]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
- expressions can now be read from streams; the input expression can contain
[ginac.git] / doc / tutorial / ginac.texi
index d4ab7fb571e2945452becd996c6b18ed5734b4db..ae19fbaaaf9915903156a7c507cd4e32ee4a68cc 100644 (file)
@@ -280,8 +280,23 @@ integers:
 1/3
 @end example
 
-All numbers occuring in GiNaC's expressions can be converted into floating
-point numbers with the @code{evalf} method, to arbitrary accuracy:
+Exact numbers are always retained as exact numbers and only evaluated as
+floating point numbers if requested.  For instance, with numeric
+radicals is dealt pretty much as with symbols.  Products of sums of them
+can be expanded:
+
+@example
+> expand((1+a^(1/5)-a^(2/5))^3);
+1+3*a+3*a^(1/5)-5*a^(3/5)-a^(6/5)
+> expand((1+3^(1/5)-3^(2/5))^3);
+10-5*3^(3/5)
+> evalf((1+3^(1/5)-3^(2/5))^3);
+0.33408977534118624228
+@end example
+
+The function @code{evalf} that was used above converts any number in
+GiNaC's expressions into floating point numbers.  This can be done to
+arbitrary predefined accuracy:
 
 @example
 > evalf(1/7);
@@ -302,11 +317,11 @@ numeric expressions (as an inexact number):
 > a=Pi^2+x;
 x+Pi^2
 > evalf(a);
-x+9.869604401089358619L0
+9.869604401089358619+x
 > x=2;
 2
 > evalf(a);
-11.869604401089358619L0
+11.869604401089358619
 @end example
 
 Built-in functions evaluate immediately to exact numbers if
@@ -333,7 +348,7 @@ a matrix class for this purpose but we can see what it can do using
 @example
 > lsolve(a+x*y==z,x);
 y^(-1)*(z-a);
-lsolve([3*x+5*y == 7, -2*x+10*y == -5], [x, y]);
+lsolve([3*x+5*y == 7, -2*x+10*y == -5], [x, y]);
 [x==19/8,y==-1/40]
 > M = [[ [[1, 3]], [[-3, 2]] ]];
 [[ [[1,3]], [[-3,2]] ]]
@@ -361,26 +376,27 @@ polynomials):
 @end example
 
 You can differentiate functions and expand them as Taylor or Laurent
-series (the third argument of @code{series} is the evaluation point, the
-fourth defines the order):
+series in a very natural syntax (the second argument of @code{series} is
+a relation defining the evaluation point, the third specifies the
+order):
 
 @cindex Zeta function
 @example
 > diff(tan(x),x);
 tan(x)^2+1
-> series(sin(x),x,0,4);
+> series(sin(x),x==0,4);
 x-1/6*x^3+Order(x^4)
-> series(1/tan(x),x,0,4);
+> series(1/tan(x),x==0,4);
 x^(-1)-1/3*x+Order(x^2)
-> series(gamma(x),x,0,3);
-x^(-1)-EulerGamma+(1/12*Pi^2+1/2*EulerGamma^2)*x
-+(-1/3*zeta(3)-1/12*Pi^2*EulerGamma-1/6*EulerGamma^3)*x^2+Order(x^3)
+> series(Gamma(x),x==0,3);
+x^(-1)-gamma+(1/12*Pi^2+1/2*gamma^2)*x+
+(-1/3*zeta(3)-1/12*Pi^2*gamma-1/6*gamma^3)*x^2+Order(x^3)
 > evalf(");
-x^(-1.0)-0.5772156649015328606+(0.98905599532797255544)*x
--(0.90747907608088628905)*x^2+Order(x^(3.0))
-> series(gamma(2*sin(x)-2),x,Pi/2,6);
--(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*EulerGamma^2-1/240)*(x-1/2*Pi)^2
--EulerGamma-1/12+Order((x-1/2*Pi)^3)
+x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
+-(0.90747907608088628905)*x^2+Order(x^3)
+> series(Gamma(2*sin(x)-2),x==Pi/2,6);
+-(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*gamma^2-1/240)*(x-1/2*Pi)^2
+-gamma-1/12+Order((x-1/2*Pi)^3)
 @end example
 
 Here we have made use of the @command{ginsh}-command @code{"} to pop the
@@ -831,11 +847,13 @@ using namespace GiNaC;
 
 int main()
 @{
-    numeric two(2);                     // exact integer 2
-    numeric r(2,3);                     // exact fraction 2/3
-    numeric e(2.71828);                 // floating point number
-    numeric p("3.1415926535897932385"); // floating point number
-
+    numeric two(2);                       // exact integer 2
+    numeric r(2,3);                       // exact fraction 2/3
+    numeric e(2.71828);                   // floating point number
+    numeric p("3.1415926535897932385");   // floating point number
+    // Trott's constant in scientific notation:
+    numeric trott("1.0841015122311136151E-2");
+    
     cout << two*p << endl;  // floating point 6.283...
     // ...
 @}
@@ -996,7 +1014,7 @@ following table.
 
 @cindex @code{Pi}
 @cindex @code{Catalan}
-@cindex @code{EulerGamma}
+@cindex @code{gamma}
 @cindex @code{evalf()}
 Constants behave pretty much like symbols except that they return some
 specific number when the method @code{.evalf()} is called.
@@ -1012,7 +1030,7 @@ The predefined known constants are:
 @item @code{Catalan}
 @tab Catalan's constant
 @tab 0.91596559417721901505460351493238411
-@item @code{EulerGamma}
+@item @code{gamma}
 @tab Euler's (or Euler-Mascheroni) constant
 @tab 0.57721566490153286060651209008240243
 @end multitable
@@ -1129,11 +1147,11 @@ int main()
     symbol x("x"), y("y");
     
     ex foo = x+y/2;
-    cout << "gamma(" << foo << ") -> " << gamma(foo) << endl;
+    cout << "Gamma(" << foo << ") -> " << Gamma(foo) << endl;
     ex bar = foo.subs(y==1);
-    cout << "gamma(" << bar << ") -> " << gamma(bar) << endl;
+    cout << "Gamma(" << bar << ") -> " << Gamma(bar) << endl;
     ex foobar = bar.subs(x==7);
-    cout << "gamma(" << foobar << ") -> " << gamma(foobar) << endl;
+    cout << "Gamma(" << foobar << ") -> " << Gamma(foobar) << endl;
     // ...
 @}
 @end example
@@ -1142,9 +1160,9 @@ This program shows how the function returns itself twice and finally an
 expression that may be really useful:
 
 @example
-gamma(x+(1/2)*y) -> gamma(x+(1/2)*y)
-gamma(x+1/2) -> gamma(x+1/2)
-gamma(15/2) -> (135135/128)*Pi^(1/2)
+Gamma(x+(1/2)*y) -> Gamma(x+(1/2)*y)
+Gamma(x+1/2) -> Gamma(x+1/2)
+Gamma(15/2) -> (135135/128)*Pi^(1/2)
 @end example
 
 @cindex branch cut
@@ -1175,7 +1193,8 @@ They are created by simply using the C++ operators @code{==}, @code{!=},
 the @code{.subs()} method show how objects of class relational are used
 as arguments.  There they provide an intuitive syntax for substitutions.
 They can also used for creating systems of equations that are to be
-solved for unknown variables.
+solved for unknown variables.  More applications of this class will
+appear throughout the next chapters.
 
 
 @node Archiving, Important Algorithms, Relations, Basic Concepts
@@ -1587,13 +1606,13 @@ int main()
     symbol v("v"), c("c");
     
     ex gamma = 1/sqrt(1 - pow(v/c,2));
-    ex mass_nonrel = gamma.series(v0, 10);
+    ex mass_nonrel = gamma.series(v==0, 10);
     
     cout << "the relativistic mass increase with v is " << endl
          << mass_nonrel << endl;
     
     cout << "the inverse square of this series is " << endl
-         << pow(mass_nonrel,-2).series(v0, 10) << endl;
+         << pow(mass_nonrel,-2).series(v==0, 10) << endl;
     
     // ...
 @}
@@ -1631,7 +1650,7 @@ using namespace GiNaC;
 ex mechain_pi(int degr)
 @{
     symbol x;
-    ex pi_expansion = series_to_poly(atan(x).series(x,0,degr));
+    ex pi_expansion = series_to_poly(atan(x).series(x,degr));
     ex pi_approx = 16*pi_expansion.subs(x==numeric(1,5))
                    -4*pi_expansion.subs(x==numeric(1,239));
     return pi_approx;
@@ -1649,7 +1668,11 @@ int main()
 @}
 @end example
 
-When you run this program, it will type out:
+Note how we just called @code{.series(x,degr)} instead of
+@code{.series(x==0,degr)}.  This is a simple shortcut for @code{ex}'s
+method @code{series()}: if the first argument is a symbol the expression
+is expanded in that symbol around point @code{0}.  When you run this
+program, it will type out:
 
 @example
 2:      3804/1195