily provide an
 operator (often denoted @samp{&*}) for representing inert products of
@@ -1970,6 +2332,11 @@ Other representation labels yield a different @code{return_type_tinfo()},
 but it's the same for any two objects with the same label. This is also true
 for color objects.
 
+A last note: With the exception of matrices, positive integer powers of
+non-commutative objects are automatically expanded in GiNaC. For example,
+@code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
+non-commutative expressions).
+
 
 @cindex @code{clifford} (class)
 @subsection Clifford algebra
@@ -1998,8 +2365,14 @@ The unity element of a Clifford algebra is constructed by
 ex dirac_ONE(unsigned char rl = 0);
 @end example
 
+@strong{Note:} You must always use @code{dirac_ONE()} when referring to
+multiples of the unity element, even though it's customary to omit it.
+E.g. instead of @code{dirac_gamma(mu)*(dirac_slash(q,4)+m)} you have to
+write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
+GiNaC may produce incorrect results.
+
 @cindex @code{dirac_gamma5()}
-and there's a special element @samp{gamma5} that commutes with all other
+There's a special element @samp{gamma5} that commutes with all other
 gammas and in 4 dimensions equals @samp{gamma~0 gamma~1 gamma~2 gamma~3},
 provided by
 
@@ -2026,8 +2399,10 @@ Finally, the function
 ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0);
 @end example
 
-creates a term of the form @samp{e.mu gamma~mu} with a new and unique index
-whose dimension is given by the @code{dim} argument.
+creates a term that represents a contraction of @samp{e} with the Dirac
+Lorentz vector (it behaves like a term of the form @samp{e.mu gamma~mu}
+with a unique index whose dimension is given by the @code{dim} argument).
+Such slashed expressions are printed with a trailing backslash, e.g. @samp{e\}.
 
 In products of dirac gammas, superfluous unity elements are automatically
 removed, squares are replaced by their values and @samp{gamma5} is
@@ -2042,13 +2417,12 @@ contractions in gamma strings, for example
     ex e = dirac_gamma(mu) * dirac_slash(a, D)
          * dirac_gamma(mu.toggle_variance());
     cout << e << endl;
-     // -> (gamma~mu*gamma~symbol10*gamma.mu)*a.symbol10
+     // -> gamma~mu*a\*gamma.mu
     e = e.simplify_indexed();
     cout << e << endl;
-     // -> -gamma~symbol10*a.symbol10*D+2*gamma~symbol10*a.symbol10
+     // -> -D*a\+2*a\
     cout << e.subs(D == 4) << endl;
-     // -> -2*gamma~symbol10*a.symbol10
-     // [ == -2 * dirac_slash(a, D) ]
+     // -> -2*a\
     ...
 @}
 @end example
@@ -2113,7 +2487,7 @@ QED:
            dirac_gamma(mu.toggle_variance()) *
            (dirac_slash(l, D) + m * dirac_ONE());   
     e = dirac_trace(e).simplify_indexed(sp);
-    e = e.collect(lst(l, ldotq, m), true);
+    e = e.collect(lst(l, ldotq, m));
     cout << e << endl;
      // -> (8-4*D)*l^2+(8-4*D)*ldotq+4*D*m^2
 @}
@@ -2162,9 +2536,15 @@ The unity element of a color algebra is constructed by
 ex color_ONE(unsigned char rl = 0);
 @end example
 
+@strong{Note:} You must always use @code{color_ONE()} when referring to
+multiples of the unity element, even though it's customary to omit it.
+E.g. instead of @code{color_T(a)*(color_T(b)*indexed(X,b)+1)} you have to
+write @code{color_T(a)*(color_T(b)*indexed(X,b)+color_ONE())}. Otherwise,
+GiNaC may produce incorrect results.
+
 @cindex @code{color_d()}
 @cindex @code{color_f()}
-and the functions
+The functions
 
 @example
 ex color_d(const ex & a, const ex & b, const ex & c);
@@ -2288,10 +2668,12 @@ avoided.
 * Information About Expressions::
 * Substituting Expressions::
 * Pattern Matching and Advanced Substitutions::
+* Applying a Function on Subexpressions::
 * Polynomial Arithmetic::           Working with polynomials.
 * Rational Expressions::            Working with rational functions.
 * Symbolic Differentiation::
 * Series Expansion::                Taylor and Laurent expansion.
+* Symmetrization::
 * Built-in Functions::              List of predefined mathematical functions.
 * Input/Output::                    Input and output of expressions.
 @end menu
@@ -2302,41 +2684,42 @@ avoided.
 @section Getting information about expressions
 
 @subsection Checking expression types
-@cindex @code{is_ex_of_type()}
-@cindex @code{ex_to_numeric()}
-@cindex @code{ex_to_@dots{}}
-@cindex @code{Converting ex to other classes}
+@cindex @code{is_a<@dots{}>()}
+@cindex @code{is_exactly_a<@dots{}>()}
+@cindex @code{ex_to<@dots{}>()}
+@cindex Converting @code{ex} to other classes
 @cindex @code{info()}
 @cindex @code{return_type()}
 @cindex @code{return_type_tinfo()}
 
 Sometimes it's useful to check whether a given expression is a plain number,
 a sum, a polynomial with integer coefficients, or of some other specific type.
-GiNaC provides a couple of functions for this (the first one is actually a macro):
+GiNaC provides a couple of functions for this:
 
 @example
-bool is_ex_of_type(const ex & e, TYPENAME t);
+bool is_a<T>(const ex & e);
+bool is_exactly_a<T>(const ex & e);
 bool ex::info(unsigned flag);
 unsigned ex::return_type(void) const;
 unsigned ex::return_type_tinfo(void) const;
 @end example
 
-When the test made by @code{is_ex_of_type()} returns true, it is safe to
-call one of the functions @code{ex_to_@dots{}}, where @code{@dots{}} is
-one of the class names (@xref{The Class Hierarchy}, for a list of all
-classes). For example, assuming @code{e} is an @code{ex}:
+When the test made by @code{is_a<T>()} returns true, it is safe to call
+one of the functions @code{ex_to<T>()}, where @code{T} is one of the
+class names (@xref{The Class Hierarchy}, for a list of all classes). For
+example, assuming @code{e} is an @code{ex}:
 
 @example
 @{
     @dots{}
-    if (is_ex_of_type(e, numeric))
-        numeric n = ex_to_numeric(e);
+    if (is_a<numeric>(e))
+        numeric n = ex_to<numeric>(e);
     @dots{}
 @}
 @end example
 
-@code{is_ex_of_type()} allows you to check whether the top-level object of
-an expression @samp{e} is an instance of the GiNaC class @samp{t}
+@code{is_a<T>(e)} allows you to check whether the top-level object of
+an expression @samp{e} is an instance of the GiNaC class @samp{T}
 (@xref{The Class Hierarchy}, for a list of all classes). This is most useful,
 e.g., for checking whether an expression is a number, a sum, or a product:
 
@@ -2345,15 +2728,19 @@ e.g., for checking whether an expression is a number, a sum, or a product:
     symbol x("x");
     ex e1 = 42;
     ex e2 = 4*x - 3;
-    is_ex_of_type(e1, numeric);  // true
-    is_ex_of_type(e2, numeric);  // false
-    is_ex_of_type(e1, add);      // false
-    is_ex_of_type(e2, add);      // true
-    is_ex_of_type(e1, mul);      // false
-    is_ex_of_type(e2, mul);      // false
+    is_a<numeric>(e1);  // true
+    is_a<numeric>(e2);  // false
+    is_a<add>(e1);      // false
+    is_a<add>(e2);      // true
+    is_a<mul>(e1);      // false
+    is_a<mul>(e2);      // false
 @}
 @end example
 
+In contrast, @code{is_exactly_a<T>(e)} allows you to check whether the
+top-level object of an expression @samp{e} is an instance of the GiNaC
+class @samp{T}, not including parent classes.
+
 The @code{info()} method is used for checking certain attributes of
 expressions. The possible values for the @code{flag} argument are defined
 in @file{ginac/flags.h}, the most important being explained in the following
@@ -2363,7 +2750,7 @@ table:
 @multitable @columnfractions .30 .70
 @item @strong{Flag} @tab @strong{Returns true if the object is@dots{}}
 @item @code{numeric}
-@tab @dots{}a number (same as @code{is_ex_of_type(..., numeric)})
+@tab @dots{}a number (same as @code{is_<numeric>(...)})
 @item @code{real}
 @tab @dots{}a real integer, rational or float (i.e. is not complex)
 @item @code{rational}
@@ -2393,7 +2780,7 @@ table:
 @item @code{prime}
 @tab @dots{}a prime integer (probabilistic primality test)
 @item @code{relation}
-@tab @dots{}a relation (same as @code{is_ex_of_type(..., relational)})
+@tab @dots{}a relation (same as @code{is_a<relational>(...)})
 @item @code{relation_equal}
 @tab @dots{}a @code{==} relation
 @item @code{relation_not_equal}
@@ -2407,9 +2794,9 @@ table:
 @item @code{relation_greater_or_equal}
 @tab @dots{}a @code{>=} relation
 @item @code{symbol}
-@tab @dots{}a symbol (same as @code{is_ex_of_type(..., symbol)})
+@tab @dots{}a symbol (same as @code{is_a<symbol>(...)})
 @item @code{list}
-@tab @dots{}a list (same as @code{is_ex_of_type(..., lst)})
+@tab @dots{}a list (same as @code{is_a<lst>(...)})
 @item @code{polynomial}
 @tab @dots{}a polynomial (i.e. only consists of sums and products of numbers and symbols with positive integer powers)
 @item @code{integer_polynomial}
@@ -2476,8 +2863,8 @@ expressions), so something like @code{(pow(x,2)+x)/x==x+1} will return
 @code{false}.
 
 Actually, if you construct an expression like @code{a == b}, this will be
-represented by an object of the @code{relational} class (@xref{Relations}.)
-which is not evaluated until (explicitly or implicitely) cast to a @code{bool}.
+represented by an object of the @code{relational} class (@pxref{Relations})
+which is not evaluated until (explicitly or implicitly) cast to a @code{bool}.
 
 There are also two methods
 
@@ -2560,9 +2947,11 @@ A more powerful form of substitution using wildcards is described in the
 next section.
 
 
-@node Pattern Matching and Advanced Substitutions, Polynomial Arithmetic, Substituting Expressions, Methods and Functions
+@node Pattern Matching and Advanced Substitutions, Applying a Function on Subexpressions, Substituting Expressions, Methods and Functions
 @c    node-name, next, previous, up
 @section Pattern matching and advanced substitutions
+@cindex @code{wildcard} (class)
+@cindex Pattern matching
 
 GiNaC allows the use of patterns for checking whether an expression is of a
 certain form or contains subexpressions of a certain form, and for
@@ -2573,7 +2962,7 @@ A @dfn{wildcard} is a special kind of object (of class @code{wildcard}) that
 represents an arbitrary expression. Every wildcard has a @dfn{label} which is
 an unsigned integer number to allow having multiple different wildcards in a
 pattern. Wildcards are printed as @samp{$label} (this is also the way they
-are specified in @command{ginsh}. In C++ code, wildcard objects are created
+are specified in @command{ginsh}). In C++ code, wildcard objects are created
 with the call
 
 @example
@@ -2640,7 +3029,7 @@ The matching algorithm works as follows:
   fails (i.e. a sum only matches a sum, a function only matches a function,
   etc.).
 @item If the pattern is a function, it only matches the same function
-  (i.e. @samp{sin($0)} matches @samp{sin(x)} but doesn't match @samp{exp(x)}.
+  (i.e. @samp{sin($0)} matches @samp{sin(x)} but doesn't match @samp{exp(x)}).
 @item Except for sums and products, the match fails if the number of
   subexpressions (@code{nops()}) is not equal to the number of subexpressions
   of the pattern.
@@ -2669,7 +3058,7 @@ account for their commutativity and associativity:
 
 In general, having more than one single wildcard as a term of a sum or a
 factor of a product (such as @samp{a+$0+$1}) will lead to unpredictable or
-amgiguous results.
+ambiguous results.
 
 Here are some examples in @command{ginsh} to demonstrate how it works (the
 @code{match()} function in @command{ginsh} returns @samp{FAIL} if the
@@ -2677,47 +3066,47 @@ match fails, and the list of wildcard replacements otherwise):
 
 @example
 > match((x+y)^a,(x+y)^a);
-[]
+@{@}
 > match((x+y)^a,(x+y)^b);
 FAIL
 > match((x+y)^a,$1^$2);
-[$1==x+y,$2==a]
+@{$1==x+y,$2==a@}
 > match((x+y)^a,$1^$1);
 FAIL
 > match((x+y)^(x+y),$1^$1);
-[$1==x+y]
+@{$1==x+y@}
 > match((x+y)^(x+y),$1^$2);
-[$1==x+y,$2==x+y]
+@{$1==x+y,$2==x+y@}
 > match((a+b)*(a+c),($1+b)*($1+c));
-[$1==a]
+@{$1==a@}
 > match((a+b)*(a+c),(a+$1)*(a+$2));
-[$1==c,$2==b]
+@{$1==c,$2==b@}
   (Unpredictable. The result might also be [$1==c,$2==b].)
 > match((a+b)*(a+c),($1+$2)*($1+$3));
   (The result is undefined. Due to the sequential nature of the algorithm
    and the re-ordering of terms in GiNaC, the match for the first factor
-   may be [$1==a,$2==b] in which case the match for the second factor
-   succeeds, or it may be [$1==b,$2==a] which causes the second match to
+   may be @{$1==a,$2==b@} in which case the match for the second factor
+   succeeds, or it may be @{$1==b,$2==a@} which causes the second match to
    fail.)
-> match(2*(x+y)+2*z-2,2*$1+$2);
-  (This is also ambiguous and may return either [$1==z,$2==-2+2*x+2*y] or
-   [$1=x+y,$2=2*z-2].)
+> match(a*(x+y)+a*z+b,a*$1+$2);
+  (This is also ambiguous and may return either @{$1==z,$2==a*(x+y)+b@} or
+   @{$1=x+y,$2=a*z+b@}.)
 > match(a+b+c+d+e+f,c);
 FAIL
 > match(a+b+c+d+e+f,c+$0);
-[$0==a+e+b+f+d]
+@{$0==a+e+b+f+d@}
 > match(a+b+c+d+e+f,c+e+$0);
-[$0==a+b+f+d]
+@{$0==a+b+f+d@}
 > match(a+b,a+b+$0);
-[$0==0]
+@{$0==0@}
 > match(a*b^2,a^$1*b^$2);
 FAIL
-  (The matching is syntactic, not algebraic, and "a" doesn't match "a^$0"
-   even if a==a^x for x==0.)
+  (The matching is syntactic, not algebraic, and "a" doesn't match "a^$1"
+   even though a==a^1.)
 > match(x*atan2(x,x^2),$0*atan2($0,$0^2));
-[$0==x]
+@{$0==x@}
 > match(atan2(y,x^2),atan2(y,$0));
-[$0==x^2]
+@{$0==x^2@}
 @end example
 
 @cindex @code{has()}
@@ -2737,11 +3126,11 @@ Again some examples in @command{ginsh} for illustration (in @command{ginsh},
 @example
 > has(x*sin(x+y+2*a),y);
 1
-> has(x*sin(x+y+2*a+y),x+y);
+> has(x*sin(x+y+2*a),x+y);
 0
   (This is because in GiNaC, "x+y" is not a subexpression of "x+y+2*a" (which
    has the subexpressions "x", "y" and "2*a".)
-> has(x*sin(x+y+2*a+y),x+y+$1);
+> has(x*sin(x+y+2*a),x+y+$1);
 1
   (But this is possible.)
 > has(x*sin(2*(x+y)+2*a),x+y);
@@ -2761,6 +3150,33 @@ Again some examples in @command{ginsh} for illustration (in @command{ginsh},
    contains a linear term you should use the coeff() function instead.)
 @end example
 
+@cindex @code{find()}
+The method
+
+@example
+bool ex::find(const ex & pattern, lst & found);
+@end example
+
+works a bit like @code{has()} but it doesn't stop upon finding the first
+match. Instead, it appends all found matches to the specified list. If there
+are multiple occurrences of the same expression, it is entered only once to
+the list. @code{find()} returns false if no matches were found (in
+@command{ginsh}, it returns an empty list):
+
+@example
+> find(1+x+x^2+x^3,x);
+@{x@}
+> find(1+x+x^2+x^3,y);
+@{@}
+> find(1+x+x^2+x^3,x^$1);
+@{x^3,x^2@}
+  (Note the absence of "x".)
+> expand((sin(x)+sin(y))*(a+b));
+sin(y)*a+sin(x)*b+sin(x)*a+sin(y)*b
+> find(%,sin($1));
+@{sin(y),sin(x)@}
+@end example
+
 @cindex @code{subs()}
 Probably the most useful application of patterns is to use them for
 substituting expressions with the @code{subs()} method. Wildcards can be
@@ -2779,6 +3195,8 @@ b^4+a^4+(x+y)^4
 (a+b+c)^2
 > subs((a+b+c)^2,a+b+$1==x+$1);
 (x+c)^2
+> subs(a+2*b,a+b=x);
+a+2*b
 > subs(4*x^3-2*x^2+5*x-1,x==a);
 -1+5*a-2*a^2+4*a^3
 > subs(4*x^3-2*x^2+5*x-1,x^$0==a^$0);
@@ -2797,12 +3215,157 @@ The last example would be written in C++ in this way:
     e = a*pow(sin(x+y), 2) + a*pow(cos(x+y), 2) + b;
     e = e.subs(pow(cos(wild()), 2) == 1-pow(sin(wild()), 2));
     cout << e.expand() << endl;
-     // -> "b+a"
+     // -> a+b
 @}
 @end example
 
 
-@node Polynomial Arithmetic, Rational Expressions, Pattern Matching and Advanced Substitutions, Methods and Functions
+@node Applying a Function on Subexpressions, Polynomial Arithmetic, Pattern Matching and Advanced Substitutions, Methods and Functions
+@c    node-name, next, previous, up
+@section Applying a Function on Subexpressions
+@cindex Tree traversal
+@cindex @code{map()}
+
+Sometimes you may want to perform an operation on specific parts of an
+expression while leaving the general structure of it intact. An example
+of this would be a matrix trace operation: the trace of a sum is the sum
+of the traces of the individual terms. That is, the trace should @dfn{map}
+on the sum, by applying itself to each of the sum's operands. It is possible
+to do this manually which usually results in code like this:
+
+@example
+ex calc_trace(ex e)
+@{
+    if (is_a<matrix>(e))
+        return ex_to<matrix>(e).trace();
+    else if (is_a<add>(e)) @{
+        ex sum = 0;
+        for (unsigned i=0; i<e.nops(); i++)
+            sum += calc_trace(e.op(i));
+        return sum;
+    @} else if (is_a<mul>)(e)) @{
+        ...
+    @} else @{
+        ...
+    @}
+@}
+@end example
+
+This is, however, slightly inefficient (if the sum is very large it can take
+a long time to add the terms one-by-one), and its applicability is limited to
+a rather small class of expressions. If @code{calc_trace()} is called with
+a relation or a list as its argument, you will probably want the trace to
+be taken on both sides of the relation or of all elements of the list.
+
+GiNaC offers the @code{map()} method to aid in the implementation of such
+operations:
+
+@example
+ex ex::map(map_function & f) const;
+ex ex::map(ex (*f)(const ex & e)) const;
+@end example
+
+In the first (preferred) form, @code{map()} takes a function object that
+is subclassed from the @code{map_function} class. In the second form, it
+takes a pointer to a function that accepts and returns an expression.
+@code{map()} constructs a new expression of the same type, applying the
+specified function on all subexpressions (in the sense of @code{op()}),
+non-recursively.
+
+The use of a function object makes it possible to supply more arguments to
+the function that is being mapped, or to keep local state information.
+The @code{map_function} class declares a virtual function call operator
+that you can overload. Here is a sample implementation of @code{calc_trace()}
+that uses @code{map()} in a recursive fashion:
+
+@example
+struct calc_trace : public map_function @{
+    ex operator()(const ex &e)
+    @{
+        if (is_a<matrix>(e))
+            return ex_to<matrix>(e).trace();
+        else if (is_a<mul>(e)) @{
+            ...
+        @} else
+            return e.map(*this);
+    @}
+@};
+@end example
+
+This function object could then be used like this:
+
+@example
+@{
+    ex M = ... // expression with matrices
+    calc_trace do_trace;
+    ex tr = do_trace(M);
+@}
+@end example
+
+Here is another example for you to meditate over.  It removes quadratic
+terms in a variable from an expanded polynomial:
+
+@example
+struct map_rem_quad : public map_function @{
+    ex var;
+    map_rem_quad(const ex & var_) : var(var_) @{@}
+
+    ex operator()(const ex & e)
+    @{
+        if (is_a<add>(e) || is_a<mul>(e))
+           return e.map(*this);
+        else if (is_a<power>(e) && 
+                 e.op(0).is_equal(var) && e.op(1).info(info_flags::even))
+            return 0;
+        else
+            return e;
+    @}
+@};
+
+...
+
+@{
+    symbol x("x"), y("y");
+
+    ex e;
+    for (int i=0; i<8; i++)
+        e += pow(x, i) * pow(y, 8-i) * (i+1);
+    cout << e << endl;
+     // -> 4*y^5*x^3+5*y^4*x^4+8*y*x^7+7*y^2*x^6+2*y^7*x+6*y^3*x^5+3*y^6*x^2+y^8
+
+    map_rem_quad rem_quad(x);
+    cout << rem_quad(e) << endl;
+     // -> 4*y^5*x^3+8*y*x^7+2*y^7*x+6*y^3*x^5+y^8
+@}
+@end example
+
+@command{ginsh} offers a slightly different implementation of @code{map()}
+that allows applying algebraic functions to operands. The second argument
+to @code{map()} is an expression containing the wildcard @samp{$0} which
+acts as the placeholder for the operands:
+
+@example
+> map(a*b,sin($0));
+sin(a)*sin(b)
+> map(a+2*b,sin($0));
+sin(a)+sin(2*b)
+> map(@{a,b,c@},$0^2+$0);
+@{a^2+a,b^2+b,c^2+c@}
+@end example
+
+Note that it is only possible to use algebraic functions in the second
+argument. You can not use functions like @samp{diff()}, @samp{op()},
+@samp{subs()} etc. because these are evaluated immediately:
+
+@example
+> map(@{a,b,c@},diff($0,a));
+@{0,0,0@}
+  This is because "diff($0,a)" evaluates to "0", so the command is equivalent
+  to "map(@{a,b,c@},0)".
+@end example
+
+
+@node Polynomial Arithmetic, Rational Expressions, Applying a Function on Subexpressions, Methods and Functions
 @c    node-name, next, previous, up
 @section Polynomial arithmetic
 
@@ -2818,7 +3381,7 @@ to the factorized polynomial @math{(x + 5*y + 4*z)*(4*y + z)}.  Other
 representations are the recursive ones where one collects for exponents
 in one of the three variable.  Since the factors are themselves
 polynomials in the remaining two variables the procedure can be
-repeated.  In our expample, two possibilities would be @math{(4*y + z)*x
+repeated.  In our example, two possibilities would be @math{(4*y + z)*x
 + 20*y^2 + 21*y*z + 4*z^2} and @math{20*y^2 + (21*z + 4*x)*y + 4*z^2 +
 x*z}.
 
@@ -2847,8 +3410,25 @@ case the result is either a recursively collected polynomial, or a polynomial
 in a distributed form with terms like @math{c*x1^e1*...*xn^en}, as specified
 by the @code{distributed} flag.
 
-Note that the original polynomial needs to be in expanded form in order
-for @code{collect()} to be able to find the coefficients properly.
+Note that the original polynomial needs to be in expanded form (for the
+variables concerned) in order for @code{collect()} to be able to find the
+coefficients properly.
+
+The following @command{ginsh} transcript shows an application of @code{collect()}
+together with @code{find()}:
+
+@example
+> a=expand((sin(x)+sin(y))*(1+p+q)*(1+d));
+d*p*sin(x)+p*sin(x)+q*d*sin(x)+q*sin(y)+d*sin(x)+q*d*sin(y)+sin(y)+d*sin(y)+q*sin(x)+d*sin(y)*p+sin(x)+sin(y)*p
+> collect(a,@{p,q@});
+d*sin(x)+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*p+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*q+sin(y)+d*sin(y)+sin(x)
+> collect(a,find(a,sin($1)));
+(1+q+d+q*d+d*p+p)*sin(y)+(1+q+d+q*d+d*p+p)*sin(x)
+> collect(a,@{find(a,sin($1)),p,q@});
+(1+(1+d)*p+d+q*(1+d))*sin(x)+(1+(1+d)*p+d+q*(1+d))*sin(y)
+> collect(a,@{find(a,sin($1)),d@});
+(1+q+d*(1+q+p)+p)*sin(y)+(1+q+d*(1+q+p)+p)*sin(x)
+@end example
 
 @subsection Degree and coefficients
 @cindex @code{degree()}
@@ -2885,11 +3465,6 @@ An application is illustrated in the next example, where a multivariate
 polynomial is analyzed:
 
 @example
-#include <ginac/ginac.h>
-using namespace std;
-using namespace GiNaC;
-
-int main()
 @{
     symbol x("x"), y("y");
     ex PolyInp = 4*pow(x,3)*y + 5*x*pow(y,2) + 3*y
@@ -3051,28 +3626,32 @@ GiNaC still lacks proper factorization support.  Some form of
 factorization is, however, easily implemented by noting that factors
 appearing in a polynomial with power two or more also appear in the
 derivative and hence can easily be found by computing the GCD of the
-original polynomial and its derivatives.  Any system has an interface
-for this so called square-free factorization.  So we provide one, too:
+original polynomial and its derivatives.  Any decent system has an
+interface for this so called square-free factorization.  So we provide
+one, too:
 @example
 ex sqrfree(const ex & a, const lst & l = lst());
 @end example
-Here is an example that by the way illustrates how the result may depend
-on the order of differentiation:
+Here is an example that by the way illustrates how the exact form of the
+result may slightly depend on the order of differentiation, calling for
+some care with subsequent processing of the result:
 @example
     ...
     symbol x("x"), y("y");
-    ex BiVarPol = expand(pow(x-2*y*x,3) * pow(x+y,2) * (x-y));
+    ex BiVarPol = expand(pow(2-2*y,3) * pow(1+x*y,2) * pow(x-2*y,2) * (x+y));
 
     cout << sqrfree(BiVarPol, lst(x,y)) << endl;
-     // -> (y+x)^2*(-1+6*y+8*y^3-12*y^2)*(y-x)*x^3
+     // -> 8*(1-y)^3*(y*x^2-2*y+x*(1-2*y^2))^2*(y+x)
 
     cout << sqrfree(BiVarPol, lst(y,x)) << endl;
-     // -> (1-2*y)^3*(y+x)^2*(-y+x)*x^3
+     // -> 8*(1-y)^3*(-y*x^2+2*y+x*(-1+2*y^2))^2*(y+x)
 
     cout << sqrfree(BiVarPol) << endl;
      // -> depending on luck, any of the above
     ...
 @end example
+Note also, how factors with the same exponents are not fully factorized
+with this method.
 
 
 @node Rational Expressions, Symbolic Differentiation, Polynomial Arithmetic, Methods and Functions
@@ -3099,13 +3678,9 @@ symbols afterwards. This algorithm is also available as a separate method
 @code{.to_rational()}, described below.
 
 This means that both expressions @code{t1} and @code{t2} are indeed
-simplified in this little program:
+simplified in this little code snippet:
 
 @example
-#include <ginac/ginac.h>
-using namespace GiNaC;
-
-int main()
 @{
     symbol x("x");
     ex t1 = (pow(x,2) + 2*x + 1)/(x + 1);
@@ -3125,16 +3700,20 @@ normalized to @code{P_a/P_b} = @code{(4*y+z)/(y+3*z)}.
 @cindex denominator
 @cindex @code{numer()}
 @cindex @code{denom()}
+@cindex @code{numer_denom()}
 
 The numerator and denominator of an expression can be obtained with
 
 @example
 ex ex::numer();
 ex ex::denom();
+ex ex::numer_denom();
 @end example
 
 These functions will first normalize the expression as described above and
-then return the numerator or denominator, respectively.
+then return the numerator, denominator, or both as a list, respectively.
+If you need both numerator and denominator, calling @code{numer_denom()} is
+faster than using @code{numer()} and @code{denom()} separately.
 
 
 @subsection Converting to a rational expression
@@ -3186,17 +3765,16 @@ polynomial (class @code{add}) knows that its derivative is the sum of
 the derivatives of all the monomials:
 
 @example
-#include <ginac/ginac.h>
-using namespace GiNaC;
-
-int main()
 @{
     symbol x("x"), y("y"), z("z");
     ex P = pow(x, 5) + pow(x, 2) + y;
 
-    cout << P.diff(x,2) << endl;  // 20*x^3 + 2
+    cout << P.diff(x,2) << endl;
+     // -> 20*x^3 + 2
     cout << P.diff(y) << endl;    // 1
+     // -> 1
     cout << P.diff(z) << endl;    // 0
+     // -> 0
 @}
 @end example
 
@@ -3240,13 +3818,14 @@ When you run it, it produces the sequence @code{1}, @code{-1}, @code{5},
 @code{i} by two since all odd Euler numbers vanish anyways.
 
 
-@node Series Expansion, Built-in Functions, Symbolic Differentiation, Methods and Functions
+@node Series Expansion, Symmetrization, Symbolic Differentiation, Methods and Functions
 @c    node-name, next, previous, up
 @section Series expansion
 @cindex @code{series()}
 @cindex Taylor expansion
 @cindex Laurent expansion
 @cindex @code{pseries} (class)
+@cindex @code{Order()}
 
 Expressions know how to expand themselves as a Taylor series or (more
 generally) a Laurent series.  As in most conventional Computer Algebra
@@ -3350,7 +3929,54 @@ program, it will type out:
 @end example
 
 
-@node Built-in Functions, Input/Output, Series Expansion, Methods and Functions
+@node Symmetrization, Built-in Functions, Series Expansion, Methods and Functions
+@c    node-name, next, previous, up
+@section Symmetrization
+@cindex @code{symmetrize()}
+@cindex @code{antisymmetrize()}
+@cindex @code{symmetrize_cyclic()}
+
+The three methods
+
+@example
+ex ex::symmetrize(const lst & l);
+ex ex::antisymmetrize(const lst & l);
+ex ex::symmetrize_cyclic(const lst & l);
+@end example
+
+symmetrize an expression by returning the sum over all symmetric,
+antisymmetric or cyclic permutations of the specified list of objects,
+weighted by the number of permutations.
+
+The three additional methods
+
+@example
+ex ex::symmetrize();
+ex ex::antisymmetrize();
+ex ex::symmetrize_cyclic();
+@end example
+
+symmetrize or antisymmetrize an expression over its free indices.
+
+Symmetrization is most useful with indexed expressions but can be used with
+almost any kind of object (anything that is @code{subs()}able):
+
+@example
+@{
+    idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
+    symbol A("A"), B("B"), a("a"), b("b"), c("c");
+                                           
+    cout << indexed(A, i, j).symmetrize() << endl;
+     // -> 1/2*A.j.i+1/2*A.i.j
+    cout << indexed(A, i, j, k).antisymmetrize(lst(i, j)) << endl;
+     // -> -1/2*A.j.i.k+1/2*A.i.j.k
+    cout << lst(a, b, c).symmetrize_cyclic(lst(a, b, c)) << endl;
+     // -> 1/3*@{a,b,c@}+1/3*@{b,c,a@}+1/3*@{c,a,b@}
+@}
+@end example
+
+
+@node Built-in Functions, Input/Output, Symmetrization, Methods and Functions
 @c    node-name, next, previous, up
 @section Predefined mathematical functions
 
@@ -3361,64 +3987,89 @@ GiNaC contains the following predefined mathematical functions:
 @item @strong{Name} @tab @strong{Function}
 @item @code{abs(x)}
 @tab absolute value
+@cindex @code{abs()}
 @item @code{csgn(x)}
 @tab complex sign
+@cindex @code{csgn()}
 @item @code{sqrt(x)}
-@tab square root (not a GiNaC function proper but equivalent to @code{pow(x, numeric(1, 2)})
+@tab square root (not a GiNaC function, rather an alias for @code{pow(x, numeric(1, 2))})
+@cindex @code{sqrt()}
 @item @code{sin(x)}
 @tab sine
+@cindex @code{sin()}
 @item @code{cos(x)}
 @tab cosine
+@cindex @code{cos()}
 @item @code{tan(x)}
 @tab tangent
+@cindex @code{tan()}
 @item @code{asin(x)}
 @tab inverse sine
+@cindex @code{asin()}
 @item @code{acos(x)}
 @tab inverse cosine
+@cindex @code{acos()}
 @item @code{atan(x)}
 @tab inverse tangent
+@cindex @code{atan()}
 @item @code{atan2(y, x)}
 @tab inverse tangent with two arguments
 @item @code{sinh(x)}
 @tab hyperbolic sine
+@cindex @code{sinh()}
 @item @code{cosh(x)}
 @tab hyperbolic cosine
+@cindex @code{cosh()}
 @item @code{tanh(x)}
 @tab hyperbolic tangent
+@cindex @code{tanh()}
 @item @code{asinh(x)}
 @tab inverse hyperbolic sine
+@cindex @code{asinh()}
 @item @code{acosh(x)}
 @tab inverse hyperbolic cosine
+@cindex @code{acosh()}
 @item @code{atanh(x)}
 @tab inverse hyperbolic tangent
+@cindex @code{atanh()}
 @item @code{exp(x)}
 @tab exponential function
+@cindex @code{exp()}
 @item @code{log(x)}
 @tab natural logarithm
+@cindex @code{log()}
 @item @code{Li2(x)}
 @tab Dilogarithm
+@cindex @code{Li2()}
 @item @code{zeta(x)}
 @tab Riemann's zeta function
+@cindex @code{zeta()}
 @item @code{zeta(n, x)}
 @tab derivatives of Riemann's zeta function
 @item @code{tgamma(x)}
 @tab Gamma function
+@cindex @code{tgamma()}
+@cindex Gamma function
 @item @code{lgamma(x)}
 @tab logarithm of Gamma function
+@cindex @code{lgamma()}
 @item @code{beta(x, y)}
 @tab Beta function (@code{tgamma(x)*tgamma(y)/tgamma(x+y)})
+@cindex @code{beta()}
 @item @code{psi(x)}
 @tab psi (digamma) function
+@cindex @code{psi()}
 @item @code{psi(n, x)}
 @tab derivatives of psi function (polygamma functions)
 @item @code{factorial(n)}
 @tab factorial function
+@cindex @code{factorial()}
 @item @code{binomial(n, m)}
 @tab binomial coefficients
+@cindex @code{binomial()}
 @item @code{Order(x)}
 @tab order term function in truncated power series
-@item @code{Derivative(x, l)}
-@tab inert partial differentiation operator (used internally)
+@cindex @code{Order()}
 @end multitable
 @end cartouche
 
@@ -3554,6 +4205,7 @@ will print out:
     @{(-\ln(x))@}+@{(-\gamma_E)@} x+@{(1/12 \pi^2)@} x^@{2@}+\mathcal@{O@}(x^3)
 @end example
 
+@cindex Tree traversal
 If you need any fancy special output format, e.g. for interfacing GiNaC
 with other algebra systems or for producing code for different
 programming languages, you can always traverse the expression tree yourself:
@@ -3561,8 +4213,8 @@ programming languages, you can always traverse the expression tree yourself:
 @example
 static void my_print(const ex & e)
 @{
-    if (is_ex_of_type(e, function))
-        cout << ex_to_function(e).get_name();
+    if (is_a<function>(e))
+        cout << ex_to<function>(e).get_name();
     else
         cout << e.bp->class_name();
     cout << "(";
@@ -3635,19 +4287,19 @@ using namespace GiNaC;
 
 int main()
 @{
-     symbol x("x");
-     string s;
-
-     cout << "Enter an expression containing 'x': ";
-     getline(cin, s);
-
-     try @{
-         ex e(s, lst(x));
-         cout << "The derivative of " << e << " with respect to x is ";
-         cout << e.diff(x) << ".\n";
-     @} catch (exception &p) @{
-         cerr << p.what() << endl;
-     @}
+    symbol x("x");
+    string s;
+
+    cout << "Enter an expression containing 'x': ";
+    getline(cin, s);
+
+    try @{
+        ex e(s, lst(x));
+        cout << "The derivative of " << e << " with respect to x is ";
+        cout << e.diff(x) << ".\n";
+    @} catch (exception &p) @{
+        cerr << p.what() << endl;
+    @}
 @}
 @end example
 
@@ -3736,7 +4388,7 @@ create new symbols with that name. E.g. if you hadn't included @code{x} in
 the @code{syms} list above, the @code{ex1.subs(x == 2)} statement would
 have had no effect because the @code{x} in @code{ex1} would have been a
 different symbol than the @code{x} which was defined at the beginning of
-the program, altough both would appear as @samp{x} when printed.
+the program, although both would appear as @samp{x} when printed.
 
 You can also use the information stored in an @code{archive} object to
 output expressions in a format suitable for exact reconstruction. The
@@ -3768,19 +4420,19 @@ static void my_print2(const archive_node & n)
             switch (p[i].type) @{
                 case archive_node::PTYPE_BOOL: @{
                     bool x;
-                    n.find_bool(name, x);
+                    n.find_bool(name, x, j);
                     cout << (x ? "true" : "false");
                     break;
                 @}
                 case archive_node::PTYPE_UNSIGNED: @{
                     unsigned x;
-                    n.find_unsigned(name, x);
+                    n.find_unsigned(name, x, j);
                     cout << x;
                     break;
                 @}
                 case archive_node::PTYPE_STRING: @{
                     string x;
-                    n.find_string(name, x);
+                    n.find_string(name, x, j);
                     cout << '\"' << x << '\"';
                     break;
                 @}
@@ -3855,7 +4507,7 @@ GiNaC makes this even more clear: it doesn't even attempt to provide a
 language.  There are no loops or conditional expressions in
 @command{ginsh}, it is merely a window into the library for the
 programmer to test stuff (or to show off).  Still, the design of a
-complete CAS with a language of its own, graphical capabilites and all
+complete CAS with a language of its own, graphical capabilities and all
 this on top of GiNaC is possible and is without doubt a nice project for
 the future.
 
@@ -3865,7 +4517,7 @@ evaluate themselves numerically to a precision declared at runtime
 generally.  This ought to be fixed.  However, doing numerical
 computations with GiNaC's quite abstract classes is doomed to be
 inefficient.  For this purpose, the underlying foundation classes
-provided by @acronym{CLN} are much better suited.
+provided by CLN are much better suited.
 
 
 @node Symbolic functions, Adding classes, What does not belong into GiNaC, Extending GiNaC
@@ -3909,7 +4561,10 @@ function that does so, in this case the one in class @code{numeric}:
 @example
 static ex cos_evalf(const ex & x)
 @{
-    return cos(ex_to_numeric(x));
+    if (is_a<numeric>(x))
+        return cos(ex_to<numeric>(x));
+    else
+        return cos(x).hold();
 @}
 @end example
 
@@ -3936,7 +4591,7 @@ write another method for Laurent expansion around that point.
 
 Now that all the ingredients for @code{cos} have been set up, we need
 to tell the system about it.  This is done by a macro and we are not
-going to descibe how it expands, please consult your preprocessor if you
+going to describe how it expands, please consult your preprocessor if you
 are curious:
 
 @example
@@ -4078,11 +4733,11 @@ private:
     string str;
 @};
 
-GIANC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)
+GINAC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)
 @end example
 
 The @code{GINAC_DECLARE_REGISTERED_CLASS} and @code{GINAC_IMPLEMENT_REGISTERED_CLASS}
-macros are defined in @file{registrar.h}. They take the name of the class
+macros are defined in @file{registrar.h}.  They take the name of the class
 and its direct superclass as arguments and insert all required declarations
 for the RTTI system. The @code{GINAC_DECLARE_REGISTERED_CLASS} should be
 the first line after the opening brace of the class definition. The
@@ -4091,10 +4746,10 @@ source (at global scope, of course, not inside a function).
 
 @code{GINAC_DECLARE_REGISTERED_CLASS} contains, among other things the
 declarations of the default and copy constructor, the destructor, the
-assignment operator and a couple of other functions that are required. It
+assignment operator and a couple of other functions that are required.  It
 also defines a type @code{inherited} which refers to the superclass so you
 don't have to modify your code every time you shuffle around the class
-hierarchy. @code{GINAC_IMPLEMENT_REGISTERED_CLASS} implements the copy
+hierarchy.  @code{GINAC_IMPLEMENT_REGISTERED_CLASS} implements the copy
 constructor, the destructor and the assignment operator.
 
 Now there are nine member functions we have to implement to get a working
@@ -4164,7 +4819,7 @@ The golden rule is that in all constructors you have to set the
 it will be set by the constructor of the superclass and all hell will break
 loose in the RTTI. For your convenience, the @code{basic} class provides
 a constructor that takes a @code{tinfo_key} value, which we are using here
-(remember that in our case @code{inherited = basic}). If the superclass
+(remember that in our case @code{inherited = basic}).  If the superclass
 didn't have such a constructor, we would have to set the @code{tinfo_key}
 to the right value manually.
 
@@ -4184,13 +4839,13 @@ void mystring::destroy(bool call_parent)
 @}
 @end example
 
-This function is where we free all dynamically allocated resources. We don't
-have any so we're not doing anything here, but if we had, for example, used
-a C-style @code{char *} to store our string, this would be the place to
-@code{delete[]} the string storage. If @code{call_parent} is true, we have
-to call the @code{destroy()} function of the superclass after we're done
-(to mimic C++'s automatic invocation of superclass destructors where
-@code{destroy()} is called from outside a destructor).
+This function is where we free all dynamically allocated resources.  We
+don't have any so we're not doing anything here, but if we had, for
+example, used a C-style @code{char *} to store our string, this would be
+the place to @code{delete[]} the string storage. If @code{call_parent}
+is true, we have to call the @code{destroy()} function of the superclass
+after we're done (to mimic C++'s automatic invocation of superclass
+destructors where @code{destroy()} is called from outside a destructor).
 
 The @code{copy()} function just copies over the member variables from
 another object:
@@ -4204,7 +4859,7 @@ void mystring::copy(const mystring &other)
 @end example
 
 We can simply overwrite the member variables here. There's no need to worry
-about dynamically allocated storage. The assignment operator (which is
+about dynamically allocated storage.  The assignment operator (which is
 automatically defined by @code{GINAC_IMPLEMENT_REGISTERED_CLASS}, as you
 recall) calls @code{destroy()} before it calls @code{copy()}. You have to
 explicitly call the @code{copy()} function of the superclass here so
@@ -4212,7 +4867,7 @@ all the member variables will get copied.
 
 Next are the three functions for archiving. You have to implement them even
 if you don't plan to use archives, but the minimum required implementation
-is really simple. First, the archiving function:
+is really simple.  First, the archiving function:
 
 @example
 void mystring::archive(archive_node &n) const
@@ -4225,7 +4880,7 @@ void mystring::archive(archive_node &n) const
 The only thing that is really required is calling the @code{archive()}
 function of the superclass. Optionally, you can store all information you
 deem necessary for representing the object into the passed
-@code{archive_node}. We are just storing our string here. For more
+@code{archive_node}.  We are just storing our string here. For more
 information on how the archiving works, consult the @file{archive.h} header
 file.
 
@@ -4253,14 +4908,14 @@ ex mystring::unarchive(const archive_node &n, const lst &sym_lst)
 @}
 @end example
 
-You don't have to understand how exactly this works. Just copy these four
-lines into your code literally (replacing the class name, of course). It
-calls the unarchiving constructor of the class and unless you are doing
-something very special (like matching @code{archive_node}s to global
-objects) you don't need a different implementation. For those who are
-interested: setting the @code{dynallocated} flag puts the object under
-the control of GiNaC's garbage collection. It will get deleted automatically
-once it is no longer referenced.
+You don't have to understand how exactly this works. Just copy these
+four lines into your code literally (replacing the class name, of
+course).  It calls the unarchiving constructor of the class and unless
+you are doing something very special (like matching @code{archive_node}s
+to global objects) you don't need a different implementation. For those
+who are interested: setting the @code{dynallocated} flag puts the object
+under the control of GiNaC's garbage collection.  It will get deleted
+automatically once it is no longer referenced.
 
 Our @code{compare_same_type()} function uses a provided function to compare
 the string members:
@@ -4307,7 +4962,7 @@ strings in algebraic expressions. Let's confirm that the RTTI works:
 
 @example
 ex e = mystring("Hello, world!");
-cout << is_ex_of_type(e, mystring) << endl;
+cout << is_a<mystring>(e) << endl;
  // -> 1 (true)
 
 cout << e.bp->class_name() << endl;
@@ -4358,7 +5013,7 @@ cout << e << endl;
  // -> "GiNaC rulez"+"Hello, world!"
 @end example
 
-(note that GiNaC's automatic term reordering is in effect here), or even
+(GiNaC's automatic term reordering is in effect here), or even
 
 @example
 e = pow(mystring("One string"), 2*sin(Pi-mystring("Another string")));
@@ -4388,6 +5043,7 @@ concatenation. You would have to implement this yourself.
 @subsection Automatic evaluation
 
 @cindex @code{hold()}
+@cindex @code{eval()}
 @cindex evaluation
 When dealing with objects that are just a little more complicated than the
 simple string objects we have implemented, chances are that you will want to
@@ -4424,13 +5080,13 @@ ex mystring::eval(int level) const
 @end example
 
 The @code{level} argument is used to limit the recursion depth of the
-evaluation. We don't have any subexpressions in the @code{mystring} class
-so we are not concerned with this. If we had, we would call the @code{eval()}
-functions of the subexpressions with @code{level - 1} as the argument if
-@code{level != 1}. The @code{hold()} member function sets a flag in the
-object that prevents further evaluation. Otherwise we might end up in an
-endless loop. When you want to return the object unmodified, use
-@code{return this->hold();}.
+evaluation.  We don't have any subexpressions in the @code{mystring}
+class so we are not concerned with this.  If we had, we would call the
+@code{eval()} functions of the subexpressions with @code{level - 1} as
+the argument if @code{level != 1}.  The @code{hold()} member function
+sets a flag in the object that prevents further evaluation.  Otherwise
+we might end up in an endless loop.  When you want to return the object
+unmodified, use @code{return this->hold();}.
 
 Let's confirm that it works:
 
@@ -4457,19 +5113,12 @@ implement for terminal classes like the described string class is
 which will allow GiNaC to compare and canonicalize expressions much more
 efficiently.
 
-You can, of course, also add your own new member functions. In this case you
-will probably want to define a little helper function like
-
-@example
-inline const mystring &ex_to_mystring(const ex &e)
-@{
-    return static_cast<const mystring &>(*e.bp);
-@}
-@end example
-
-that let's you get at the object inside an expression (after you have
-verified that the type is correct) so you can call member functions that are
-specific to the class.
+You can, of course, also add your own new member functions. Remember,
+that the RTTI may be used to get information about what kinds of objects
+you are dealing with (the position in the class hierarchy) and that you
+can always extract the bare object from an @code{ex} by stripping the
+@code{ex} off using the @code{ex_to<mystring>(e)} function when that
+should become a need.
 
 That's it. May the source be with you!
 
@@ -4485,7 +5134,7 @@ other, traditional Computer Algebra Systems, like @emph{Maple},
 disadvantages over these systems.
 
 @menu
-* Advantages::                       Stengths of the GiNaC approach.
+* Advantages::                       Strengths of the GiNaC approach.
 * Disadvantages::                    Weaknesses of the GiNaC approach.
 * Why C++?::                         Attractiveness of C++.
 @end menu
@@ -4519,7 +5168,7 @@ nice for novice programmers, but dangerous.
 @item
 development tools: powerful development tools exist for C++, like fancy
 editors (e.g. with automatic indentation and syntax highlighting),
-debuggers, visualization tools, documentation generators...
+debuggers, visualization tools, documentation generators@dots{}
 
 @item
 modularization: C++ programs can easily be split into modules by
@@ -4545,12 +5194,13 @@ expressions interactively, as in traditional CASs.  Currently, two such
 windows into GiNaC have been implemented and many more are possible: the
 tiny @command{ginsh} that is part of the distribution exposes GiNaC's
 types to a command line and second, as a more consistent approach, an
-interactive interface to the @acronym{Cint} C++ interpreter has been put
-together (called @acronym{GiNaC-cint}) that allows an interactive
-scripting interface consistent with the C++ language.
+interactive interface to the Cint C++ interpreter has been put together
+(called GiNaC-cint) that allows an interactive scripting interface
+consistent with the C++ language.  It is available from the usual GiNaC
+FTP-site.
 
 @item
-seemless integration: it is somewhere between difficult and impossible
+seamless integration: it is somewhere between difficult and impossible
 to call CAS functions from within a program written in C++ or any other
 programming language and vice versa.  With GiNaC, your symbolic routines
 are part of your program.  You can easily call third party libraries,
@@ -4589,15 +5239,17 @@ not planned for the near future).
 portability: While the GiNaC library itself is designed to avoid any
 platform dependent features (it should compile on any ANSI compliant C++
 compiler), the currently used version of the CLN library (fast large
-integer and arbitrary precision arithmetics) can be compiled only on
-systems with a recently new C++ compiler from the GNU Compiler
-Collection (@acronym{GCC}).@footnote{This is because CLN uses
-PROVIDE/REQUIRE like macros to let the compiler gather all static
-initializations, which works for GNU C++ only.}  GiNaC uses recent
-language features like explicit constructors, mutable members, RTTI,
-@code{dynamic_cast}s and STL, so ANSI compliance is meant literally.
-Recent @acronym{GCC} versions starting at 2.95, although itself not yet
-ANSI compliant, support all needed features.
+integer and arbitrary precision arithmetics) can only by compiled
+without hassle on systems with the C++ compiler from the GNU Compiler
+Collection (GCC).@footnote{This is because CLN uses PROVIDE/REQUIRE like
+macros to let the compiler gather all static initializations, which
+works for GNU C++ only.  Feel free to contact the authors in case you
+really believe that you need to use a different compiler.  We have
+occasionally used other compilers and may be able to give you advice.}
+GiNaC uses recent language features like explicit constructors, mutable
+members, RTTI, @code{dynamic_cast}s and STL, so ANSI compliance is meant
+literally.  Recent GCC versions starting at 2.95.3, although itself not
+yet ANSI compliant, support all needed features.
     
 @end itemize
 
@@ -4637,12 +5289,13 @@ any other programming language.
 @cindex garbage collection
 An expression is extremely light-weight since internally it works like a
 handle to the actual representation and really holds nothing more than a
-pointer to some other object. What this means in practice is that
+pointer to some other object.  What this means in practice is that
 whenever you create two @code{ex} and set the second equal to the first
 no copying process is involved. Instead, the copying takes place as soon
 as you try to change the second.  Consider the simple sequence of code:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -4675,11 +5328,6 @@ differentiation using the chain-rule should make clear how powerful this
 can be:
 
 @example
-#include <ginac/ginac.h>
-using namespace std;
-using namespace GiNaC;
-
-int main()
 @{
     symbol x("x"), y("y");
 
@@ -4996,7 +5644,7 @@ AC_PROG_CXX
 AC_PROG_INSTALL
 AC_LANG_CPLUSPLUS
 
-AM_PATH_GINAC(0.7.0, [
+AM_PATH_GINAC(0.9.0, [
   LIBS="$LIBS $GINACLIB_LIBS"
   CPPFLAGS="$CPPFLAGS $GINACLIB_CPPFLAGS"  
 ], AC_MSG_ERROR([need to have GiNaC installed]))
@@ -5078,11 +5726,19 @@ and George Labahn, ISBN 0-7923-9259-0, 1992, Kluwer Academic Publishers, Norwell
 
 @item
 @cite{Computer Algebra: Systems and Algorithms for Algebraic Computation},
-J.H. Davenport, Y. Siret, and E. Tournier, ISBN 0-12-204230-1, 1988, 
+James H. Davenport, Yvon Siret, and Evelyne Tournier, ISBN 0-12-204230-1, 1988, 
 Academic Press, London
 
 @item
-@cite{The Role of gamma5 in Dimensional Regularization}, D. Kreimer, hep-ph/9401354
+@cite{Computer Algebra Systems - A Practical Guide},
+Michael J. Wester (editor), ISBN 0-471-98353-5, 1999, Wiley, Chichester
+
+@item
+@cite{The Art of Computer Programming, Vol 2: Seminumerical Algorithms},
+Donald E. Knuth, ISBN 0-201-89684-2, 1998, Addison Wesley
+
+@item
+@cite{The Role of gamma5 in Dimensional Regularization}, Dirk Kreimer, hep-ph/9401354
 
 @end itemize