]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
building in separate directory didn't work
[ginac.git] / doc / tutorial / ginac.texi
index 970338608317ea7a0be5f272749533398eb23018..d4348f3644cf2df9505d10eefb827e8942ae46dc 100644 (file)
@@ -23,7 +23,7 @@
 This is a tutorial that documents GiNaC @value{VERSION}, an open
 framework for symbolic computation within the C++ programming language.
 
-Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
+Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
 
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -52,7 +52,7 @@ notice identical to this one.
 
 @page
 @vskip 0pt plus 1filll
-Copyright @copyright{} 1999-2000 Johannes Gutenberg University Mainz, Germany
+Copyright @copyright{} 1999-2001 Johannes Gutenberg University Mainz, Germany
 @sp 2
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -135,7 +135,7 @@ the near future.
 
 @section License
 The GiNaC framework for symbolic computation within the C++ programming
-language is Copyright @copyright{} 1999-2000 Johannes Gutenberg
+language is Copyright @copyright{} 1999-2001 Johannes Gutenberg
 University Mainz, Germany.
 
 This program is free software; you can redistribute it and/or
@@ -1300,6 +1300,9 @@ avoided.
 
 @subsection Checking expression types
 @cindex @code{is_ex_of_type()}
+@cindex @code{ex_to_numeric()}
+@cindex @code{ex_to_@dots{}}
+@cindex @code{Converting ex to other classes}
 @cindex @code{info()}
 
 Sometimes it's useful to check whether a given expression is a plain number,
@@ -1311,6 +1314,20 @@ bool is_ex_of_type(const ex & e, TYPENAME t);
 bool ex::info(unsigned flag);
 @end example
 
+When the test made by @code{is_ex_of_type()} returns true, it is safe to
+call one of the functions @code{ex_to_@dots{}}, where @code{@dots{}} is
+one of the class names (@xref{The Class Hierarchy}, for a list of all
+classes). For example, assuming @code{e} is an @code{ex}:
+
+@example
+@{
+    @dots{}
+    if (is_ex_of_type(e, numeric))
+        numeric n = ex_to_numeric(e);
+    @dots{}
+@}
+@end example
+
 @code{is_ex_of_type()} allows you to check whether the top-level object of
 an expression @samp{e} is an instance of the GiNaC class @samp{t}
 (@xref{The Class Hierarchy}, for a list of all classes). This is most useful,
@@ -1733,7 +1750,7 @@ int main()
 @cindex simplification
 @cindex temporary replacement
 
-Some basic from of simplification of expressions is called for frequently.
+Some basic form of simplification of expressions is called for frequently.
 GiNaC provides the method @code{.normal()}, which converts a rational function
 into an equivalent rational function of the form @samp{numerator/denominator}
 where numerator and denominator are coprime.  If the input expression is already
@@ -2076,11 +2093,13 @@ square root (@code{sqrt}) both have their branch cuts running along the
 negative real axis where the points on the axis itself belong to the
 upper part (i.e. continuous with quadrant II).  The inverse
 trigonometric and hyperbolic functions are not defined for complex
-arguments by the C++ standard, however.  Here, we follow the conventions
-used by CLN, which in turn follow the carefully designed definitions
-in the Common Lisp standard.  Hopefully, future revisions of the C++
+arguments by the C++ standard, however.  In GiNaC we follow the
+conventions used by CLN, which in turn follow the carefully designed
+definitions in the Common Lisp standard.  It should be noted that this
+convention is identical to the one used by the C99 standard and by most
+serious CAS.  It is to be expected that future revisions of the C++
 standard incorporate these functions in the complex domain in a manner
-compatible with Common Lisp.
+compatible with C99.
 
 
 @node Input/Output, Extending GiNaC, Built-in Functions, Methods and Functions
@@ -2318,6 +2337,7 @@ authors---they will happily incorporate them into future versions.
 @menu
 * What does not belong into GiNaC::  What to avoid.
 * Symbolic functions::               Implementing symbolic functions.
+* Adding classes::                   Defining new algebraic classes.
 @end menu
 
 
@@ -2345,7 +2365,7 @@ inefficient.  For this purpose, the underlying foundation classes
 provided by @acronym{CLN} are much better suited.
 
 
-@node Symbolic functions, A Comparison With Other CAS, What does not belong into GiNaC, Extending GiNaC
+@node Symbolic functions, Adding classes, What does not belong into GiNaC, Extending GiNaC
 @c    node-name, next, previous, up
 @section Symbolic functions
 
@@ -2449,10 +2469,499 @@ mechanisms.  Please, have a look at the real implementation in GiNaC.
 assure you that functions are GiNaC's most macro-intense classes.  We
 have done our best to avoid macros where we can.)
 
+
+@node Adding classes, A Comparison With Other CAS, Symbolic functions, Extending GiNaC
+@c    node-name, next, previous, up
+@section Adding classes
+
+If you are doing some very specialized things with GiNaC you may find that
+you have to implement your own algebraic classes to fit your needs. This
+section will explain how to do this by giving the example of a simple
+'string' class. After reading this section you will know how to properly
+declare a GiNaC class and what the minimum required member functions are
+that you have to implement. We only cover the implementation of a 'leaf'
+class here (i.e. one that doesn't contain subexpressions). Creating a
+container class like, for example, a class representing tensor products is
+more involved but this section should give you enough information so you can
+consult the source to GiNaC's predefined classes if you want to implement
+something more complicated.
+
+@subsection GiNaC's run-time type information system
+
+@cindex hierarchy of classes
+@cindex RTTI
+All algebraic classes (that is, all classes that can appear in expressions)
+in GiNaC are direct or indirect subclasses of the class @code{basic}. So a
+@code{basic *} (which is essentially what an @code{ex} is) represents a
+generic pointer to an algebraic class. Occasionally it is necessary to find
+out what the class of an object pointed to by a @code{basic *} really is.
+Also, for the unarchiving of expressions it must be possible to find the
+@code{unarchive()} function of a class given the class name (as a string). A
+system that provides this kind of information is called a run-time type
+information (RTTI) system. The C++ language provides such a thing (see the
+standard header file @file{<typeinfo>}) but for efficiency reasons GiNaC
+implements its own, simpler RTTI.
+
+The RTTI in GiNaC is based on two mechanisms:
+
+@itemize @bullet
+
+@item
+The @code{basic} class declares a member variable @code{tinfo_key} which
+holds an unsigned integer that identifies the object's class. These numbers
+are defined in the @file{tinfos.h} header file for the built-in GiNaC
+classes. They all start with @code{TINFO_}.
+
+@item
+By means of some clever tricks with static members, GiNaC maintains a list
+of information for all classes derived from @code{basic}. The information
+available includes the class names, the @code{tinfo_key}s, and pointers
+to the unarchiving functions. This class registry is defined in the
+@file{registrar.h} header file.
+
+@end itemize
+
+The disadvantage of this proprietary RTTI implementation is that there's
+a little more to do when implementing new classes (C++'s RTTI works more
+or less automatic) but don't worry, most of the work is simplified by
+macros.
+
+@subsection A minimalistic example
+
+Now we will start implementing a new class @code{mystring} that allows
+placing character strings in algebraic expressions (this is not very useful,
+but it's just an example). This class will be a direct subclass of
+@code{basic}. You can use this sample implementation as a starting point
+for your own classes.
+
+The code snippets given here assume that you have included some header files
+as follows:
+
+@example
+#include <iostream>
+#include <string>   
+#include <stdexcept>
+using namespace std;
+
+#include <ginac/ginac.h>
+using namespace GiNaC;
+@end example
+
+The first thing we have to do is to define a @code{tinfo_key} for our new
+class. This can be any arbitrary unsigned number that is not already taken
+by one of the existing classes but it's better to come up with something
+that is unlikely to clash with keys that might be added in the future. The
+numbers in @file{tinfos.h} are modeled somewhat after the class hierarchy
+which is not a requirement but we are going to stick with this scheme:
+
+@example
+const unsigned TINFO_mystring = 0x42420001U;
+@end example
+
+Now we can write down the class declaration. The class stores a C++
+@code{string} and the user shall be able to construct a @code{mystring}
+object from a C or C++ string:
+
+@example
+class mystring : public basic
+@{
+    GINAC_DECLARE_REGISTERED_CLASS(mystring, basic)
+  
+public:
+    mystring(const string &s);
+    mystring(const char *s);
+
+private:
+    string str;
+@};
+
+GIANC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)
+@end example
+
+The @code{GINAC_DECLARE_REGISTERED_CLASS} and @code{GINAC_IMPLEMENT_REGISTERED_CLASS}
+macros are defined in @file{registrar.h}. They take the name of the class
+and its direct superclass as arguments and insert all required declarations
+for the RTTI system. The @code{GINAC_DECLARE_REGISTERED_CLASS} should be
+the first line after the opening brace of the class definition. The
+@code{GINAC_IMPLEMENT_REGISTERED_CLASS} may appear anywhere else in the
+source (at global scope, of course, not inside a function).
+
+@code{GINAC_DECLARE_REGISTERED_CLASS} contains, among other things the
+declarations of the default and copy constructor, the destructor, the
+assignment operator and a couple of other functions that are required. It
+also defines a type @code{inherited} which refers to the superclass so you
+don't have to modify your code every time you shuffle around the class
+hierarchy. @code{GINAC_IMPLEMENT_REGISTERED_CLASS} implements the copy
+constructor, the destructor and the assignment operator.
+
+Now there are nine member functions we have to implement to get a working
+class:
+
+@itemize
+
+@item
+@code{mystring()}, the default constructor.
+
+@item
+@code{void destroy(bool call_parent)}, which is used in the destructor and the
+assignment operator to free dynamically allocated members. The @code{call_parent}
+specifies whether the @code{destroy()} function of the superclass is to be
+called also.
+
+@item
+@code{void copy(const mystring &other)}, which is used in the copy constructor
+and assignment operator to copy the member variables over from another
+object of the same class.
+
+@item
+@code{void archive(archive_node &n)}, the archiving function. This stores all
+information needed to reconstruct an object of this class inside an
+@code{archive_node}.
+
+@item
+@code{mystring(const archive_node &n, const lst &sym_lst)}, the unarchiving
+constructor. This constructs an instance of the class from the information
+found in an @code{archive_node}.
+
+@item
+@code{ex unarchive(const archive_node &n, const lst &sym_lst)}, the static
+unarchiving function. It constructs a new instance by calling the unarchiving
+constructor.
+
+@item
+@code{int compare_same_type(const basic &other)}, which is used internally
+by GiNaC to establish a canonical sort order for terms. It returns 0, +1 or
+-1, depending on the relative order of this object and the @code{other}
+object. If it returns 0, the objects are considered equal.
+@strong{Note:} This has nothing to do with the (numeric) ordering
+relationship expressed by @code{<}, @code{>=} etc (which cannot be defined
+for non-numeric classes). For example, @code{numeric(1).compare_same_type(numeric(2))}
+may return +1 even though 1 is clearly smaller than 2. Every GiNaC class
+must provide a @code{compare_same_type()} function, even those representing
+objects for which no reasonable algebraic ordering relationship can be
+defined.
+
+@item
+And, of course, @code{mystring(const string &s)} and @code{mystring(const char *s)}
+which are the two constructors we declared.
+
+@end itemize
+
+Let's proceed step-by-step. The default constructor looks like this:
+
+@example
+mystring::mystring() : inherited(TINFO_mystring)
+@{
+    // dynamically allocate resources here if required
+@}
+@end example
+
+The golden rule is that in all constructors you have to set the
+@code{tinfo_key} member to the @code{TINFO_*} value of your class. Otherwise
+it will be set by the constructor of the superclass and all hell will break
+loose in the RTTI. For your convenience, the @code{basic} class provides
+a constructor that takes a @code{tinfo_key} value, which we are using here
+(remember that in our case @code{inherited = basic}). If the superclass
+didn't have such a constructor, we would have to set the @code{tinfo_key}
+to the right value manually.
+
+In the default constructor you should set all other member variables to
+reasonable default values (we don't need that here since our @code{str}
+member gets set to an empty string automatically). The constructor(s) are of
+course also the right place to allocate any dynamic resources you require.
+
+Next, the @code{destroy()} function:
+
+@example
+void mystring::destroy(bool call_parent)
+@{
+    // free dynamically allocated resources here if required
+    if (call_parent)
+        inherited::destroy(call_parent);
+@}
+@end example
+
+This function is where we free all dynamically allocated resources. We don't
+have any so we're not doing anything here, but if we had, for example, used
+a C-style @code{char *} to store our string, this would be the place to
+@code{delete[]} the string storage. If @code{call_parent} is true, we have
+to call the @code{destroy()} function of the superclass after we're done
+(to mimic C++'s automatic invocation of superclass destructors where
+@code{destroy()} is called from outside a destructor).
+
+The @code{copy()} function just copies over the member variables from
+another object:
+
+@example
+void mystring::copy(const mystring &other)
+@{
+    inherited::copy(other);
+    str = other.str;
+@}
+@end example
+
+We can simply overwrite the member variables here. There's no need to worry
+about dynamically allocated storage. The assignment operator (which is
+automatically defined by @code{GINAC_IMPLEMENT_REGISTERED_CLASS}, as you
+recall) calls @code{destroy()} before it calls @code{copy()}. You have to
+explicitly call the @code{copy()} function of the superclass here so
+all the member variables will get copied.
+
+Next are the three functions for archiving. You have to implement them even
+if you don't plan to use archives, but the minimum required implementation
+is really simple. First, the archiving function:
+
+@example
+void mystring::archive(archive_node &n) const
+@{
+    inherited::archive(n);
+    n.add_string("string", str);
+@}
+@end example
+
+The only thing that is really required is calling the @code{archive()}
+function of the superclass. Optionally, you can store all information you
+deem necessary for representing the object into the passed
+@code{archive_node}. We are just storing our string here. For more
+information on how the archiving works, consult the @file{archive.h} header
+file.
+
+The unarchiving constructor is basically the inverse of the archiving
+function:
+
+@example
+mystring::mystring(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
+@{
+    n.find_string("string", str);
+@}
+@end example
+
+If you don't need archiving, just leave this function empty (but you must
+invoke the unarchiving constructor of the superclass). Note that we don't
+have to set the @code{tinfo_key} here because it is done automatically
+by the unarchiving constructor of the @code{basic} class.
+
+Finally, the unarchiving function:
+
+@example
+ex mystring::unarchive(const archive_node &n, const lst &sym_lst)
+@{
+    return (new mystring(n, sym_lst))->setflag(status_flags::dynallocated);
+@}
+@end example
+
+You don't have to understand how exactly this works. Just copy these four
+lines into your code literally (replacing the class name, of course). It
+calls the unarchiving constructor of the class and unless you are doing
+something very special (like matching @code{archive_node}s to global
+objects) you don't need a different implementation.
+
+Our @code{compare_same_type()} function uses a provided function to compare
+the string members:
+
+@example
+int mystring::compare_same_type(const basic &other) const
+@{
+    const mystring &o = static_cast<const mystring &>(other);
+    int cmpval = str.compare(o.str);
+    if (cmpval == 0)
+        return 0;
+    else if (cmpval < 0)
+        return -1;
+    else
+        return 1;
+@}
+@end example
+
+Although this function takes a @code{basic &}, it will always be a reference
+to an object of exactly the same class (objects of different classes are not
+comparable), so the cast is safe. If this function returns 0, the two objects
+are considered equal (in the sense that @math{A-B=0}), so you should compare
+all relevant member variables.
+
+Now the only thing missing is our two new constructors:
+
+@example
+mystring::mystring(const string &s) : inherited(TINFO_mystring), str(s)
+@{
+    // dynamically allocate resources here if required
+@}
+
+mystring::mystring(const char *s) : inherited(TINFO_mystring), str(s)
+@{
+    // dynamically allocate resources here if required
+@}
+@end example
+
+No surprises here. We set the @code{str} member from the argument and
+remember to pass the right @code{tinfo_key} to the @code{basic} constructor.
+
+That's it! We now have a minimal working GiNaC class that can store
+strings in algebraic expressions. Let's confirm that the RTTI works:
+
+@example
+ex e = mystring("Hello, world!");
+cout << is_ex_of_type(e, mystring) << endl;
+ // -> 1 (true)
+
+cout << e.bp->class_name() << endl;
+ // -> mystring
+@end example
+
+Obviously it does. Let's see what the expression @code{e} looks like:
+
+@example
+cout << e << endl;
+ // -> [mystring object]
+@end example
+
+Hm, not exactly what we expect, but of course the @code{mystring} class
+doesn't yet know how to print itself. This is done in the @code{print()}
+member function. Let's say that we wanted to print the string surrounded
+by double quotes:
+
+@example
+class mystring : public basic
+@{
+    ...
+public:
+    void print(ostream &os, unsigned upper_precedence) const;
+    ...
+@};
+
+void mystring::print(ostream &os, unsigned upper_precedence) const
+@{
+    os << '\"' << str << '\"';
+@}
+@end example
+
+The @code{upper_precedence} argument is only required for container classes
+to correctly parenthesize the output. Let's try again to print the expression:
+
+@example
+cout << e << endl;
+ // -> "Hello, world!"
+@end example
+
+Much better. The @code{mystring} class can be used in arbitrary expressions:
+
+@example
+e += mystring("GiNaC rulez"); 
+cout << e << endl;
+ // -> "GiNaC rulez"+"Hello, world!"
+@end example
+
+(note that GiNaC's automatic term reordering is in effect here), or even
+
+@example
+e = pow(mystring("One string"), 2*sin(Pi-mystring("Another string")));
+cout << e << endl;
+ // -> "One string"^(2*sin(-"Another string"+Pi))
+@end example
+
+Whether this makes sense is debatable but remember that this is only an
+example. At least it allows you to implement your own symbolic algorithms
+for your objects.
+
+Note that GiNaC's algebraic rules remain unchanged:
+
+@example
+e = mystring("Wow") * mystring("Wow");
+cout << e << endl;
+ // -> "Wow"^2
+
+e = pow(mystring("First")-mystring("Second"), 2);
+cout << e.expand() << endl;
+ // -> -2*"First"*"Second"+"First"^2+"Second"^2
+@end example
+
+There's no way to, for example, make GiNaC's @code{add} class perform string
+concatenation. You would have to implement this yourself.
+
+@subsection Automatic evaluation
+
+@cindex @code{hold()}
+@cindex evaluation
+When dealing with objects that are just a little more complicated than the
+simple string objects we have implemented, chances are that you will want to
+have some automatic simplifications or canonicalizations performed on them.
+This is done in the evaluation member function @code{eval()}. Let's say that
+we wanted all strings automatically converted to lowercase with
+non-alphabetic characters stripped, and empty strings removed:
+
+@example
+class mystring : public basic
+@{
+    ...
+public:
+    ex eval(int level = 0) const;
+    ...
+@};
+
+ex mystring::eval(int level) const
+@{
+    string new_str;
+    for (int i=0; i<str.length(); i++) @{
+        char c = str[i];
+        if (c >= 'A' && c <= 'Z') 
+            new_str += tolower(c);
+        else if (c >= 'a' && c <= 'z')
+            new_str += c;
+    @}
+
+    if (new_str.length() == 0)
+        return _ex0();
+    else
+        return mystring(new_str).hold();
+@}
+@end example
+
+The @code{level} argument is used to limit the recursion depth of the
+evaluation. We don't have any subexpressions in the @code{mystring} class
+so we are not concerned with this. If we had, we would call the @code{eval()}
+functions of the subexpressions with @code{level - 1} as the argument if
+@code{level != 1}. The @code{hold()} member function sets a flag in the
+object that prevents further evaluation. Otherwise we might end up in an
+endless loop. When you want to return the object unmodified, use
+@code{return this->hold();}.
+
+Let's confirm that it works:
+
+@example
+ex e = mystring("Hello, world!") + mystring("!?#");
+cout << e << endl;
+ // -> "helloworld"
+
+e = mystring("Wow!") + mystring("WOW") + mystring(" W ** o ** W");  
+cout << e << endl;
+ // -> 3*"wow"
+@end example
+
+@subsection Other member functions
+
+We have implemented only a small set of member functions to make the class
+work in the GiNaC framework. For a real algebraic class, there are probably
+some more functions that you will want to re-implement, such as
+@code{evalf()}, @code{series()} or @code{op()}. Have a look at @file{basic.h}
+or the header file of the class you want to make a subclass of to see
+what's there. You can, of course, also add your own new member functions.
+In this case you will probably want to define a little helper function like
+
+@example
+inline const mystring &ex_to_mystring(const ex &e)
+@{
+    return static_cast<const mystring &>(*e.bp);
+@}
+@end example
+
+that let's you get at the object inside an expression (after you have verified
+that the type is correct) so you can call member functions that are specific
+to the class.
+
 That's it. May the source be with you!
 
 
-@node A Comparison With Other CAS, Advantages, Symbolic functions, Top
+@node A Comparison With Other CAS, Advantages, Adding classes, Top
 @c    node-name, next, previous, up
 @chapter A Comparison With Other CAS
 @cindex advocacy
@@ -2972,9 +3481,9 @@ AC_PROG_CXX
 AC_PROG_INSTALL
 AC_LANG_CPLUSPLUS
 
-AM_PATH_GINAC(0.4.0, [
+AM_PATH_GINAC(0.7.0, [
   LIBS="$LIBS $GINACLIB_LIBS"
-  CPPFLAGS="$CFLAGS $GINACLIB_CPPFLAGS"  
+  CPPFLAGS="$CPPFLAGS $GINACLIB_CPPFLAGS"  
 ], AC_MSG_ERROR([need to have GiNaC installed]))
 
 AC_OUTPUT(Makefile)
@@ -2983,13 +3492,10 @@ AC_OUTPUT(Makefile)
 The only command in this which is not standard for automake
 is the @samp{AM_PATH_GINAC} macro.
 
-That command does the following:
-
-@display
-If a GiNaC version greater than 0.4.0 is found, adds @env{$GINACLIB_LIBS} to 
-@env{$LIBS} and @env{$GINACLIB_CPPFLAGS} to @env{$CPPFLAGS}. Otherwise, dies
-with the error message `need to have GiNaC installed'
-@end display
+That command does the following: If a GiNaC version greater or equal
+than 0.7.0 is found, then it adds @env{$GINACLIB_LIBS} to @env{$LIBS}
+and @env{$GINACLIB_CPPFLAGS} to @env{$CPPFLAGS}. Otherwise, it dies with
+the error message `need to have GiNaC installed'
 
 And the @file{Makefile.am}, which will be used to build the Makefile.
 
@@ -3070,4 +3576,3 @@ Academic Press, London
 @printindex cp
 
 @bye
-