]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
* Really remove silly acronyms. The fucking network breakdown this
[ginac.git] / doc / tutorial / ginac.texi
index 63e1376b27a592b88ace0ac0433ebf92487dad19..c86114df5b9e07a415190953923634203d6fae81 100644 (file)
@@ -179,6 +179,7 @@ manipulations.  Here is how to generate and print a simple (and rather
 pointless) bivariate polynomial with some large coefficients:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -213,6 +214,7 @@ Next, there is a more meaningful C++ program that calls a function which
 generates Hermite polynomials in a specified free variable.
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -362,8 +364,11 @@ lambda^2-3*lambda+11
 [[1,1],[2,-1]]
 > A+2*M;
 [[1,1],[2,-1]]+2*[[1,3],[-3,2]]
-> evalm(");
+> evalm(%);
 [[3,7],[-4,3]]
+> B = [ [0, 0, a], [b, 1, -b], [-1/a, 0, 0] ];
+> evalm(B^(2^12345));
+[[1,0,0],[0,1,0],[0,0,1]]
 @end example
 
 Multivariate polynomials and rational functions may be expanded,
@@ -401,7 +406,7 @@ x^(-1)-1/3*x+Order(x^2)
 > series(tgamma(x),x==0,3);
 x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+
 (-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3)
-> evalf(");
+> evalf(%);
 x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
 -(0.90747907608088628905)*x^2+Order(x^3)
 > series(tgamma(2*sin(x)-2),x==Pi/2,6);
@@ -409,7 +414,7 @@ x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
 -Euler-1/12+Order((x-1/2*Pi)^3)
 @end example
 
-Here we have made use of the @command{ginsh}-command @code{"} to pop the
+Here we have made use of the @command{ginsh}-command @code{%} to pop the
 previously evaluated element from @command{ginsh}'s internal stack.
 
 If you ever wanted to convert units in C or C++ and found this is
@@ -450,15 +455,14 @@ installation.
 
 In order to install GiNaC on your system, some prerequisites need to be
 met.  First of all, you need to have a C++-compiler adhering to the
-ANSI-standard @cite{ISO/IEC 14882:1998(E)}.  We used @acronym{GCC} for
-development so if you have a different compiler you are on your own.
-For the configuration to succeed you need a Posix compliant shell
-installed in @file{/bin/sh}, GNU @command{bash} is fine.  Perl is needed
-by the built process as well, since some of the source files are
-automatically generated by Perl scripts.  Last but not least, Bruno
-Haible's library @acronym{CLN} is extensively used and needs to be
-installed on your system.  Please get it either from
-@uref{ftp://ftp.santafe.edu/pub/gnu/}, from
+ANSI-standard @cite{ISO/IEC 14882:1998(E)}.  We used GCC for development
+so if you have a different compiler you are on your own.  For the
+configuration to succeed you need a Posix compliant shell installed in
+@file{/bin/sh}, GNU @command{bash} is fine.  Perl is needed by the built
+process as well, since some of the source files are automatically
+generated by Perl scripts.  Last but not least, Bruno Haible's library
+CLN is extensively used and needs to be installed on your system.
+Please get it either from @uref{ftp://ftp.santafe.edu/pub/gnu/}, from
 @uref{ftp://ftpthep.physik.uni-mainz.de/pub/gnu/, GiNaC's FTP site} or
 from @uref{ftp://ftp.ilog.fr/pub/Users/haible/gnu/, Bruno Haible's FTP
 site} (it is covered by GPL) and install it prior to trying to install
@@ -528,10 +532,11 @@ be very useful to define some compiler flags with the @env{CXXFLAGS}
 environment variable, like optimization, debugging information and
 warning levels.  If omitted, it defaults to @option{-g
 -O2}.@footnote{The @command{configure} script is itself generated from
-the file @file{configure.in}.  It is only distributed in packaged
+the file @file{configure.ac}.  It is only distributed in packaged
 releases of GiNaC.  If you got the naked sources, e.g. from CVS, you
 must generate @command{configure} along with the various
-@file{Makefile.in} by using the @command{autogen.sh} script.}
+@file{Makefile.in} by using the @command{autogen.sh} script.  This will
+require a fair amount of support from your local toolchain, though.}
 
 The whole process is illustrated in the following two
 examples. (Substitute @command{setenv @var{VARIABLE} @var{value}} for
@@ -547,9 +552,9 @@ $ ./configure
 @end example
 
 And here is a configuration for a private static GiNaC library with
-several components sitting in custom places (site-wide @acronym{GCC} and
-private @acronym{CLN}).  The compiler is persuaded to be picky and full
-assertions and debugging information are switched on:
+several components sitting in custom places (site-wide GCC and private
+CLN).  The compiler is persuaded to be picky and full assertions and
+debugging information are switched on:
 
 @example
 $ export CXX=/usr/local/gnu/bin/c++
@@ -887,25 +892,24 @@ can use the expression's @code{.subs()} method (@pxref{Substituting Expressions}
 @cindex CLN
 @cindex rational
 @cindex fraction
-For storing numerical things, GiNaC uses Bruno Haible's library
-@acronym{CLN}.  The classes therein serve as foundation classes for
-GiNaC.  @acronym{CLN} stands for Class Library for Numbers or
-alternatively for Common Lisp Numbers.  In order to find out more about
-@acronym{CLN}'s internals the reader is refered to the documentation of
-that library.  @inforef{Introduction, , cln}, for more
-information. Suffice to say that it is by itself build on top of another
-library, the GNU Multiple Precision library @acronym{GMP}, which is an
+For storing numerical things, GiNaC uses Bruno Haible's library CLN.
+The classes therein serve as foundation classes for GiNaC.  CLN stands
+for Class Library for Numbers or alternatively for Common Lisp Numbers.
+In order to find out more about CLN's internals the reader is refered to
+the documentation of that library.  @inforef{Introduction, , cln}, for
+more information. Suffice to say that it is by itself build on top of
+another library, the GNU Multiple Precision library GMP, which is an
 extremely fast library for arbitrary long integers and rationals as well
 as arbitrary precision floating point numbers.  It is very commonly used
-by several popular cryptographic applications.  @acronym{CLN} extends
-@acronym{GMP} by several useful things: First, it introduces the complex
-number field over either reals (i.e. floating point numbers with
-arbitrary precision) or rationals.  Second, it automatically converts
-rationals to integers if the denominator is unity and complex numbers to
-real numbers if the imaginary part vanishes and also correctly treats
-algebraic functions.  Third it provides good implementations of
-state-of-the-art algorithms for all trigonometric and hyperbolic
-functions as well as for calculation of some useful constants.
+by several popular cryptographic applications.  CLN extends GMP by
+several useful things: First, it introduces the complex number field
+over either reals (i.e. floating point numbers with arbitrary precision)
+or rationals.  Second, it automatically converts rationals to integers
+if the denominator is unity and complex numbers to real numbers if the
+imaginary part vanishes and also correctly treats algebraic functions.
+Third it provides good implementations of state-of-the-art algorithms
+for all trigonometric and hyperbolic functions as well as for
+calculation of some useful constants.
 
 The user can construct an object of class @code{numeric} in several
 ways.  The following example shows the four most important constructors.
@@ -913,6 +917,7 @@ It uses construction from C-integer, construction of fractions from two
 integers, construction from C-float and construction from a string:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace GiNaC;
 
@@ -951,6 +956,7 @@ then on will be stored with a precision matching that number of decimal
 digits:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -1002,6 +1008,7 @@ As an example, let's construct some rational number, multiply it with
 some multiple of its denominator and test what comes out:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -1027,13 +1034,12 @@ by @code{numeric}'s copy constructor but in an intermediate step it
 holds a rational number represented as integer numerator and integer
 denominator.  When multiplied by 10, the denominator becomes unity and
 the result is automatically converted to a pure integer again.
-Internally, the underlying @acronym{CLN} is responsible for this
-behavior and we refer the reader to @acronym{CLN}'s documentation.
-Suffice to say that the same behavior applies to complex numbers as
-well as return values of certain functions.  Complex numbers are
-automatically converted to real numbers if the imaginary part becomes
-zero.  The full set of tests that can be applied is listed in the
-following table.
+Internally, the underlying CLN is responsible for this behavior and we
+refer the reader to CLN's documentation.  Suffice to say that
+the same behavior applies to complex numbers as well as return values of
+certain functions.  Complex numbers are automatically converted to real
+numbers if the imaginary part becomes zero.  The full set of tests that
+can be applied is listed in the following table.
 
 @cartouche
 @multitable @columnfractions .30 .70
@@ -1527,6 +1533,7 @@ not visible in the output.
 A simple example shall illustrate the concepts:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -3157,7 +3164,7 @@ the list. @code{find()} returns false if no matches were found (in
   (Note the absence of "x".)
 > expand((sin(x)+sin(y))*(a+b));
 sin(y)*a+sin(x)*b+sin(x)*a+sin(y)*b
-> find(",sin($1));
+> find(%,sin($1));
 @{sin(y),sin(x)@}
 @end example
 
@@ -3286,7 +3293,7 @@ This function object could then be used like this:
 @}
 @end example
 
-Here is another example for you to meditate over. It removes quadratic
+Here is another example for you to meditate over.  It removes quadratic
 terms in a variable from an expanded polynomial:
 
 @example
@@ -3298,7 +3305,8 @@ struct map_rem_quad : public map_function @{
     @{
         if (is_a<add>(e) || is_a<mul>(e))
            return e.map(*this);
-        else if (is_a<power>(e) && e.op(0).is_equal(var) && e.op(1).info(info_flags::even))
+        else if (is_a<power>(e) && 
+                 e.op(0).is_equal(var) && e.op(1).info(info_flags::even))
             return 0;
         else
             return e;
@@ -3448,11 +3456,6 @@ An application is illustrated in the next example, where a multivariate
 polynomial is analyzed:
 
 @example
-#include <ginac/ginac.h>
-using namespace std;
-using namespace GiNaC;
-
-int main()
 @{
     symbol x("x"), y("y");
     ex PolyInp = 4*pow(x,3)*y + 5*x*pow(y,2) + 3*y
@@ -3662,13 +3665,9 @@ symbols afterwards. This algorithm is also available as a separate method
 @code{.to_rational()}, described below.
 
 This means that both expressions @code{t1} and @code{t2} are indeed
-simplified in this little program:
+simplified in this little code snippet:
 
 @example
-#include <ginac/ginac.h>
-using namespace GiNaC;
-
-int main()
 @{
     symbol x("x");
     ex t1 = (pow(x,2) + 2*x + 1)/(x + 1);
@@ -3753,17 +3752,16 @@ polynomial (class @code{add}) knows that its derivative is the sum of
 the derivatives of all the monomials:
 
 @example
-#include <ginac/ginac.h>
-using namespace GiNaC;
-
-int main()
 @{
     symbol x("x"), y("y"), z("z");
     ex P = pow(x, 5) + pow(x, 2) + y;
 
-    cout << P.diff(x,2) << endl;  // 20*x^3 + 2
+    cout << P.diff(x,2) << endl;
+     // -> 20*x^3 + 2
     cout << P.diff(y) << endl;    // 1
+     // -> 1
     cout << P.diff(z) << endl;    // 0
+     // -> 0
 @}
 @end example
 
@@ -4506,7 +4504,7 @@ evaluate themselves numerically to a precision declared at runtime
 generally.  This ought to be fixed.  However, doing numerical
 computations with GiNaC's quite abstract classes is doomed to be
 inefficient.  For this purpose, the underlying foundation classes
-provided by @acronym{CLN} are much better suited.
+provided by CLN are much better suited.
 
 
 @node Symbolic functions, Adding classes, What does not belong into GiNaC, Extending GiNaC
@@ -5183,9 +5181,10 @@ expressions interactively, as in traditional CASs.  Currently, two such
 windows into GiNaC have been implemented and many more are possible: the
 tiny @command{ginsh} that is part of the distribution exposes GiNaC's
 types to a command line and second, as a more consistent approach, an
-interactive interface to the @acronym{Cint} C++ interpreter has been put
-together (called @acronym{GiNaC-cint}) that allows an interactive
-scripting interface consistent with the C++ language.
+interactive interface to the Cint C++ interpreter has been put together
+(called GiNaC-cint) that allows an interactive scripting interface
+consistent with the C++ language.  It is available from the usual GiNaC
+FTP-site.
 
 @item
 seamless integration: it is somewhere between difficult and impossible
@@ -5227,15 +5226,17 @@ not planned for the near future).
 portability: While the GiNaC library itself is designed to avoid any
 platform dependent features (it should compile on any ANSI compliant C++
 compiler), the currently used version of the CLN library (fast large
-integer and arbitrary precision arithmetics) can be compiled only on
-systems with a recently new C++ compiler from the GNU Compiler
-Collection (@acronym{GCC}).@footnote{This is because CLN uses
-PROVIDE/REQUIRE like macros to let the compiler gather all static
-initializations, which works for GNU C++ only.}  GiNaC uses recent
-language features like explicit constructors, mutable members, RTTI,
-@code{dynamic_cast}s and STL, so ANSI compliance is meant literally.
-Recent @acronym{GCC} versions starting at 2.95, although itself not yet
-ANSI compliant, support all needed features.
+integer and arbitrary precision arithmetics) can only by compiled
+without hassle on systems with the C++ compiler from the GNU Compiler
+Collection (GCC).@footnote{This is because CLN uses PROVIDE/REQUIRE like
+macros to let the compiler gather all static initializations, which
+works for GNU C++ only.  Feel free to contact the authors in case you
+really believe that you need to use a different compiler.  We have
+occasionally used other compilers and may be able to give you advice.}
+GiNaC uses recent language features like explicit constructors, mutable
+members, RTTI, @code{dynamic_cast}s and STL, so ANSI compliance is meant
+literally.  Recent GCC versions starting at 2.95.3, although itself not
+yet ANSI compliant, support all needed features.
     
 @end itemize
 
@@ -5281,6 +5282,7 @@ no copying process is involved. Instead, the copying takes place as soon
 as you try to change the second.  Consider the simple sequence of code:
 
 @example
+#include <iostream>
 #include <ginac/ginac.h>
 using namespace std;
 using namespace GiNaC;
@@ -5313,11 +5315,6 @@ differentiation using the chain-rule should make clear how powerful this
 can be:
 
 @example
-#include <ginac/ginac.h>
-using namespace std;
-using namespace GiNaC;
-
-int main()
 @{
     symbol x("x"), y("y");
 
@@ -5634,7 +5631,7 @@ AC_PROG_CXX
 AC_PROG_INSTALL
 AC_LANG_CPLUSPLUS
 
-AM_PATH_GINAC(0.7.0, [
+AM_PATH_GINAC(0.9.0, [
   LIBS="$LIBS $GINACLIB_LIBS"
   CPPFLAGS="$CPPFLAGS $GINACLIB_CPPFLAGS"  
 ], AC_MSG_ERROR([need to have GiNaC installed]))