]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
added section about matrices
[ginac.git] / doc / tutorial / ginac.texi
index 4dc99450d87be363df121f494df03edf52e7719c..b3e5d79fe84d2da019fa913f1e13620f96cec1d6 100644 (file)
@@ -345,19 +345,25 @@ conclude that @code{42*Pi} is equal to @code{0}.)
 Linear equation systems can be solved along with basic linear
 algebra manipulations over symbolic expressions.  In C++ GiNaC offers
 a matrix class for this purpose but we can see what it can do using
-@command{ginsh}'s notation of double brackets to type them in:
+@command{ginsh}'s bracket notation to type them in:
 
 @example
 > lsolve(a+x*y==z,x);
 y^(-1)*(z-a);
-> lsolve([3*x+5*y == 7, -2*x+10*y == -5], [x, y]);
-[x==19/8,y==-1/40]
-> M = [[ [[1, 3]], [[-3, 2]] ]];
-[[ [[1,3]], [[-3,2]] ]]
+> lsolve(@{3*x+5*y == 7, -2*x+10*y == -5@}, @{x, y@});
+@{x==19/8,y==-1/40@}
+> M = [ [1, 3], [-3, 2] ];
+[[1,3],[-3,2]]
 > determinant(M);
 11
 > charpoly(M,lambda);
 lambda^2-3*lambda+11
+> A = [ [1, 1], [2, -1] ];
+[[1,1],[2,-1]]
+> A+2*M;
+[[1,1],[2,-1]]+2*[[1,3],[-3,2]]
+> evalm(");
+[[3,7],[-4,3]]
 @end example
 
 Multivariate polynomials and rational functions may be expanded,
@@ -589,7 +595,7 @@ to fiddle around with optimization.
 
 Generally, the top-level Makefile runs recursively to the
 subdirectories.  It is therfore safe to go into any subdirectory
-(@code{doc/}, @code{ginsh/}, ...) and simply type @code{make}
+(@code{doc/}, @code{ginsh/}, @dots{}) and simply type @code{make}
 @var{target} there in case something went wrong.
 
 
@@ -665,6 +671,7 @@ meta-class for storing all mathematical objects.
 * Lists::                        Lists of expressions.
 * Mathematical functions::       Mathematical functions.
 * Relations::                    Equality, Inequality and all that.
+* Matrices::                     Matrices.
 * Indexed objects::              Handling indexed quantities.
 * Non-commutative objects::      Algebras with non-commutative products.
 @end menu
@@ -678,7 +685,7 @@ meta-class for storing all mathematical objects.
 
 The most common class of objects a user deals with is the expression
 @code{ex}, representing a mathematical object like a variable, number,
-function, sum, product, etc...  Expressions may be put together to form
+function, sum, product, etc@dots{}  Expressions may be put together to form
 new expressions, passed as arguments to functions, and so on.  Here is a
 little collection of valid expressions:
 
@@ -758,14 +765,15 @@ $\sqrt{2}$
 @dots{}
 @item @code{pseries} @tab Power Series, e.g. @math{x-1/6*x^3+1/120*x^5+O(x^7)}
 @item @code{function} @tab A symbolic function like @math{sin(2*x)}
-@item @code{lst} @tab Lists of expressions [@math{x}, @math{2*y}, @math{3+z}]
-@item @code{matrix} @tab @math{n}x@math{m} matrices of expressions
+@item @code{lst} @tab Lists of expressions @{@math{x}, @math{2*y}, @math{3+z}@}
+@item @code{matrix} @tab @math{m}x@math{n} matrices of expressions
 @item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
 @item @code{indexed} @tab Indexed object like @math{A_ij}
 @item @code{tensor} @tab Special tensor like the delta and metric tensors
 @item @code{idx} @tab Index of an indexed object
 @item @code{varidx} @tab Index with variance
 @item @code{spinidx} @tab Index with variance and dot (used in Weyl-van-der-Waerden spinor formalism)
+@item @code{wildcard} @tab Wildcard for pattern matching
 @end multitable
 @end cartouche
 
@@ -805,8 +813,7 @@ for instance) will always reveal their difference.  Watch out, please.
 Although symbols can be assigned expressions for internal reasons, you
 should not do it (and we are not going to tell you how it is done).  If
 you want to replace a symbol with something else in an expression, you
-can use the expression's @code{.subs()} method (@xref{Substituting Expressions},
-for more information).
+can use the expression's @code{.subs()} method (@pxref{Substituting Expressions}).
 
 
 @node Numbers, Constants, Symbols, Basic Concepts
@@ -1129,12 +1136,12 @@ canonical form.
 @cindex @code{append()}
 @cindex @code{prepend()}
 
-The GiNaC class @code{lst} serves for holding a list of arbitrary expressions.
-These are sometimes used to supply a variable number of arguments of the same
-type to GiNaC methods such as @code{subs()} and @code{to_rational()}, so you
-should have a basic understanding about them.
+The GiNaC class @code{lst} serves for holding a @dfn{list} of arbitrary
+expressions. These are sometimes used to supply a variable number of
+arguments of the same type to GiNaC methods such as @code{subs()} and
+@code{to_rational()}, so you should have a basic understanding about them.
 
-Lists of up to 15 expressions can be directly constructed from single
+Lists of up to 16 expressions can be directly constructed from single
 expressions:
 
 @example
@@ -1160,8 +1167,8 @@ Finally you can append or prepend an expression to a list with the
 
 @example
     // ...
-    l.append(4*x);   // l is now [x, 2, y, x+y, 4*x]
-    l.prepend(0);    // l is now [0, x, 2, y, x+y, 4*x]
+    l.append(4*x);   // l is now @{x, 2, y, x+y, 4*x@}
+    l.prepend(0);    // l is now @{0, x, 2, y, x+y, 4*x@}
 @}
 @end example
 
@@ -1205,7 +1212,7 @@ expansion and so on.  Read the next chapter in order to learn more about
 this.
 
 
-@node Relations, Indexed objects, Mathematical functions, Basic Concepts
+@node Relations, Matrices, Mathematical functions, Basic Concepts
 @c    node-name, next, previous, up
 @section Relations
 @cindex @code{relational} (class)
@@ -1232,7 +1239,171 @@ however, that @code{==} here does not perform any simplifications, hence
 @code{expand()} must be called explicitly.
 
 
-@node Indexed objects, Non-commutative objects, Relations, Basic Concepts
+@node Matrices, Indexed objects, Relations, Basic Concepts
+@c    node-name, next, previous, up
+@section Matrices
+@cindex @code{matrix} (class)
+
+A @dfn{matrix} is a two-dimensional array of expressions. The elements of a
+matrix with @math{m} rows and @math{n} columns are accessed with two
+@code{unsigned} indices, the first one in the range 0@dots{}@math{m-1}, the
+second one in the range 0@dots{}@math{n-1}.
+
+There are a couple of ways to construct matrices, with or without preset
+elements:
+
+@example
+matrix::matrix(unsigned r, unsigned c);
+matrix::matrix(unsigned r, unsigned c, const lst & l);
+ex lst_to_matrix(const lst & l);
+ex diag_matrix(const lst & l);
+@end example
+
+The first two functions are @code{matrix} constructors which create a matrix
+with @samp{r} rows and @samp{c} columns. The matrix elements can be
+initialized from a (flat) list of expressions @samp{l}. Otherwise they are
+all set to zero. The @code{lst_to_matrix()} function constructs a matrix
+from a list of lists, each list representing a matrix row. Finally,
+@code{diag_matrix()} constructs a diagonal matrix given the list of diagonal
+elements. Note that the last two functions return expressions, not matrix
+objects.
+
+Matrix elements can be accessed and set using the parenthesis (function call)
+operator:
+
+@example
+const ex & matrix::operator()(unsigned r, unsigned c) const;
+ex & matrix::operator()(unsigned r, unsigned c);
+@end example
+
+It is also possible to access the matrix elements in a linear fashion with
+the @code{op()} method. But C++-style subscripting with square brackets
+@samp{[]} is not available.
+
+Here are a couple of examples that all construct the same 2x2 diagonal
+matrix:
+
+@example
+@{
+    symbol a("a"), b("b");
+    ex e;
+
+    matrix M(2, 2);
+    M(0, 0) = a;
+    M(1, 1) = b;
+    e = M;
+
+    e = matrix(2, 2, lst(a, 0, 0, b));
+
+    e = lst_to_matrix(lst(lst(a, 0), lst(0, b)));
+
+    e = diag_matrix(lst(a, b));
+
+    cout << e << endl;
+     // -> [[a,0],[0,b]]
+@}
+@end example
+
+@cindex @code{transpose()}
+@cindex @code{inverse()}
+There are three ways to do arithmetic with matrices. The first (and most
+efficient one) is to use the methods provided by the @code{matrix} class:
+
+@example
+matrix matrix::add(const matrix & other) const;
+matrix matrix::sub(const matrix & other) const;
+matrix matrix::mul(const matrix & other) const;
+matrix matrix::mul_scalar(const ex & other) const;
+matrix matrix::pow(const ex & expn) const;
+matrix matrix::transpose(void) const;
+matrix matrix::inverse(void) const;
+@end example
+
+All of these methods return the result as a new matrix object. Here is an
+example that calculates @math{A*B-2*C} for three matrices @math{A}, @math{B}
+and @math{C}:
+
+@example
+@{
+    matrix A(2, 2, lst(1, 2, 3, 4));
+    matrix B(2, 2, lst(-1, 0, 2, 1));
+    matrix C(2, 2, lst(8, 4, 2, 1));
+
+    matrix result = A.mul(B).sub(C.mul_scalar(2));
+    cout << result << endl;
+     // -> [[-13,-6],[1,2]]
+    ...
+@}
+@end example
+
+@cindex @code{evalm()}
+The second (and probably the most natural) way is to construct an expression
+containing matrices with the usual arithmetic operators and @code{pow()}.
+For efficiency reasons, expressions with sums, products and powers of
+matrices are not automatically evaluated in GiNaC. You have to call the
+method
+
+@example
+ex ex::evalm() const;
+@end example
+
+to obtain the result:
+
+@example
+@{
+    ...
+    ex e = A*B - 2*C;
+    cout << e << endl;
+     // -> [[1,2],[3,4]]*[[-1,0],[2,1]]-2*[[8,4],[2,1]]
+    cout << e.evalm() << endl;
+     // -> [[-13,-6],[1,2]]
+    ...
+@}
+@end example
+
+The non-commutativity of the product @code{A*B} in this example is
+automatically recognized by GiNaC. There is no need to use a special
+operator here. @xref{Non-commutative objects}, for more information about
+dealing with non-commutative expressions.
+
+Finally, you can work with indexed matrices and call @code{simplify_indexed()}
+to perform the arithmetic:
+
+@example
+@{
+    ...
+    idx i(symbol("i"), 2), j(symbol("j"), 2), k(symbol("k"), 2);
+    e = indexed(A, i, k) * indexed(B, k, j) - 2 * indexed(C, i, j);
+    cout << e << endl;
+     // -> -2*[[8,4],[2,1]].i.j+[[-1,0],[2,1]].k.j*[[1,2],[3,4]].i.k
+    cout << e.simplify_indexed() << endl;
+     // -> [[-13,-6],[1,2]].i.j
+@}
+@end example
+
+Using indices is most useful when working with rectangular matrices and
+one-dimensional vectors because you don't have to worry about having to
+transpose matrices before multiplying them. @xref{Indexed objects}, for
+more information about using matrices with indices, and about indices in
+general.
+
+The @code{matrix} class provides a couple of additional methods for
+computing determinants, traces, and characteristic polynomials:
+
+@example
+ex matrix::determinant(unsigned algo = determinant_algo::automatic) const;
+ex matrix::trace(void) const;
+ex matrix::charpoly(const symbol & lambda) const;
+@end example
+
+The @samp{algo} argument of @code{determinant()} allows to select between
+different algorithms for calculating the determinant. The possible values
+are defined in the @file{flags.h} header file. By default, GiNaC uses a
+heuristic to automatically select an algorithm that is likely to give the
+result most quickly.
+
+
+@node Indexed objects, Non-commutative objects, Matrices, Basic Concepts
 @c    node-name, next, previous, up
 @section Indexed objects
 
@@ -1665,7 +1836,7 @@ indices are specified).
 @subsubsection Delta tensor
 
 The delta tensor takes two indices, is symmetric and has the matrix
-representation @code{diag(1,1,1,...)}. It is constructed by the function
+representation @code{diag(1, 1, 1, ...)}. It is constructed by the function
 @code{delta_tensor()}:
 
 @example
@@ -1785,7 +1956,7 @@ It is output as @samp{eps}:
 @}
 @end example
 
-The matrix representation of the spinor metric is @code{[[ [[ 0, 1 ]], [[ -1, 0 ]] ]]}.
+The matrix representation of the spinor metric is @code{[[0, 1], [-1, 0]]}.
 
 @cindex @code{epsilon_tensor()}
 @cindex @code{lorentz_eps()}
@@ -1824,6 +1995,7 @@ and scalar products):
     idx i(symbol("i"), 2), j(symbol("j"), 2);
     symbol x("x"), y("y");
 
+    // A is a 2x2 matrix, X is a 2x1 vector
     matrix A(2, 2, lst(1, 2, 3, 4)), X(2, 1, lst(x, y));
 
     cout << indexed(A, i, i) << endl;
@@ -1831,17 +2003,17 @@ and scalar products):
 
     ex e = indexed(A, i, j) * indexed(X, j);
     cout << e.simplify_indexed() << endl;
-     // -> [[ [[2*y+x]], [[4*y+3*x]] ]].i
+     // -> [[2*y+x],[4*y+3*x]].i
 
     e = indexed(A, i, j) * indexed(X, i) + indexed(X, j) * 2;
     cout << e.simplify_indexed() << endl;
-     // -> [[ [[3*y+3*x,6*y+2*x]] ]].j
+     // -> [[3*y+3*x,6*y+2*x]].j
 @}
 @end example
 
 You can of course obtain the same results with the @code{matrix::add()},
-@code{matrix::mul()} and @code{matrix::trace()} methods but with indices you
-don't have to worry about transposing matrices.
+@code{matrix::mul()} and @code{matrix::trace()} methods (@pxref{Matrices})
+but with indices you don't have to worry about transposing matrices.
 
 Matrix indices always start at 0 and their dimension must match the number
 of rows/columns of the matrix. Matrices with one row or one column are
@@ -1871,7 +2043,8 @@ physics:
 
 The @code{clifford} and @code{color} classes are subclasses of
 @code{indexed} because the elements of these algebras ususally carry
-indices.
+indices. The @code{matrix} class is described in more detail in
+@ref{Matrices}.
 
 Unlike most computer algebra systems, GiNaC does not primarily provide an
 operator (often denoted @samp{&*}) for representing inert products of
@@ -1969,6 +2142,11 @@ Other representation labels yield a different @code{return_type_tinfo()},
 but it's the same for any two objects with the same label. This is also true
 for color objects.
 
+A last note: With the exception of matrices, positive integer powers of
+non-commutative objects are automatically expanded in GiNaC. For example,
+@code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
+non-commutative expressions).
+
 
 @cindex @code{clifford} (class)
 @subsection Clifford algebra
@@ -2286,10 +2464,12 @@ avoided.
 @menu
 * Information About Expressions::
 * Substituting Expressions::
+* Pattern Matching and Advanced Substitutions::
 * Polynomial Arithmetic::           Working with polynomials.
 * Rational Expressions::            Working with rational functions.
 * Symbolic Differentiation::
 * Series Expansion::                Taylor and Laurent expansion.
+* Symmetrization::
 * Built-in Functions::              List of predefined mathematical functions.
 * Input/Output::                    Input and output of expressions.
 @end menu
@@ -2434,7 +2614,6 @@ for an explanation of these.
 @subsection Accessing subexpressions
 @cindex @code{nops()}
 @cindex @code{op()}
-@cindex @code{has()}
 @cindex container
 @cindex @code{relational} (class)
 
@@ -2461,17 +2640,6 @@ ex ex::lhs();
 ex ex::rhs();
 @end example
 
-Finally, the method
-
-@example
-bool ex::has(const ex & other);
-@end example
-
-checks whether an expression contains the given subexpression @code{other}.
-This only works reliably if @code{other} is of an atomic class such as a
-@code{numeric} or a @code{symbol}. It is, e.g., not possible to verify that
-@code{a+b+c} contains @code{a+c} (or @code{a+b}) as a subexpression.
-
 
 @subsection Comparing expressions
 @cindex @code{is_equal()}
@@ -2486,7 +2654,7 @@ expressions), so something like @code{(pow(x,2)+x)/x==x+1} will return
 @code{false}.
 
 Actually, if you construct an expression like @code{a == b}, this will be
-represented by an object of the @code{relational} class (@xref{Relations}.)
+represented by an object of the @code{relational} class (@pxref{Relations})
 which is not evaluated until (explicitly or implicitely) cast to a @code{bool}.
 
 There are also two methods
@@ -2505,7 +2673,7 @@ GiNaC to establish a canonical sort order for terms, and using it to compare
 expressions will give very surprising results.
 
 
-@node Substituting Expressions, Polynomial Arithmetic, Information About Expressions, Methods and Functions
+@node Substituting Expressions, Pattern Matching and Advanced Substitutions, Information About Expressions, Methods and Functions
 @c    node-name, next, previous, up
 @section Substituting expressions
 @cindex @code{subs()}
@@ -2535,6 +2703,14 @@ In the first form, @code{subs()} accepts a relational of the form
 @}
 @end example
 
+If you specify multiple substitutions, they are performed in parallel, so e.g.
+@code{subs(lst(x == y, y == x))} exchanges @samp{x} and @samp{y}.
+
+The second form of @code{subs()} takes two lists, one for the objects to be
+replaced and one for the expressions to be substituted (both lists must
+contain the same number of elements). Using this form, you would write
+@code{subs(lst(x, y), lst(y, x))} to exchange @samp{x} and @samp{y}.
+
 @code{subs()} performs syntactic substitution of any complete algebraic
 object; it does not try to match sub-expressions as is demonstrated by the
 following example:
@@ -2547,9 +2723,9 @@ following example:
     cout << e1.subs(x+y == 4) << endl;
      // -> 16
 
-    ex e2 = sin(x)*cos(x);
+    ex e2 = sin(x)*sin(y)*cos(x);
     cout << e2.subs(sin(x) == cos(x)) << endl;
-     // -> cos(x)^2
+     // -> cos(x)^2*sin(y)
 
     ex e3 = x+y+z;
     cout << e3.subs(x+y == 4) << endl;
@@ -2558,16 +2734,255 @@ following example:
 @}
 @end example
 
-If you specify multiple substitutions, they are performed in parallel, so e.g.
-@code{subs(lst(x == y, y == x))} exchanges @samp{x} and @samp{y}.
+A more powerful form of substitution using wildcards is described in the
+next section.
 
-The second form of @code{subs()} takes two lists, one for the objects to be
-replaced and one for the expressions to be substituted (both lists must
-contain the same number of elements). Using this form, you would write
-@code{subs(lst(x, y), lst(y, x))} to exchange @samp{x} and @samp{y}.
+
+@node Pattern Matching and Advanced Substitutions, Polynomial Arithmetic, Substituting Expressions, Methods and Functions
+@c    node-name, next, previous, up
+@section Pattern matching and advanced substitutions
+
+GiNaC allows the use of patterns for checking whether an expression is of a
+certain form or contains subexpressions of a certain form, and for
+substituting expressions in a more general way.
+
+A @dfn{pattern} is an algebraic expression that optionally contains wildcards.
+A @dfn{wildcard} is a special kind of object (of class @code{wildcard}) that
+represents an arbitrary expression. Every wildcard has a @dfn{label} which is
+an unsigned integer number to allow having multiple different wildcards in a
+pattern. Wildcards are printed as @samp{$label} (this is also the way they
+are specified in @command{ginsh}. In C++ code, wildcard objects are created
+with the call
+
+@example
+ex wild(unsigned label = 0);
+@end example
+
+which is simply a wrapper for the @code{wildcard()} constructor with a shorter
+name.
+
+Some examples for patterns:
+
+@multitable @columnfractions .5 .5
+@item @strong{Constructed as} @tab @strong{Output as}
+@item @code{wild()} @tab @samp{$0}
+@item @code{pow(x,wild())} @tab @samp{x^$0}
+@item @code{atan2(wild(1),wild(2))} @tab @samp{atan2($1,$2)}
+@item @code{indexed(A,idx(wild(),3))} @tab @samp{A.$0}
+@end multitable
+
+Notes:
+
+@itemize
+@item Wildcards behave like symbols and are subject to the same algebraic
+  rules. E.g., @samp{$0+2*$0} is automatically transformed to @samp{3*$0}.
+@item As shown in the last example, to use wildcards for indices you have to
+  use them as the value of an @code{idx} object. This is because indices must
+  always be of class @code{idx} (or a subclass).
+@item Wildcards only represent expressions or subexpressions. It is not
+  possible to use them as placeholders for other properties like index
+  dimension or variance, representation labels, symmetry of indexed objects
+  etc.
+@item Because wildcards are commutative, it is not possible to use wildcards
+  as part of noncommutative products.
+@item A pattern does not have to contain wildcards. @samp{x} and @samp{x+y}
+  are also valid patterns.
+@end itemize
+
+@cindex @code{match()}
+The most basic application of patterns is to check whether an expression
+matches a given pattern. This is done by the function
+
+@example
+bool ex::match(const ex & pattern);
+bool ex::match(const ex & pattern, lst & repls);
+@end example
+
+This function returns @code{true} when the expression matches the pattern
+and @code{false} if it doesn't. If used in the second form, the actual
+subexpressions matched by the wildcards get returned in the @code{repls}
+object as a list of relations of the form @samp{wildcard == expression}.
+If @code{match()} returns false, the state of @code{repls} is undefined.
+For reproducible results, the list should be empty when passed to
+@code{match()}, but it is also possible to find similarities in multiple
+expressions by passing in the result of a previous match.
+
+The matching algorithm works as follows:
+
+@itemize
+@item A single wildcard matches any expression. If one wildcard appears
+  multiple times in a pattern, it must match the same expression in all
+  places (e.g. @samp{$0} matches anything, and @samp{$0*($0+1)} matches
+  @samp{x*(x+1)} but not @samp{x*(y+1)}).
+@item If the expression is not of the same class as the pattern, the match
+  fails (i.e. a sum only matches a sum, a function only matches a function,
+  etc.).
+@item If the pattern is a function, it only matches the same function
+  (i.e. @samp{sin($0)} matches @samp{sin(x)} but doesn't match @samp{exp(x)}).
+@item Except for sums and products, the match fails if the number of
+  subexpressions (@code{nops()}) is not equal to the number of subexpressions
+  of the pattern.
+@item If there are no subexpressions, the expressions and the pattern must
+  be equal (in the sense of @code{is_equal()}).
+@item Except for sums and products, each subexpression (@code{op()}) must
+  match the corresponding subexpression of the pattern.
+@end itemize
+
+Sums (@code{add}) and products (@code{mul}) are treated in a special way to
+account for their commutativity and associativity:
+
+@itemize
+@item If the pattern contains a term or factor that is a single wildcard,
+  this one is used as the @dfn{global wildcard}. If there is more than one
+  such wildcard, one of them is chosen as the global wildcard in a random
+  way.
+@item Every term/factor of the pattern, except the global wildcard, is
+  matched against every term of the expression in sequence. If no match is
+  found, the whole match fails. Terms that did match are not considered in
+  further matches.
+@item If there are no unmatched terms left, the match succeeds. Otherwise
+  the match fails unless there is a global wildcard in the pattern, in
+  which case this wildcard matches the remaining terms.
+@end itemize
+
+In general, having more than one single wildcard as a term of a sum or a
+factor of a product (such as @samp{a+$0+$1}) will lead to unpredictable or
+amgiguous results.
+
+Here are some examples in @command{ginsh} to demonstrate how it works (the
+@code{match()} function in @command{ginsh} returns @samp{FAIL} if the
+match fails, and the list of wildcard replacements otherwise):
+
+@example
+> match((x+y)^a,(x+y)^a);
+@{@}
+> match((x+y)^a,(x+y)^b);
+FAIL
+> match((x+y)^a,$1^$2);
+@{$1==x+y,$2==a@}
+> match((x+y)^a,$1^$1);
+FAIL
+> match((x+y)^(x+y),$1^$1);
+@{$1==x+y@}
+> match((x+y)^(x+y),$1^$2);
+@{$1==x+y,$2==x+y@}
+> match((a+b)*(a+c),($1+b)*($1+c));
+@{$1==a@}
+> match((a+b)*(a+c),(a+$1)*(a+$2));
+@{$1==c,$2==b@}
+  (Unpredictable. The result might also be [$1==c,$2==b].)
+> match((a+b)*(a+c),($1+$2)*($1+$3));
+  (The result is undefined. Due to the sequential nature of the algorithm
+   and the re-ordering of terms in GiNaC, the match for the first factor
+   may be @{$1==a,$2==b@} in which case the match for the second factor
+   succeeds, or it may be @{$1==b,$2==a@} which causes the second match to
+   fail.)
+> match(a*(x+y)+a*z+b,a*$1+$2);
+  (This is also ambiguous and may return either @{$1==z,$2==a*(x+y)+b@} or
+   @{$1=x+y,$2=a*z+b@}.)
+> match(a+b+c+d+e+f,c);
+FAIL
+> match(a+b+c+d+e+f,c+$0);
+@{$0==a+e+b+f+d@}
+> match(a+b+c+d+e+f,c+e+$0);
+@{$0==a+b+f+d@}
+> match(a+b,a+b+$0);
+@{$0==0@}
+> match(a*b^2,a^$1*b^$2);
+FAIL
+  (The matching is syntactic, not algebraic, and "a" doesn't match "a^$1"
+   even if a==a^1.)
+> match(x*atan2(x,x^2),$0*atan2($0,$0^2));
+@{$0==x@}
+> match(atan2(y,x^2),atan2(y,$0));
+@{$0==x^2@}
+@end example
+
+@cindex @code{has()}
+A more general way to look for patterns in expressions is provided by the
+member function
+
+@example
+bool ex::has(const ex & pattern);
+@end example
+
+This function checks whether a pattern is matched by an expression itself or
+by any of its subexpressions.
+
+Again some examples in @command{ginsh} for illustration (in @command{ginsh},
+@code{has()} returns @samp{1} for @code{true} and @samp{0} for @code{false}):
+
+@example
+> has(x*sin(x+y+2*a),y);
+1
+> has(x*sin(x+y+2*a),x+y);
+0
+  (This is because in GiNaC, "x+y" is not a subexpression of "x+y+2*a" (which
+   has the subexpressions "x", "y" and "2*a".)
+> has(x*sin(x+y+2*a),x+y+$1);
+1
+  (But this is possible.)
+> has(x*sin(2*(x+y)+2*a),x+y);
+0
+  (This fails because "2*(x+y)" automatically gets converted to "2*x+2*y" of
+   which "x+y" is not a subexpression.)
+> has(x+1,x^$1);
+0
+  (Although x^1==x and x^0==1, neither "x" nor "1" are actually of the form
+   "x^something".)
+> has(4*x^2-x+3,$1*x);
+1
+> has(4*x^2+x+3,$1*x);
+0
+  (Another possible pitfall. The first expression matches because the term
+   "-x" has the form "(-1)*x" in GiNaC. To check whether a polynomial
+   contains a linear term you should use the coeff() function instead.)
+@end example
+
+@cindex @code{subs()}
+Probably the most useful application of patterns is to use them for
+substituting expressions with the @code{subs()} method. Wildcards can be
+used in the search patterns as well as in the replacement expressions, where
+they get replaced by the expressions matched by them. @code{subs()} doesn't
+know anything about algebra; it performs purely syntactic substitutions.
+
+Some examples:
+
+@example
+> subs(a^2+b^2+(x+y)^2,$1^2==$1^3);
+b^3+a^3+(x+y)^3
+> subs(a^4+b^4+(x+y)^4,$1^2==$1^3);
+b^4+a^4+(x+y)^4
+> subs((a+b+c)^2,a+b=x);
+(a+b+c)^2
+> subs((a+b+c)^2,a+b+$1==x+$1);
+(x+c)^2
+> subs(a+2*b,a+b=x);
+a+2*b
+> subs(4*x^3-2*x^2+5*x-1,x==a);
+-1+5*a-2*a^2+4*a^3
+> subs(4*x^3-2*x^2+5*x-1,x^$0==a^$0);
+-1+5*x-2*a^2+4*a^3
+> subs(sin(1+sin(x)),sin($1)==cos($1));
+cos(1+cos(x))
+> expand(subs(a*sin(x+y)^2+a*cos(x+y)^2+b,cos($1)^2==1-sin($1)^2));
+a+b
+@end example
+
+The last example would be written in C++ in this way:
+
+@example
+@{
+    symbol a("a"), b("b"), x("x"), y("y");
+    e = a*pow(sin(x+y), 2) + a*pow(cos(x+y), 2) + b;
+    e = e.subs(pow(cos(wild()), 2) == 1-pow(sin(wild()), 2));
+    cout << e.expand() << endl;
+     // -> a+b
+@}
+@end example
 
 
-@node Polynomial Arithmetic, Rational Expressions, Substituting Expressions, Methods and Functions
+@node Polynomial Arithmetic, Rational Expressions, Pattern Matching and Advanced Substitutions, Methods and Functions
 @c    node-name, next, previous, up
 @section Polynomial arithmetic
 
@@ -2890,16 +3305,20 @@ normalized to @code{P_a/P_b} = @code{(4*y+z)/(y+3*z)}.
 @cindex denominator
 @cindex @code{numer()}
 @cindex @code{denom()}
+@cindex @code{numer_denom()}
 
 The numerator and denominator of an expression can be obtained with
 
 @example
 ex ex::numer();
 ex ex::denom();
+ex ex::numer_denom();
 @end example
 
 These functions will first normalize the expression as described above and
-then return the numerator or denominator, respectively.
+then return the numerator, denominator, or both as a list, respectively.
+If you need both numerator and denominator, calling @code{numer_denom()} is
+faster than using @code{numer()} and @code{denom()} separately.
 
 
 @subsection Converting to a rational expression
@@ -3005,7 +3424,7 @@ When you run it, it produces the sequence @code{1}, @code{-1}, @code{5},
 @code{i} by two since all odd Euler numbers vanish anyways.
 
 
-@node Series Expansion, Built-in Functions, Symbolic Differentiation, Methods and Functions
+@node Series Expansion, Symmetrization, Symbolic Differentiation, Methods and Functions
 @c    node-name, next, previous, up
 @section Series expansion
 @cindex @code{series()}
@@ -3115,7 +3534,51 @@ program, it will type out:
 @end example
 
 
-@node Built-in Functions, Input/Output, Series Expansion, Methods and Functions
+@node Symmetrization, Built-in Functions, Series Expansion, Methods and Functions
+@c    node-name, next, previous, up
+@section Symmetrization
+@cindex @code{symmetrize()}
+@cindex @code{antisymmetrize()}
+
+The two methods
+
+@example
+ex ex::symmetrize(const lst & l);
+ex ex::antisymmetrize(const lst & l);
+@end example
+
+symmetrize an expression by returning the symmetric or antisymmetric sum
+over all permutations of the specified list of objects, weighted by the
+number of permutations.
+
+The two additional methods
+
+@example
+ex ex::symmetrize();
+ex ex::antisymmetrize();
+@end example
+
+symmetrize or antisymmetrize an expression over its free indices.
+
+Symmetrization is most useful with indexed expressions but can be used with
+almost any kind of object (anything that is @code{subs()}able):
+
+@example
+@{
+    idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
+    symbol A("A"), B("B"), a("a"), b("b"), c("c");
+                                           
+    cout << indexed(A, i, j).symmetrize() << endl;
+     // -> 1/2*A.j.i+1/2*A.i.j
+    cout << indexed(A, i, j, k).antisymmetrize(lst(i, j)) << endl;
+     // -> -1/2*A.j.i.k+1/2*A.i.j.k
+    cout << lst(a, b, c).symmetrize(lst(a, b, c)) << endl;
+     // -> 1/6*@{a,b,c@}+1/6*@{c,a,b@}+1/6*@{b,a,c@}+1/6*@{c,b,a@}+1/6*@{b,c,a@}+1/6*@{a,c,b@}
+@}
+@end example
+
+
+@node Built-in Functions, Input/Output, Symmetrization, Methods and Functions
 @c    node-name, next, previous, up
 @section Predefined mathematical functions
 
@@ -4216,8 +4679,14 @@ work in the GiNaC framework. For a real algebraic class, there are probably
 some more functions that you will want to re-implement, such as
 @code{evalf()}, @code{series()} or @code{op()}. Have a look at @file{basic.h}
 or the header file of the class you want to make a subclass of to see
-what's there. You can, of course, also add your own new member functions.
-In this case you will probably want to define a little helper function like
+what's there. One member function that you will most likely want to
+implement for terminal classes like the described string class is
+@code{calcchash()} that returns an @code{unsigned} hash value for the object
+which will allow GiNaC to compare and canonicalize expressions much more
+efficiently.
+
+You can, of course, also add your own new member functions. In this case you
+will probably want to define a little helper function like
 
 @example
 inline const mystring &ex_to_mystring(const ex &e)
@@ -4226,9 +4695,9 @@ inline const mystring &ex_to_mystring(const ex &e)
 @}
 @end example
 
-that let's you get at the object inside an expression (after you have verified
-that the type is correct) so you can call member functions that are specific
-to the class.
+that let's you get at the object inside an expression (after you have
+verified that the type is correct) so you can call member functions that are
+specific to the class.
 
 That's it. May the source be with you!
 
@@ -4278,7 +4747,7 @@ nice for novice programmers, but dangerous.
 @item
 development tools: powerful development tools exist for C++, like fancy
 editors (e.g. with automatic indentation and syntax highlighting),
-debuggers, visualization tools, documentation generators...
+debuggers, visualization tools, documentation generators@dots{}
 
 @item
 modularization: C++ programs can easily be split into modules by