]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
Be more careful about final top-level substitution.
[ginac.git] / doc / tutorial / ginac.texi
index e05f669359a783c0091db570c4cd008e638c4fb3..e8f0395d0bdc18b7af09d7399a2a9f8ff22501b6 100644 (file)
@@ -15,6 +15,7 @@
 
 @include version.texi
 
+@dircategory Mathematics
 @direntry
 * ginac: (ginac).                   C++ library for symbolic computation.
 @end direntry
@@ -23,7 +24,7 @@
 This is a tutorial that documents GiNaC @value{VERSION}, an open
 framework for symbolic computation within the C++ programming language.
 
-Copyright (C) 1999-2007 Johannes Gutenberg University Mainz, Germany
+Copyright (C) 1999-2010 Johannes Gutenberg University Mainz, Germany
 
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -51,7 +52,7 @@ notice identical to this one.
 
 @page
 @vskip 0pt plus 1filll
-Copyright @copyright{} 1999-2007 Johannes Gutenberg University Mainz, Germany
+Copyright @copyright{} 1999-2010 Johannes Gutenberg University Mainz, Germany
 @sp 2
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -134,7 +135,7 @@ the near future.
 
 @section License
 The GiNaC framework for symbolic computation within the C++ programming
-language is Copyright @copyright{} 1999-2007 Johannes Gutenberg
+language is Copyright @copyright{} 1999-2010 Johannes Gutenberg
 University Mainz, Germany.
 
 This program is free software; you can redistribute it and/or
@@ -552,7 +553,7 @@ environment variable, like optimization, debugging information and
 warning levels.  If omitted, it defaults to @option{-g
 -O2}.@footnote{The @command{configure} script is itself generated from
 the file @file{configure.ac}.  It is only distributed in packaged
-releases of GiNaC.  If you got the naked sources, e.g. from CVS, you
+releases of GiNaC.  If you got the naked sources, e.g. from git, you
 must generate @command{configure} along with the various
 @file{Makefile.in} by using the @command{autoreconf} utility.  This will
 require a fair amount of support from your local toolchain, though.}
@@ -920,7 +921,12 @@ To get an idea about what kinds of symbolic composites may be built we
 have a look at the most important classes in the class hierarchy and
 some of the relations among the classes:
 
+@ifnotinfo
 @image{classhierarchy}
+@end ifnotinfo
+@ifinfo
+<PICTURE MISSING>
+@end ifinfo
 
 The abstract classes shown here (the ones without drop-shadow) are of no
 interest for the user.  They are used internally in order to avoid code
@@ -1019,7 +1025,7 @@ internally such anonymous symbols can be quite useful, however).
 Now, here is one important property of GiNaC that differentiates it from
 other computer algebra programs you may have used: GiNaC does @emph{not} use
 the names of symbols to tell them apart, but a (hidden) serial number that
-is unique for each newly created @code{symbol} object. In you want to use
+is unique for each newly created @code{symbol} object. If you want to use
 one and the same symbol in different places in your program, you must only
 create one @code{symbol} object and pass that around. If you create another
 symbol, even if it has the same name, GiNaC will treat it as a different
@@ -1164,7 +1170,7 @@ the domain of the symbol. Instead of @code{symbol x("x");} you can write
 @cindex @code{possymbol()}
 Furthermore, it is also possible to declare a symbol as positive. This will,
 for instance, enable the automatic simplification of @code{abs(x)} into 
-@code{x}. This is done by declaying the symbol as @code{possymbol x("x");}.
+@code{x}. This is done by declaring the symbol as @code{possymbol x("x");}.
 
 
 @node Numbers, Constants, Symbols, Basic concepts
@@ -1335,7 +1341,7 @@ int main()
 @end example
 
 Note that the variable @code{answer} is constructed here as an integer
-by @code{numeric}'s copy constructor but in an intermediate step it
+by @code{numeric}'s copy constructor, but in an intermediate step it
 holds a rational number represented as integer numerator and integer
 denominator.  When multiplied by 10, the denominator becomes unity and
 the result is automatically converted to a pure integer again.
@@ -1353,6 +1359,8 @@ can be applied is listed in the following table.
 @tab @dots{}equal to zero
 @item @code{.is_positive()}
 @tab @dots{}not complex and greater than 0
+@item @code{.is_negative()}
+@tab @dots{}not complex and smaller than 0
 @item @code{.is_integer()}
 @tab @dots{}a (non-complex) integer
 @item @code{.is_pos_integer()}
@@ -1376,6 +1384,8 @@ can be applied is listed in the following table.
 @end multitable
 @end cartouche
 
+@page
+
 @subsection Numeric functions
 
 The following functions can be applied to @code{numeric} objects and will be
@@ -1469,7 +1479,7 @@ evaluated immediately:
 @tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
 @cindex @code{mod()}
 @item @code{smod(a, b)}
-@tab modulus in symmetric representation (in the range @code{[-iquo(abs(b)-1, 2), iquo(abs(b), 2)]})
+@tab modulus in symmetric representation (in the range @code{[-iquo(abs(b), 2), iquo(abs(b), 2)]})
 @cindex @code{smod()}
 @item @code{irem(a, b)}
 @tab integer remainder (has the sign of @math{a}, or is zero)
@@ -1532,7 +1542,7 @@ specific number when the method @code{.evalf()} is called.
 The predefined known constants are:
 
 @cartouche
-@multitable @columnfractions .14 .30 .56
+@multitable @columnfractions .14 .32 .54
 @item @strong{Name} @tab @strong{Common Name} @tab @strong{Numerical Value (to 35 digits)}
 @item @code{Pi}
 @tab Archimedes' constant
@@ -1907,7 +1917,7 @@ return the integral unevaluated. The function that performs the numerical
 evaluation, is also available as
 @example
 ex adaptivesimpson(const ex & x, const ex & a, const ex & b, const ex & f,
-const ex & error)
+                   const ex & error)
 @end example
 This function will throw an exception if the maximum depth is exceeded. The
 last parameter of the function is optional and defaults to the
@@ -2317,12 +2327,12 @@ get an error message from this but you will probably not be able to do
 anything useful with it.
 
 @cindex @code{get_value()}
-@cindex @code{get_dimension()}
+@cindex @code{get_dim()}
 The methods
 
 @example
 ex idx::get_value();
-ex idx::get_dimension();
+ex idx::get_dim();
 @end example
 
 return the value and dimension of an @code{idx} object. If you have an index
@@ -2688,7 +2698,7 @@ ex ex::simplify_indexed(const scalar_products & sp);
 
 that performs some more expensive operations:
 
-@itemize
+@itemize @bullet
 @item it checks the consistency of free indices in sums in the same way
   @code{get_free_indices()} does
 @item it tries to give dummy indices that appear in different terms of a sum
@@ -3030,15 +3040,15 @@ Information about the commutativity of an object or expression can be
 obtained with the two member functions
 
 @example
-unsigned ex::return_type() const;
-unsigned ex::return_type_tinfo() const;
+unsigned      ex::return_type() const;
+return_type_t ex::return_type_tinfo() const;
 @end example
 
 The @code{return_type()} function returns one of three values (defined in
 the header file @file{flags.h}), corresponding to three categories of
 expressions in GiNaC:
 
-@itemize
+@itemize @bullet
 @item @code{return_types::commutative}: Commutates with everything. Most GiNaC
   classes are of this kind.
 @item @code{return_types::noncommutative}: Non-commutative, belonging to a
@@ -3052,31 +3062,27 @@ expressions in GiNaC:
   @code{noncommutative_composite} expressions.
 @end itemize
 
-The value returned by the @code{return_type_tinfo()} method is valid only
-when the return type of the expression is @code{noncommutative}. It is a
-value that is unique to the class of the object and usually one of the
-constants in @file{tinfos.h}, or derived therefrom.
+The @code{return_type_tinfo()} method returns an object of type
+@code{return_type_t} that contains information about the type of the expression
+and, if given, its representation label (see section on dirac gamma matrices for
+more details).  The objects of type @code{return_type_t} can be tested for
+equality to test whether two expressions belong to the same category and
+therefore may not commute.
 
 Here are a couple of examples:
 
 @cartouche
-@multitable @columnfractions 0.33 0.33 0.34
-@item @strong{Expression} @tab @strong{@code{return_type()}} @tab @strong{@code{return_type_tinfo()}}
-@item @code{42} @tab @code{commutative} @tab -
-@item @code{2*x-y} @tab @code{commutative} @tab -
-@item @code{dirac_ONE()} @tab @code{noncommutative} @tab @code{TINFO_clifford}
-@item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative} @tab @code{TINFO_clifford}
-@item @code{2*color_T(a)} @tab @code{noncommutative} @tab @code{TINFO_color}
-@item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite} @tab -
+@multitable @columnfractions .6 .4
+@item @strong{Expression} @tab @strong{@code{return_type()}}
+@item @code{42} @tab @code{commutative}
+@item @code{2*x-y} @tab @code{commutative}
+@item @code{dirac_ONE()} @tab @code{noncommutative}
+@item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative}
+@item @code{2*color_T(a)} @tab @code{noncommutative}
+@item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite}
 @end multitable
 @end cartouche
 
-Note: the @code{return_type_tinfo()} of Clifford objects is only equal to
-@code{TINFO_clifford} for objects with a representation label of zero.
-Other representation labels yield a different @code{return_type_tinfo()},
-but it's the same for any two objects with the same label. This is also true
-for color objects.
-
 A last note: With the exception of matrices, positive integer powers of
 non-commutative objects are automatically expanded in GiNaC. For example,
 @code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
@@ -3204,14 +3210,20 @@ ordinary matrix trace only in @math{D = 4} dimensions. In particular, the
 functional is not cyclic in
 @tex $D \ne 4$
 @end tex
+@ifnottex
+@math{D != 4}
+@end ifnottex
 dimensions when acting on
 expressions containing @samp{gamma5}, so it's not a proper trace. This
-@samp{gamma5} scheme is described in greater detail in
-@cite{The Role of gamma5 in Dimensional Regularization}.
+@samp{gamma5} scheme is described in greater detail in the article
+@cite{The Role of gamma5 in Dimensional Regularization} (@ref{Bibliography}).
 
 The value of the trace itself is also usually different in 4 and in
 @tex $D \ne 4$
 @end tex
+@ifnottex
+@math{D != 4}
+@end ifnottex
 dimensions:
 
 @example
@@ -3280,16 +3292,21 @@ You can use this to compare two expressions or for further simplifications:
 @subsubsection A generic Clifford algebra
 
 A generic Clifford algebra, i.e. a
-@tex
-$2^n$
+@tex $2^n$
 @end tex
+@ifnottex
+2^n
+@end ifnottex
 dimensional algebra with
 generators 
 @tex $e_k$
 @end tex 
+@ifnottex
+e_k
+@end ifnottex
 satisfying the identities 
 @tex
-$e_i e_j + e_j e_i = M(i, j) + M(j, i) $
+$e_i e_j + e_j e_i = M(i, j) + M(j, i)$
 @end tex
 @ifnottex
 e~i e~j + e~j e~i = M(i, j) + M(j, i) 
@@ -3386,8 +3403,20 @@ $v^0 e_0 + v^1 e_1 + ... + v^n e_n$
 with @samp{e.k}
 directly supplied in the second form of the procedure. In the first form
 the Clifford unit @samp{e.k} is generated by the call of
-@code{clifford_unit(mu, metr, rl)}. The previous code may be rewritten
-with the help of @code{lst_to_clifford()} as follows
+@code{clifford_unit(mu, metr, rl)}. 
+@cindex pseudo-vector
+If the number of components supplied
+by @code{v} exceeds the dimensionality of the Clifford unit @code{e} by
+1 then function @code{lst_to_clifford()} uses the following
+pseudo-vector representation: 
+@tex
+$v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
+@end tex
+@ifnottex
+@samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
+@end ifnottex
+
+The previous code may be rewritten with the help of @code{lst_to_clifford()} as follows
 
 @example
 @{
@@ -3417,17 +3446,25 @@ $v = (v^0, v^1, ..., v^n)$
 @ifnottex
 @samp{v = (v~0, v~1, ..., v~n)} 
 @end ifnottex
-such that 
+such that the expression is either vector 
 @tex
 $e = v^0 c_0 + v^1 c_1 + ... + v^n c_n$
 @end tex
 @ifnottex
 @samp{e = v~0 c.0 + v~1 c.1 + ... + v~n c.n}
 @end ifnottex
-with respect to the given Clifford units @code{c} and with none of the
-@samp{v~k} containing Clifford units @code{c} (of course, this
+or pseudo-vector 
+@tex
+$v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
+@end tex
+@ifnottex
+@samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
+@end ifnottex
+with respect to the given Clifford units @code{c}. Here none of the
+@samp{v~k} should contain Clifford units @code{c} (of course, this
 may be impossible). This function can use an @code{algebraic} method
-(default) or a symbolic one. With the @code{algebraic} method the @samp{v~k} are calculated as
+(default) or a symbolic one. With the @code{algebraic} method the
+@samp{v~k} are calculated as 
 @tex
 $(e c_k + c_k e)/c_k^2$. If $c_k^2$
 @end tex
@@ -3560,7 +3597,7 @@ LaTeX output for Clifford units looks like
 @code{\clifford[1]@{e@}^@{@{\nu@}@}}, where @code{1} is the
 @code{representation_label} and @code{\nu} is the index of the
 corresponding unit. This provides a flexible typesetting with a suitable
-defintion of the @code{\clifford} command. For example, the definition
+definition of the @code{\clifford} command. For example, the definition
 @example
     \newcommand@{\clifford@}[1][]@{@}
 @end example
@@ -3829,7 +3866,7 @@ bool is_a<T>(const ex & e);
 bool is_exactly_a<T>(const ex & e);
 bool ex::info(unsigned flag);
 unsigned ex::return_type() const;
-unsigned ex::return_type_tinfo() const;
+return_type_t ex::return_type_tinfo() const;
 @end example
 
 When the test made by @code{is_a<T>()} returns true, it is safe to call
@@ -4226,7 +4263,7 @@ In the first form, @code{subs()} accepts a relational of the form
 @{
     symbol x("x"), y("y");
 
-    ex e1 = 2*x^2-4*x+3;
+    ex e1 = 2*x*x-4*x+3;
     cout << "e1(7) = " << e1.subs(x == 7) << endl;
      // -> 73
 
@@ -4278,10 +4315,10 @@ The optional last argument to @code{subs()} is a combination of
 large @code{subs()} operations significantly faster if you are not using
 patterns. The second option, @code{subs_options::algebraic} enables
 algebraic substitutions in products and powers.
-@ref{Pattern matching and advanced substitutions}, for more information
+@xref{Pattern matching and advanced substitutions}, for more information
 about patterns and algebraic substitutions. The third option,
 @code{subs_options::no_index_renaming} disables the feature that dummy
-indices are renamed if the subsitution could give a result in which a
+indices are renamed if the substitution could give a result in which a
 dummy index occurs more than two times. This is sometimes necessary if
 you want to use @code{subs()} to rename your dummy indices.
 
@@ -4349,7 +4386,7 @@ Some examples for patterns:
 
 Notes:
 
-@itemize
+@itemize @bullet
 @item Wildcards behave like symbols and are subject to the same algebraic
   rules. E.g., @samp{$0+2*$0} is automatically transformed to @samp{3*$0}.
 @item As shown in the last example, to use wildcards for indices you have to
@@ -4372,17 +4409,14 @@ matches a given pattern. This is done by the function
 
 @example
 bool ex::match(const ex & pattern);
-bool ex::match(const ex & pattern, lst & repls);
+bool ex::match(const ex & pattern, exmap& repls);
 @end example
 
 This function returns @code{true} when the expression matches the pattern
 and @code{false} if it doesn't. If used in the second form, the actual
-subexpressions matched by the wildcards get returned in the @code{repls}
-object as a list of relations of the form @samp{wildcard == expression}.
-If @code{match()} returns false, the state of @code{repls} is undefined.
-For reproducible results, the list should be empty when passed to
-@code{match()}, but it is also possible to find similarities in multiple
-expressions by passing in the result of a previous match.
+subexpressions matched by the wildcards get returned in the associative
+array @code{repls} with @samp{wildcard} as a key. If @code{match()}
+returns false,  @code{repls} remains unmodified.
 
 The matching algorithm works as follows:
 
@@ -4521,7 +4555,7 @@ Again some examples in @command{ginsh} for illustration (in @command{ginsh},
 The method
 
 @example
-bool ex::find(const ex & pattern, lst & found);
+bool ex::find(const ex & pattern, exset& found);
 @end example
 
 works a bit like @code{has()} but it doesn't stop upon finding the first
@@ -4591,7 +4625,7 @@ The last example would be written in C++ in this way:
 Both @code{has()} and @code{subs()} take an optional argument to pass them
 extra options. This section describes what happens if you give the former
 the option @code{has_options::algebraic} or the latter
-@code{subs:options::algebraic}. In that case the matching condition for
+@code{subs_options::algebraic}. In that case the matching condition for
 powers and multiplications is changed in such a way that they become
 more intuitive. Intuition says that @code{x*y} is a part of @code{x*y*z}.
 If you use these options you will find that
@@ -4601,7 +4635,9 @@ often as is possible without getting negative exponents. For example
 @code{(x^5*y^2*z).subs(x^2*y^2==c, subs_options::algebraic)} will return
 @code{x*c^2*z}. This also works with negative powers:
 @code{(x^(-3)*y^(-2)*z).subs(1/(x*y)==c, subs_options::algebraic)} will
-return @code{x^(-1)*c^2*z}. Note that this only works for multiplications
+return @code{x^(-1)*c^2*z}. 
+
+@strong{Please notice:} this only works for multiplications
 and not for locating @code{x+y} within @code{x+y+z}.
 
 
@@ -5314,13 +5350,7 @@ int main()
 @cindex factorization
 @cindex @code{sqrfree()}
 
-GiNaC still lacks proper factorization support.  Some form of
-factorization is, however, easily implemented by noting that factors
-appearing in a polynomial with power two or more also appear in the
-derivative and hence can easily be found by computing the GCD of the
-original polynomial and its derivatives.  Any decent system has an
-interface for this so called square-free factorization.  So we provide
-one, too:
+Square-free decomposition is available in GiNaC:
 @example
 ex sqrfree(const ex & a, const lst & l = lst());
 @end example
@@ -5345,6 +5375,57 @@ some care with subsequent processing of the result:
 Note also, how factors with the same exponents are not fully factorized
 with this method.
 
+@subsection Polynomial factorization
+@cindex factorization
+@cindex polynomial factorization
+@cindex @code{factor()}
+
+Polynomials can also be fully factored with a call to the function
+@example
+ex factor(const ex & a, unsigned int options = 0);
+@end example
+The factorization works for univariate and multivariate polynomials with
+rational coefficients. The following code snippet shows its capabilities:
+@example
+    ...
+    cout << factor(pow(x,2)-1) << endl;
+     // -> (1+x)*(-1+x)
+    cout << factor(expand((x-y*z)*(x-pow(y,2)-pow(z,3))*(x+y+z))) << endl;
+     // -> (y+z+x)*(y*z-x)*(y^2-x+z^3)
+    cout << factor(pow(x,2)-1+sin(pow(x,2)-1)) << endl;
+     // -> -1+sin(-1+x^2)+x^2
+    ...
+@end example
+The results are as expected except for the last one where no factorization
+seems to have been done. This is due to the default option
+@command{factor_options::polynomial} (equals zero) to @command{factor()}, which
+tells GiNaC to try a factorization only if the expression is a valid polynomial.
+In the shown example this is not the case, because one term is a function.
+
+There exists a second option @command{factor_options::all}, which tells GiNaC to
+ignore non-polynomial parts of an expression and also to look inside function
+arguments. With this option the example gives:
+@example
+    ...
+    cout << factor(pow(x,2)-1+sin(pow(x,2)-1), factor_options::all)
+         << endl;
+     // -> (-1+x)*(1+x)+sin((-1+x)*(1+x))
+    ...
+@end example
+GiNaC's factorization functions cannot handle algebraic extensions. Therefore
+the following example does not factor:
+@example
+    ...
+    cout << factor(pow(x,2)-2) << endl;
+     // -> -2+x^2  and not  (x-sqrt(2))*(x+sqrt(2))
+    ...
+@end example
+Factorization is useful in many applications. A lot of algorithms in computer
+algebra depend on the ability to factor a polynomial. Of course, factorization
+can also be used to simplify expressions, but it is costly and applying it to
+complicated expressions (high degrees or many terms) may consume far too much
+time. So usually, looking for a GCD at strategic points in a calculation is the
+cheaper and more appropriate alternative.
 
 @node Rational expressions, Symbolic differentiation, Polynomial arithmetic, Methods and functions
 @c    node-name, next, previous, up
@@ -5587,6 +5668,9 @@ value of Archimedes' constant
 @tex
 $\pi$
 @end tex
+@ifnottex
+@math{Pi}
+@end ifnottex
 (for which there already exists the built-in constant @code{Pi}) 
 using John Machin's amazing formula
 @tex
@@ -5697,6 +5781,8 @@ almost any kind of object (anything that is @code{subs()}able):
 @}
 @end example
 
+@page
+
 @node Built-in functions, Multiple polylogarithms, Symmetrization, Methods and functions
 @c    node-name, next, previous, up
 @section Predefined mathematical functions
@@ -5892,11 +5978,20 @@ ${\rm H\;\!}_{m_1,m_2,\ldots,m_k}(x)$ and
 @tex
 $\zeta(m_1,m_2,\ldots,m_k)$.
 @end tex
+@ifnottex
+@command{\mbox@{Li@}_@{m_1,m_2,...,m_k@}(x_1,x_2,...,x_k)},
+@command{\mbox@{S@}_@{n,p@}(x)},
+@command{\mbox@{H@}_@{m_1,m_2,...,m_k@}(x)} and 
+@command{\zeta(m_1,m_2,...,m_k)} (with the dots replaced by actual parameters).
+@end ifnottex
 If @code{zeta} is an alternating zeta sum, i.e. @code{zeta(m,s)}, the indices with negative sign
 are printed with a line above, e.g.
 @tex
 $\zeta(5,\overline{2})$.
 @end tex
+@ifnottex
+@command{\zeta(5,\overline@{2@})}.
+@end ifnottex
 The order of indices and arguments in the GiNaC @code{lst}s and in the output is the same.
 
 Definitions and analytical as well as numerical properties of multiple polylogarithms
@@ -5916,8 +6011,13 @@ ${\rm Li\;\!}_{2,1}(1,1) = \zeta(2,1) = \zeta(3)$, but
 @tex
 $\zeta(1,2)$ evaluates to infinity.
 @end tex
-So in comparison to the referenced publications the order of indices and arguments for @code{Li}
-is reversed.
+@ifnottex
+@code{Li_@{m_1,m_2,m_3@}(x,1,1) = H_@{m_1,m_2,m_3@}(x)} and 
+@code{Li_@{2,1@}(1,1) = zeta(2,1) = zeta(3)}, but
+@code{zeta(1,2)} evaluates to infinity.
+@end ifnottex
+So in comparison to the older ones of the referenced publications the order of
+indices and arguments for @code{Li} is reversed.
 
 The functions only evaluate if the indices are integers greater than zero, except for the indices
 @code{s} in @code{zeta} and @code{G} as well as @code{m} in @code{H}. Since @code{s}
@@ -5928,11 +6028,17 @@ corresponding arguments @code{a}, it must contain 1 or -1, e.g.
 @tex
 $\zeta(\overline{3},4)$
 @end tex
+@ifnottex
+@command{zeta(\overline@{3@},4)}
+@end ifnottex
 and
 @code{G(lst(a,b), lst(-1,1), c)} means
 @tex
 $G(a-0\epsilon,b+0\epsilon;c)$.
 @end tex
+@ifnottex
+@command{G(a-0\epsilon,b+0\epsilon;c)}.
+@end ifnottex
 The definition of @code{H} allows indices to be 0, 1 or -1 (in expanded notation) or equally to
 be any integer (in compact notation). With GiNaC expanded and compact notation can be mixed,
 e.g. @code{lst(0,0,-1,0,1,0,0)}, @code{lst(0,0,-1,2,0,0)} and @code{lst(-3,2,0,0)} are equivalent as
@@ -5983,6 +6089,9 @@ unevaluated, e.g.
 @tex
 $\zeta(1)$.
 @end tex
+@ifnottex
+@command{zeta(1)}.
+@end ifnottex
 In long expressions this helps a lot with debugging, because you can easily spot
 the divergencies. But on the other hand, you have to make sure for yourself, that no illegal
 cancellations of divergencies happen.
@@ -6017,7 +6126,7 @@ ex ex::imag_part();
 
 that return respectively the complex conjugate, the real part and the
 imaginary part of an expression. Complex conjugation works as expected
-for all built-in functinos and objects. Taking real and imaginary
+for all built-in functions and objects. Taking real and imaginary
 parts has not yet been implemented for all built-in functions. In cases where
 it is not known how to conjugate or take a real/imaginary part one
 of the functions @code{conjugate}, @code{real_part} or @code{imag_part}
@@ -6040,12 +6149,13 @@ For example,
 @}
 @end example
 
-If you declare your own GiNaC functions, then they will conjugate themselves
-by conjugating their arguments. This is the default strategy. If you want to
-change this behavior, you have to supply a specialized conjugation method
-for your function (see @ref{Symbolic functions} and the GiNaC source-code
-for @code{abs} as an example). Also, specialized methods can be provided
-to take real and imaginary parts of user-defined functions.
+If you declare your own GiNaC functions and you want to conjugate them, you
+will have to supply a specialized conjugation method for them (see
+@ref{Symbolic functions} and the GiNaC source-code for @code{abs} as an
+example). GiNaC does not automatically conjugate user-supplied functions
+by conjugating their arguments because this would be incorrect on branch
+cuts. Also, specialized methods can be provided to take real and imaginary
+parts of user-defined functions.
 
 @node Solving linear systems of equations, Input/output, Complex expressions, Methods and functions
 @c    node-name, next, previous, up
@@ -6312,22 +6422,72 @@ and have the @samp{x} and @samp{y} correspond to the symbols @code{x} and
 @code{y} you defined in your program and there is no way to specify the
 desired symbols to the @code{>>} stream input operator.
 
-Instead, GiNaC lets you construct an expression from a string, specifying the
-list of symbols to be used:
+Instead, GiNaC lets you read an expression from a stream or a string,
+specifying the mapping between the input strings and symbols to be used:
 
 @example
 @{
-    symbol x("x"), y("y");
-    ex e("2*x+sin(y)", lst(x, y));
+    symbol x, y;
+    symtab table;
+    table["x"] = x;
+    table["y"] = y;
+    parser reader(table);
+    ex e = reader("2*x+sin(y)");
 @}
 @end example
 
 The input syntax is the same as that used by @command{ginsh} and the stream
-output operator @code{<<}. The symbols in the string are matched by name to
-the symbols in the list and if GiNaC encounters a symbol not specified in
-the list it will throw an exception.
+output operator @code{<<}. Matching between the input strings and expressions
+is given by @samp{table}. The @samp{table} in this example instructs GiNaC
+to substitute any input substring ``x'' with symbol @code{x}. Likewise,
+the substring ``y'' will be replaced with symbol @code{y}. It's also possible
+to map input (sub)strings to arbitrary expressions:
+
+@example
+@{
+    symbol x, y;
+    symtab table;
+    table["x"] = x+log(y)+1;
+    parser reader(table);
+    ex e = reader("5*x^3 - x^2");
+    // e = 5*(x+log(y)+1)^3 + (x+log(y)+1)^2
+@}
+@end example
+
+If no mapping is specified for a particular string GiNaC will create a symbol
+with corresponding name. Later on you can obtain all parser generated symbols
+with @code{get_syms()} method:
+
+@example
+@{
+    parser reader;
+    ex e = reader("2*x+sin(y)");
+    symtab table = reader.get_syms();
+    symbol x = reader["x"];
+    symbol y = reader["y"];
+@}
+@end example
+
+Sometimes you might want to prevent GiNaC from inserting these extra symbols
+(for example, you want treat an unexpected string in the input as an error).
+
+@example
+@{
+       symtab table;
+       table["x"] = symbol();
+       parser reader(table);
+       parser.strict = true;
+       ex e;
+       try @{
+               e = reader("2*x+sin(y)");
+       @} catch (parse_error& err) @{
+               cerr << err.what() << endl;
+               // prints "unknown symbol "y" in the input"
+       @}
+@}
+@end example
 
-With this constructor, it's also easy to implement interactive GiNaC programs:
+With this parser, it's also easy to implement interactive GiNaC programs:
 
 @example
 #include <iostream>
@@ -6339,19 +6499,19 @@ using namespace GiNaC;
 
 int main()
 @{
-    symbol x("x");
-    string s;
-
-    cout << "Enter an expression containing 'x': ";
-    getline(cin, s);
-
-    try @{
-        ex e(s, lst(x));
-        cout << "The derivative of " << e << " with respect to x is ";
-        cout << e.diff(x) << ".\n";
-    @} catch (exception &p) @{
-        cerr << p.what() << endl;
-    @}
+       cout << "Enter an expression containing 'x': " << flush;
+       parser reader;
+
+       try @{
+               ex e = reader(cin);
+               symtab table = reader.get_syms();
+               symbol x = table.find("x") != table.end() ? 
+                          ex_to<symbol>(table["x"]) : symbol("x");
+               cout << "The derivative of " << e << " with respect to x is ";
+               cout << e.diff(x) << "." << endl;
+       @} catch (exception &p) @{
+               cerr << p.what() << endl;
+       @}
 @}
 @end example
 
@@ -6410,7 +6570,7 @@ pointer types at the moment:
 @cindex Monte Carlo integration
 @code{FUNCP_2P} allows for two variables in the expression. @code{FUNCP_CUBA} is
 the correct type to be used with the CUBA library
-(@uref{http://www.feynarts/cuba}) for numerical integrations. The details for the
+(@uref{http://www.feynarts.de/cuba}) for numerical integrations. The details for the
 parameters of @code{FUNCP_CUBA} are explained in the CUBA manual.
 
 @cindex compile_ex
@@ -6955,15 +7115,30 @@ This tells @code{evalf()} to not recursively evaluate the parameters of the
 function before calling the @code{evalf_func()}.
 
 @example
-set_return_type(unsigned return_type, unsigned return_type_tinfo)
+set_return_type(unsigned return_type, const return_type_t * return_type_tinfo)
 @end example
 
 This allows you to explicitly specify the commutation properties of the
 function (@xref{Non-commutative objects}, for an explanation of
-(non)commutativity in GiNaC). For example, you can use
-@code{set_return_type(return_types::noncommutative, TINFO_matrix)} to make
-GiNaC treat your function like a matrix. By default, functions inherit the
-commutation properties of their first argument.
+(non)commutativity in GiNaC). For example, with an object of type
+@code{return_type_t} created like
+
+@example
+return_type_t my_type = make_return_type_t<matrix>();
+@end example
+
+you can use @code{set_return_type(return_types::noncommutative, &my_type)} to
+make GiNaC treat your function like a matrix. By default, functions inherit the
+commutation properties of their first argument. The utilized template function
+@code{make_return_type_t<>()} 
+
+@example
+template<typename T> inline return_type_t make_return_type_t(const unsigned rl = 0)
+@end example
+
+can also be called with an argument specifying the representation label of the
+non-commutative function (see section on dirac gamma matrices for more
+details).
 
 @example
 set_symmetry(const symmetry & s)
@@ -7712,44 +7887,40 @@ representing tensor products is more involved but this section should give
 you enough information so you can consult the source to GiNaC's predefined
 classes if you want to implement something more complicated.
 
-@subsection GiNaC's run-time type information system
+@subsection Hierarchy of algebraic classes.
 
 @cindex hierarchy of classes
-@cindex RTTI
 All algebraic classes (that is, all classes that can appear in expressions)
 in GiNaC are direct or indirect subclasses of the class @code{basic}. So a
-@code{basic *} (which is essentially what an @code{ex} is) represents a
-generic pointer to an algebraic class. Occasionally it is necessary to find
-out what the class of an object pointed to by a @code{basic *} really is.
-Also, for the unarchiving of expressions it must be possible to find the
-@code{unarchive()} function of a class given the class name (as a string). A
-system that provides this kind of information is called a run-time type
-information (RTTI) system. The C++ language provides such a thing (see the
-standard header file @file{<typeinfo>}) but for efficiency reasons GiNaC
-implements its own, simpler RTTI.
-
-The RTTI in GiNaC is based on two mechanisms:
-
+@code{basic *} represents a generic pointer to an algebraic class. Working
+with such pointers directly is cumbersome (think of memory management), hence
+GiNaC wraps them into @code{ex} (@pxref{Expressions are reference counted}).
+To make such wrapping possible every algebraic class has to implement several
+methods. Visitors (@pxref{Visitors and tree traversal}), printing, and 
+(un)archiving (@pxref{Input/output}) require helper methods too. But don't
+worry, most of the work is simplified by the following macros (defined
+in @file{registrar.h}):
 @itemize @bullet
+@item @code{GINAC_DECLARE_REGISTERED_CLASS}
+@item @code{GINAC_IMPLEMENT_REGISTERED_CLASS}
+@item @code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT}
+@end itemize
 
-@item
-The @code{basic} class declares a member variable @code{tinfo_key} which
-holds a variable of @code{tinfo_t} type (which is actually just
-@code{const void*}) that identifies the object's class.
+The @code{GINAC_DECLARE_REGISTERED_CLASS} macro inserts declarations
+required for memory management, visitors, printing, and (un)archiving.
+It takes the name of the class and its direct superclass as arguments.
+The @code{GINAC_DECLARE_REGISTERED_CLASS} should be the first line after
+the opening brace of the class definition.
 
-@item
-By means of some clever tricks with static members, GiNaC maintains a list
-of information for all classes derived from @code{basic}. The information
-available includes the class names, the @code{tinfo_key}s, and pointers
-to the unarchiving functions. This class registry is defined in the
-@file{registrar.h} header file.
+@code{GINAC_IMPLEMENT_REGISTERED_CLASS} takes the same arguments as
+@code{GINAC_DECLARE_REGISTERED_CLASS}. It initializes certain static
+members of a class so that printing and (un)archiving works. The
+@code{GINAC_IMPLEMENT_REGISTERED_CLASS} may appear anywhere else in
+the source (at global scope, of course, not inside a function).
 
-@end itemize
-
-The disadvantage of this proprietary RTTI implementation is that there's
-a little more to do when implementing new classes (C++'s RTTI works more
-or less automatically) but don't worry, most of the work is simplified by
-macros.
+@code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT} is a variant of
+@code{GINAC_IMPLEMENT_REGISTERED_CLASS}. It allows specifying additional
+options, such as custom printing functions.
 
 @subsection A minimalistic example
 
@@ -7757,7 +7928,8 @@ Now we will start implementing a new class @code{mystring} that allows
 placing character strings in algebraic expressions (this is not very useful,
 but it's just an example). This class will be a direct subclass of
 @code{basic}. You can use this sample implementation as a starting point
-for your own classes.
+for your own classes @footnote{The self-contained source for this example is
+included in GiNaC, see the @file{doc/examples/mystring.cpp} file.}.
 
 The code snippets given here assume that you have included some header files
 as follows:
@@ -7774,7 +7946,7 @@ using namespace GiNaC;
 
 Now we can write down the class declaration. The class stores a C++
 @code{string} and the user shall be able to construct a @code{mystring}
-object from a C or C++ string:
+object from a string:
 
 @example
 class mystring : public basic
@@ -7782,8 +7954,7 @@ class mystring : public basic
     GINAC_DECLARE_REGISTERED_CLASS(mystring, basic)
   
 public:
-    mystring(const string &s);
-    mystring(const char *s);
+    mystring(const string & s);
 
 private:
     string str;
@@ -7792,24 +7963,12 @@ private:
 GINAC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)
 @end example
 
-The @code{GINAC_DECLARE_REGISTERED_CLASS} and @code{GINAC_IMPLEMENT_REGISTERED_CLASS}
-macros are defined in @file{registrar.h}. They take the name of the class
-and its direct superclass as arguments and insert all required declarations
-for the RTTI system. The @code{GINAC_DECLARE_REGISTERED_CLASS} should be
-the first line after the opening brace of the class definition. The
-@code{GINAC_IMPLEMENT_REGISTERED_CLASS} may appear anywhere else in the
-source (at global scope, of course, not inside a function).
-
-@code{GINAC_DECLARE_REGISTERED_CLASS} contains, among other things the
-declarations of the default constructor and a couple of other functions that
-are required. It also defines a type @code{inherited} which refers to the
-superclass so you don't have to modify your code every time you shuffle around
-the class hierarchy. @code{GINAC_IMPLEMENT_REGISTERED_CLASS} registers the
-class with the GiNaC RTTI (there is also a
-@code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT} which allows specifying additional
-options for the class, and which we will be using instead in a few minutes).
-
-Now there are seven member functions we have to implement to get a working
+The @code{GINAC_DECLARE_REGISTERED_CLASS} macro insert declarations required
+for memory management, visitors, printing, and (un)archiving.
+@code{GINAC_IMPLEMENT_REGISTERED_CLASS} initializes certain static members
+of a class so that printing and (un)archiving works.
+
+Now there are three member functions we have to implement to get a working
 class:
 
 @itemize
@@ -7817,24 +7976,9 @@ class:
 @item
 @code{mystring()}, the default constructor.
 
-@item
-@code{void archive(archive_node &n)}, the archiving function. This stores all
-information needed to reconstruct an object of this class inside an
-@code{archive_node}.
-
-@item
-@code{mystring(const archive_node &n, lst &sym_lst)}, the unarchiving
-constructor. This constructs an instance of the class from the information
-found in an @code{archive_node}.
-
-@item
-@code{ex unarchive(const archive_node &n, lst &sym_lst)}, the static
-unarchiving function. It constructs a new instance by calling the unarchiving
-constructor.
-
 @item
 @cindex @code{compare_same_type()}
-@code{int compare_same_type(const basic &other)}, which is used internally
+@code{int compare_same_type(const basic & other)}, which is used internally
 by GiNaC to establish a canonical sort order for terms. It returns 0, +1 or
 -1, depending on the relative order of this object and the @code{other}
 object. If it returns 0, the objects are considered equal.
@@ -7847,90 +7991,26 @@ objects for which no reasonable algebraic ordering relationship can be
 defined.
 
 @item
-And, of course, @code{mystring(const string &s)} and @code{mystring(const char *s)}
-which are the two constructors we declared.
+And, of course, @code{mystring(const string& s)} which is the constructor
+we declared.
 
 @end itemize
 
 Let's proceed step-by-step. The default constructor looks like this:
 
 @example
-mystring::mystring() : inherited(&mystring::tinfo_static) @{@}
+mystring::mystring() @{ @}
 @end example
 
-The golden rule is that in all constructors you have to set the
-@code{tinfo_key} member to the @code{&your_class_name::tinfo_static}
-@footnote{Each GiNaC class has a static member called tinfo_static.
-This member is declared by the GINAC_DECLARE_REGISTERED_CLASS macros
-and defined by the GINAC_IMPLEMENT_REGISTERED_CLASS macros.}. Otherwise
-it will be set by the constructor of the superclass and all hell will break
-loose in the RTTI. For your convenience, the @code{basic} class provides
-a constructor that takes a @code{tinfo_key} value, which we are using here
-(remember that in our case @code{inherited == basic}).  If the superclass
-didn't have such a constructor, we would have to set the @code{tinfo_key}
-to the right value manually.
-
 In the default constructor you should set all other member variables to
 reasonable default values (we don't need that here since our @code{str}
 member gets set to an empty string automatically).
 
-Next are the three functions for archiving. You have to implement them even
-if you don't plan to use archives, but the minimum required implementation
-is really simple.  First, the archiving function:
-
-@example
-void mystring::archive(archive_node &n) const
-@{
-    inherited::archive(n);
-    n.add_string("string", str);
-@}
-@end example
-
-The only thing that is really required is calling the @code{archive()}
-function of the superclass. Optionally, you can store all information you
-deem necessary for representing the object into the passed
-@code{archive_node}.  We are just storing our string here. For more
-information on how the archiving works, consult the @file{archive.h} header
-file.
-
-The unarchiving constructor is basically the inverse of the archiving
-function:
-
-@example
-mystring::mystring(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst)
-@{
-    n.find_string("string", str);
-@}
-@end example
-
-If you don't need archiving, just leave this function empty (but you must
-invoke the unarchiving constructor of the superclass). Note that we don't
-have to set the @code{tinfo_key} here because it is done automatically
-by the unarchiving constructor of the @code{basic} class.
-
-Finally, the unarchiving function:
-
-@example
-ex mystring::unarchive(const archive_node &n, lst &sym_lst)
-@{
-    return (new mystring(n, sym_lst))->setflag(status_flags::dynallocated);
-@}
-@end example
-
-You don't have to understand how exactly this works. Just copy these
-four lines into your code literally (replacing the class name, of
-course).  It calls the unarchiving constructor of the class and unless
-you are doing something very special (like matching @code{archive_node}s
-to global objects) you don't need a different implementation. For those
-who are interested: setting the @code{dynallocated} flag puts the object
-under the control of GiNaC's garbage collection.  It will get deleted
-automatically once it is no longer referenced.
-
 Our @code{compare_same_type()} function uses a provided function to compare
 the string members:
 
 @example
-int mystring::compare_same_type(const basic &other) const
+int mystring::compare_same_type(const basic & other) const
 @{
     const mystring &o = static_cast<const mystring &>(other);
     int cmpval = str.compare(o.str);
@@ -7949,15 +8029,13 @@ comparable), so the cast is safe. If this function returns 0, the two objects
 are considered equal (in the sense that @math{A-B=0}), so you should compare
 all relevant member variables.
 
-Now the only thing missing is our two new constructors:
+Now the only thing missing is our constructor:
 
 @example
-mystring::mystring(const string &s) : inherited(&mystring::tinfo_static), str(s) @{@}
-mystring::mystring(const char *s) : inherited(&mystring::tinfo_static), str(s) @{@}
+mystring::mystring(const string& s) : str(s) @{ @}
 @end example
 
-No surprises here. We set the @code{str} member from the argument and
-remember to pass the right @code{tinfo_key} to the @code{basic} constructor.
+No surprises here. We set the @code{str} member from the argument.
 
 That's it! We now have a minimal working GiNaC class that can store
 strings in algebraic expressions. Let's confirm that the RTTI works:
@@ -7989,11 +8067,11 @@ class mystring : public basic
 @{
     ...
 protected:
-    void do_print(const print_context &c, unsigned level = 0) const;
+    void do_print(const print_context & c, unsigned level = 0) const;
     ...
 @};
 
-void mystring::do_print(const print_context &c, unsigned level) const
+void mystring::do_print(const print_context & c, unsigned level) const
 @{
     // print_context::s is a reference to an ostream
     c.s << '\"' << str << '\"';
@@ -8138,7 +8216,7 @@ required but will make operations with objects of the class more efficient:
 @cindex @code{is_equal_same_type()}
 @example
 unsigned calchash() const;
-bool is_equal_same_type(const basic &other) const;
+bool is_equal_same_type(const basic & other) const;
 @end example
 
 The @code{calchash()} method returns an @code{unsigned} hash value for the
@@ -8192,27 +8270,20 @@ That's it. May the source be with you!
 
 @subsection Upgrading extension classes from older version of GiNaC
 
-If you got some extension classes for GiNaC 1.3.X some changes are
-necessary in order to make your code work with GiNaC 1.4.
-
-@itemize @bullet
-@item constructors which set @code{tinfo_key} such as
+GiNaC used to use a custom run time type information system (RTTI). It was
+removed from GiNaC. Thus, one needs to rewrite constructors which set
+@code{tinfo_key} (which does not exist any more). For example,
 
 @example
-myclass::myclass() : inherited(TINFO_myclass) @{@}
+myclass::myclass() : inherited(&myclass::tinfo_static) @{@}
 @end example
 
-need to be rewritten as
+needs to be rewritten as
 
 @example
-myclass::myclass() : inherited(&myclass::tinfo_static) @{@}
+myclass::myclass() @{@}
 @end example
 
-@item TINO_myclass is not necessary any more and can be removed.
-
-@end itemize
-
-
 @node A comparison with other CAS, Advantages, Adding classes, Top
 @c    node-name, next, previous, up
 @chapter A Comparison With Other CAS
@@ -8321,7 +8392,7 @@ Of course it also has some disadvantages:
 advanced features: GiNaC cannot compete with a program like
 @emph{Reduce} which exists for more than 30 years now or @emph{Maple}
 which grows since 1981 by the work of dozens of programmers, with
-respect to mathematical features.  Integration, factorization,
+respect to mathematical features.  Integration, 
 non-trivial simplifications, limits etc. are missing in GiNaC (and are
 not planned for the near future).
 
@@ -8482,7 +8553,12 @@ addition and multiplication, one container for exponentiation with base
 and exponent and some atomic leaves of symbols and numbers in this
 fashion:
 
+@ifnotinfo
 @image{repnaive}
+@end ifnotinfo
+@ifinfo
+<PICTURE MISSING>
+@end ifinfo
 
 @cindex pair-wise representation
 However, doing so results in a rather deeply nested tree which will
@@ -8493,7 +8569,12 @@ spirit we can store the multiplication as a sequence of terms, each
 having a numeric exponent and a possibly complicated base, the tree
 becomes much more flat:
 
+@ifnotinfo
 @image{reppair}
+@end ifnotinfo
+@ifinfo
+<PICTURE MISSING>
+@end ifinfo
 
 The number @code{3} above the symbol @code{d} shows that @code{mul}
 objects are treated similarly where the coefficients are interpreted as
@@ -8515,7 +8596,12 @@ $2d^3 \left( 4a + 5b - 3 \right)$:
 @math{2*d^3*(4*a+5*b-3)}:
 @end ifnottex
 
+@ifnotinfo
 @image{repreal}
+@end ifnotinfo
+@ifinfo
+<PICTURE MISSING>
+@end ifinfo
 
 @cindex radical
 This also allows for a better handling of numeric radicals, since