]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
Expansion rules for exp(), log(), and abs().
[ginac.git] / doc / tutorial / ginac.texi
index 3207a96fcb1c197ee3df95c72c0508e3827a3a24..d5bea846342325744ea73283293dc31c2815760d 100644 (file)
@@ -24,7 +24,7 @@
 This is a tutorial that documents GiNaC @value{VERSION}, an open
 framework for symbolic computation within the C++ programming language.
 
-Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
+Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
 
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -52,7 +52,7 @@ notice identical to this one.
 
 @page
 @vskip 0pt plus 1filll
-Copyright @copyright{} 1999-2008 Johannes Gutenberg University Mainz, Germany
+Copyright @copyright{} 1999-2011 Johannes Gutenberg University Mainz, Germany
 @sp 2
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -135,7 +135,7 @@ the near future.
 
 @section License
 The GiNaC framework for symbolic computation within the C++ programming
-language is Copyright @copyright{} 1999-2008 Johannes Gutenberg
+language is Copyright @copyright{} 1999-2011 Johannes Gutenberg
 University Mainz, Germany.
 
 This program is free software; you can redistribute it and/or
@@ -1479,7 +1479,7 @@ evaluated immediately:
 @tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
 @cindex @code{mod()}
 @item @code{smod(a, b)}
-@tab modulus in symmetric representation (in the range @code{[-iquo(abs(b)-1, 2), iquo(abs(b), 2)]})
+@tab modulus in symmetric representation (in the range @code{[-iquo(abs(b), 2), iquo(abs(b), 2)]})
 @cindex @code{smod()}
 @item @code{irem(a, b)}
 @tab integer remainder (has the sign of @math{a}, or is zero)
@@ -3040,8 +3040,8 @@ Information about the commutativity of an object or expression can be
 obtained with the two member functions
 
 @example
-unsigned ex::return_type() const;
-unsigned ex::return_type_tinfo() const;
+unsigned      ex::return_type() const;
+return_type_t ex::return_type_tinfo() const;
 @end example
 
 The @code{return_type()} function returns one of three values (defined in
@@ -3062,31 +3062,27 @@ expressions in GiNaC:
   @code{noncommutative_composite} expressions.
 @end itemize
 
-The value returned by the @code{return_type_tinfo()} method is valid only
-when the return type of the expression is @code{noncommutative}. It is a
-value that is unique to the class of the object, but may vary every time a
-GiNaC program is being run (it is dynamically assigned on start-up).
+The @code{return_type_tinfo()} method returns an object of type
+@code{return_type_t} that contains information about the type of the expression
+and, if given, its representation label (see section on dirac gamma matrices for
+more details).  The objects of type @code{return_type_t} can be tested for
+equality to test whether two expressions belong to the same category and
+therefore may not commute.
 
 Here are a couple of examples:
 
 @cartouche
-@multitable @columnfractions 0.33 0.33 0.34
-@item @strong{Expression} @tab @strong{@code{return_type()}} @tab @strong{@code{return_type_tinfo()}}
-@item @code{42} @tab @code{commutative} @tab -
-@item @code{2*x-y} @tab @code{commutative} @tab -
-@item @code{dirac_ONE()} @tab @code{noncommutative} @tab @code{TINFO_clifford}
-@item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative} @tab @code{TINFO_clifford}
-@item @code{2*color_T(a)} @tab @code{noncommutative} @tab @code{TINFO_color}
-@item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite} @tab -
+@multitable @columnfractions .6 .4
+@item @strong{Expression} @tab @strong{@code{return_type()}}
+@item @code{42} @tab @code{commutative}
+@item @code{2*x-y} @tab @code{commutative}
+@item @code{dirac_ONE()} @tab @code{noncommutative}
+@item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative}
+@item @code{2*color_T(a)} @tab @code{noncommutative}
+@item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite}
 @end multitable
 @end cartouche
 
-Note: the @code{return_type_tinfo()} of Clifford objects is only equal to
-@code{TINFO_clifford} for objects with a representation label of zero.
-Other representation labels yield a different @code{return_type_tinfo()},
-but it's the same for any two objects with the same label. This is also true
-for color objects.
-
 A last note: With the exception of matrices, positive integer powers of
 non-commutative objects are automatically expanded in GiNaC. For example,
 @code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
@@ -3870,7 +3866,7 @@ bool is_a<T>(const ex & e);
 bool is_exactly_a<T>(const ex & e);
 bool ex::info(unsigned flag);
 unsigned ex::return_type() const;
-unsigned ex::return_type_tinfo() const;
+return_type_t ex::return_type_tinfo() const;
 @end example
 
 When the test made by @code{is_a<T>()} returns true, it is safe to call
@@ -4267,7 +4263,7 @@ In the first form, @code{subs()} accepts a relational of the form
 @{
     symbol x("x"), y("y");
 
-    ex e1 = 2*x^2-4*x+3;
+    ex e1 = 2*x*x-4*x+3;
     cout << "e1(7) = " << e1.subs(x == 7) << endl;
      // -> 73
 
@@ -4641,7 +4637,7 @@ often as is possible without getting negative exponents. For example
 @code{(x^(-3)*y^(-2)*z).subs(1/(x*y)==c, subs_options::algebraic)} will
 return @code{x^(-1)*c^2*z}. 
 
-@strong{Note:} this only works for multiplications
+@strong{Please notice:} this only works for multiplications
 and not for locating @code{x+y} within @code{x+y+z}.
 
 
@@ -5916,20 +5912,72 @@ GiNaC contains the following predefined mathematical functions:
 @end cartouche
 
 @cindex branch cut
-For functions that have a branch cut in the complex plane GiNaC follows
-the conventions for C++ as defined in the ANSI standard as far as
-possible.  In particular: the natural logarithm (@code{log}) and the
-square root (@code{sqrt}) both have their branch cuts running along the
-negative real axis where the points on the axis itself belong to the
-upper part (i.e. continuous with quadrant II).  The inverse
-trigonometric and hyperbolic functions are not defined for complex
-arguments by the C++ standard, however.  In GiNaC we follow the
-conventions used by CLN, which in turn follow the carefully designed
-definitions in the Common Lisp standard.  It should be noted that this
-convention is identical to the one used by the C99 standard and by most
-serious CAS.  It is to be expected that future revisions of the C++
-standard incorporate these functions in the complex domain in a manner
-compatible with C99.
+For functions that have a branch cut in the complex plane, GiNaC
+follows the conventions of C/C++ for systems that do not support a
+signed zero.  In particular: the natural logarithm (@code{log}) and
+the square root (@code{sqrt}) both have their branch cuts running
+along the negative real axis. The @code{asin}, @code{acos}, and
+@code{atanh} functions all have two branch cuts starting at +/-1 and
+running away towards infinity along the real axis. The @code{atan} and
+@code{asinh} functions have two branch cuts starting at +/-i and
+running away towards infinity along the imaginary axis. The
+@code{acosh} function has one branch cut starting at +1 and running
+towards -infinity.  These functions are continuous as the branch cut
+is approached coming around the finite endpoint of the cut in a
+counter clockwise direction.
+
+@c
+@subsection Expanding functions
+@cindex expand trancedent functions
+@cindex @code{expand_options::expand_transcendental}
+@cindex @code{expand_options::expand_function_args}
+GiNaC knows several expansion laws for trancedent functions, e.g.
+@tex
+$e^{a+b}=e^a e^b$,
+$|zw|=|z|\cdot |w|$
+@end tex
+@ifnottex
+@command{exp(a+b)=exp(a) exp(b), |zw|=|z| |w|}
+@end ifnottex
+or
+@tex
+$\log(c*d)=\log(c)+\log(d)$,
+@end tex
+@ifnottex
+@command{log(cd)=log(c)+log(d)}
+@end ifnottex
+(for positive
+@tex
+$c,\ d$
+@end tex
+@ifnottex
+@command{c, d}
+@end ifnottex
+). In order to use these rules you need to call @code{expand()} method
+with the option @code{expand_options::expand_transcendental}. Another
+relevant option is @code{expand_options::expand_function_args}. Their
+usage and interaction can be seen from the following example:
+@example
+@{
+       symbol x("x"),  y("y");
+       ex e=exp(pow(x+y,2));
+       cout << e.expand() << endl;
+       // -> exp((x+y)^2)
+       cout << e.expand(expand_options::expand_transcendental) << endl;
+       // -> exp((x+y)^2)
+       cout << e.expand(expand_options::expand_function_args) << endl;
+       // -> exp(2*x*y+x^2+y^2)
+       cout << e.expand(expand_options::expand_function_args
+                       | expand_options::expand_transcendental) << endl;
+       // -> exp(y^2)*exp(2*x*y)*exp(x^2)
+@}
+@end example
+If both flags are set (as in the last call), then GiNaC tries to get
+the maximal expansion. For example, for the exponent GiNaC firstly expands
+the argument and then the function. For the logarithm and absolute value,
+GiNaC uses the opposite order: firstly expands the function and then its
+argument. Of course, a user can fine-tune this behaviour by sequential
+calls of several @code{expand()} methods with desired flags.
 
 @node Multiple polylogarithms, Complex expressions, Built-in functions, Methods and functions
 @c    node-name, next, previous, up
@@ -6153,12 +6201,13 @@ For example,
 @}
 @end example
 
-If you declare your own GiNaC functions, then they will conjugate themselves
-by conjugating their arguments. This is the default strategy. If you want to
-change this behavior, you have to supply a specialized conjugation method
-for your function (see @ref{Symbolic functions} and the GiNaC source-code
-for @code{abs} as an example). Also, specialized methods can be provided
-to take real and imaginary parts of user-defined functions.
+If you declare your own GiNaC functions and you want to conjugate them, you
+will have to supply a specialized conjugation method for them (see
+@ref{Symbolic functions} and the GiNaC source-code for @code{abs} as an
+example). GiNaC does not automatically conjugate user-supplied functions
+by conjugating their arguments because this would be incorrect on branch
+cuts. Also, specialized methods can be provided to take real and imaginary
+parts of user-defined functions.
 
 @node Solving linear systems of equations, Input/output, Complex expressions, Methods and functions
 @c    node-name, next, previous, up
@@ -6573,7 +6622,7 @@ pointer types at the moment:
 @cindex Monte Carlo integration
 @code{FUNCP_2P} allows for two variables in the expression. @code{FUNCP_CUBA} is
 the correct type to be used with the CUBA library
-(@uref{http://www.feynarts/cuba}) for numerical integrations. The details for the
+(@uref{http://www.feynarts.de/cuba}) for numerical integrations. The details for the
 parameters of @code{FUNCP_CUBA} are explained in the CUBA manual.
 
 @cindex compile_ex
@@ -7118,15 +7167,30 @@ This tells @code{evalf()} to not recursively evaluate the parameters of the
 function before calling the @code{evalf_func()}.
 
 @example
-set_return_type(unsigned return_type, unsigned return_type_tinfo)
+set_return_type(unsigned return_type, const return_type_t * return_type_tinfo)
 @end example
 
 This allows you to explicitly specify the commutation properties of the
 function (@xref{Non-commutative objects}, for an explanation of
-(non)commutativity in GiNaC). For example, you can use
-@code{set_return_type(return_types::noncommutative, TINFO_matrix)} to make
-GiNaC treat your function like a matrix. By default, functions inherit the
-commutation properties of their first argument.
+(non)commutativity in GiNaC). For example, with an object of type
+@code{return_type_t} created like
+
+@example
+return_type_t my_type = make_return_type_t<matrix>();
+@end example
+
+you can use @code{set_return_type(return_types::noncommutative, &my_type)} to
+make GiNaC treat your function like a matrix. By default, functions inherit the
+commutation properties of their first argument. The utilized template function
+@code{make_return_type_t<>()} 
+
+@example
+template<typename T> inline return_type_t make_return_type_t(const unsigned rl = 0)
+@end example
+
+can also be called with an argument specifying the representation label of the
+non-commutative function (see section on dirac gamma matrices for more
+details).
 
 @example
 set_symmetry(const symmetry & s)
@@ -8668,7 +8732,7 @@ If the required version was not found, executes @var{ACTION-IF-NOT-FOUND}.
 
 @node Configure script options, Example package, Package tools, Package tools 
 @c    node-name, next, previous, up
-@subsection Configuring a package that uses GiNaC
+@appendixsection Configuring a package that uses GiNaC
 
 The directory where the GiNaC libraries are installed needs
 to be found by your system's dynamic linkers (both compile- and run-time
@@ -8721,7 +8785,7 @@ $ ./configure
 
 @node Example package, Bibliography, Configure script options, Package tools
 @c    node-name, next, previous, up
-@subsection Example of a package using GiNaC
+@appendixsection Example of a package using GiNaC
 
 The following shows how to build a simple package using automake
 and the @samp{PKG_CHECK_MODULES} macro. The program used here is @file{simple.cpp}: