]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
added something about functions with variable number of arguments
[ginac.git] / doc / tutorial / ginac.texi
index cbcd183975a64ffde62ceb317c683573447917ab..9c4d15ee358bc63991650f005654ed9c9d3722d8 100644 (file)
@@ -685,6 +685,7 @@ meta-class for storing all mathematical objects.
 * Matrices::                     Matrices.
 * Indexed objects::              Handling indexed quantities.
 * Non-commutative objects::      Algebras with non-commutative products.
+* Hash Maps::                    A faster alternative to std::map<>.
 @end menu
 
 
@@ -952,35 +953,175 @@ $\sin 2x$
 @cindex hierarchy of classes
 
 @cindex atom
-Symbols are for symbolic manipulation what atoms are for chemistry.  You
-can declare objects of class @code{symbol} as any other object simply by
-saying @code{symbol x,y;}.  There is, however, a catch in here having to
-do with the fact that C++ is a compiled language.  The information about
-the symbol's name is thrown away by the compiler but at a later stage
-you may want to print expressions holding your symbols.  In order to
-avoid confusion GiNaC's symbols are able to know their own name.  This
-is accomplished by declaring its name for output at construction time in
-the fashion @code{symbol x("x");}.  If you declare a symbol using the
-default constructor (i.e. without string argument) the system will deal
-out a unique name.  That name may not be suitable for printing but for
-internal routines when no output is desired it is often enough.  We'll
-come across examples of such symbols later in this tutorial.
-
-This implies that the strings passed to symbols at construction time may
-not be used for comparing two of them.  It is perfectly legitimate to
-write @code{symbol x("x"),y("x");} but it is likely to lead into
-trouble.  Here, @code{x} and @code{y} are different symbols and
-statements like @code{x-y} will not be simplified to zero although the
-output @code{x-x} looks funny.  Such output may also occur when there
-are two different symbols in two scopes, for instance when you call a
-function that declares a symbol with a name already existent in a symbol
-in the calling function.  Again, comparing them (using @code{operator==}
-for instance) will always reveal their difference.  Watch out, please.
+Symbolic indeterminates, or @dfn{symbols} for short, are for symbolic
+manipulation what atoms are for chemistry.
+
+A typical symbol definition looks like this:
+@example
+symbol x("x");
+@end example
+
+This definition actually contains three very different things:
+@itemize
+@item a C++ variable named @code{x}
+@item a @code{symbol} object stored in this C++ variable; this object
+  represents the symbol in a GiNaC expression
+@item the string @code{"x"} which is the name of the symbol, used (almost)
+  exclusively for printing expressions holding the symbol
+@end itemize
+
+Symbols have an explicit name, supplied as a string during construction,
+because in C++, variable names can't be used as values, and the C++ compiler
+throws them away during compilation.
+
+It is possible to omit the symbol name in the definition:
+@example
+symbol x;
+@end example
+
+In this case, GiNaC will assign the symbol an internal, unique name of the
+form @code{symbolNNN}. This won't affect the usability of the symbol but
+the output of your calculations will become more readable if you give your
+symbols sensible names (for intermediate expressions that are only used
+internally such anonymous symbols can be quite useful, however).
+
+Now, here is one important property of GiNaC that differentiates it from
+other computer algebra programs you may have used: GiNaC does @emph{not} use
+the names of symbols to tell them apart, but a (hidden) serial number that
+is unique for each newly created @code{symbol} object. In you want to use
+one and the same symbol in different places in your program, you must only
+create one @code{symbol} object and pass that around. If you create another
+symbol, even if it has the same name, GiNaC will treat it as a different
+indeterminate.
+
+Observe:
+@example
+ex f(int n)
+@{
+    symbol x("x");
+    return pow(x, n);
+@}
+
+int main()
+@{
+    symbol x("x");
+    ex e = f(6);
+
+    cout << e << endl;
+     // prints "x^6" which looks right, but...
+
+    cout << e.degree(x) << endl;
+     // ...this doesn't work. The symbol "x" here is different from the one
+     // in f() and in the expression returned by f(). Consequently, it
+     // prints "0".
+@}
+@end example
+
+One possibility to ensure that @code{f()} and @code{main()} use the same
+symbol is to pass the symbol as an argument to @code{f()}:
+@example
+ex f(int n, const ex & x)
+@{
+    return pow(x, n);
+@}
+
+int main()
+@{
+    symbol x("x");
+
+    // Now, f() uses the same symbol.
+    ex e = f(6, x);
+
+    cout << e.degree(x) << endl;
+     // prints "6", as expected
+@}
+@end example
+
+Another possibility would be to define a global symbol @code{x} that is used
+by both @code{f()} and @code{main()}. If you are using global symbols and
+multiple compilation units you must take special care, however. Suppose
+that you have a header file @file{globals.h} in your program that defines
+a @code{symbol x("x");}. In this case, every unit that includes
+@file{globals.h} would also get its own definition of @code{x} (because
+header files are just inlined into the source code by the C++ preprocessor),
+and hence you would again end up with multiple equally-named, but different,
+symbols. Instead, the @file{globals.h} header should only contain a
+@emph{declaration} like @code{extern symbol x;}, with the definition of
+@code{x} moved into a C++ source file such as @file{globals.cpp}.
+
+A different approach to ensuring that symbols used in different parts of
+your program are identical is to create them with a @emph{factory} function
+like this one:
+@example
+const symbol & get_symbol(const string & s)
+@{
+    static map<string, symbol> directory;
+    map<string, symbol>::iterator i = directory.find(s);
+    if (i != directory.end())
+        return i->second;
+    else
+        return directory.insert(make_pair(s, symbol(s))).first->second;
+@}
+@end example
+
+This function returns one newly constructed symbol for each name that is
+passed in, and it returns the same symbol when called multiple times with
+the same name. Using this symbol factory, we can rewrite our example like
+this:
+@example
+ex f(int n)
+@{
+    return pow(get_symbol("x"), n);
+@}
+
+int main()
+@{
+    ex e = f(6);
+
+    // Both calls of get_symbol("x") yield the same symbol.
+    cout << e.degree(get_symbol("x")) << endl;
+     // prints "6"
+@}
+@end example
+
+Instead of creating symbols from strings we could also have
+@code{get_symbol()} take, for example, an integer number as its argument.
+In this case, we would probably want to give the generated symbols names
+that include this number, which can be accomplished with the help of an
+@code{ostringstream}.
+
+In general, if you're getting weird results from GiNaC such as an expression
+@samp{x-x} that is not simplified to zero, you should check your symbol
+definitions.
+
+As we said, the names of symbols primarily serve for purposes of expression
+output. But there are actually two instances where GiNaC uses the names for
+identifying symbols: When constructing an expression from a string, and when
+recreating an expression from an archive (@pxref{Input/Output}).
+
+In addition to its name, a symbol may contain a special string that is used
+in LaTeX output:
+@example
+symbol x("x", "\\Box");
+@end example
+
+This creates a symbol that is printed as "@code{x}" in normal output, but
+as "@code{\Box}" in LaTeX code (@xref{Input/Output}, for more
+information about the different output formats of expressions in GiNaC).
+GiNaC automatically creates proper LaTeX code for symbols having names of
+greek letters (@samp{alpha}, @samp{mu}, etc.).
+
+@cindex @code{subs()}
+Symbols in GiNaC can't be assigned values. If you need to store results of
+calculations and give them a name, use C++ variables of type @code{ex}.
+If you want to replace a symbol in an expression with something else, you
+can invoke the expression's @code{.subs()} method
+(@pxref{Substituting Expressions}).
 
 @cindex @code{realsymbol()}
-Symbols are expected to stand in for complex values by default, i.e. they live
+By default, symbols are expected to stand in for complex values, i.e. they live
 in the complex domain.  As a consequence, operations like complex conjugation,
-for example (see @ref{Complex Conjugation}), do @emph{not} evaluate if applied
+for example (@pxref{Complex Conjugation}), do @emph{not} evaluate if applied
 to such symbols. Likewise @code{log(exp(x))} does not evaluate to @code{x},
 because of the unknown imaginary part of @code{x}.
 On the other hand, if you are sure that your symbols will hold only real values, you
@@ -988,12 +1129,6 @@ would like to have such functions evaluated. Therefore GiNaC allows you to speci
 the domain of the symbol. Instead of @code{symbol x("x");} you can write
 @code{realsymbol x("x");} to tell GiNaC that @code{x} stands in for real values.
 
-@cindex @code{subs()}
-Although symbols can be assigned expressions for internal reasons, you
-should not do it (and we are not going to tell you how it is done).  If
-you want to replace a symbol with something else in an expression, you
-can use the expression's @code{.subs()} method (@pxref{Substituting Expressions}).
-
 
 @node Numbers, Constants, Symbols, Basic Concepts
 @c    node-name, next, previous, up
@@ -1204,6 +1339,120 @@ can be applied is listed in the following table.
 @end multitable
 @end cartouche
 
+@subsection Numeric functions
+
+The following functions can be applied to @code{numeric} objects and will be
+evaluated immediately:
+
+@cartouche
+@multitable @columnfractions .30 .70
+@item @strong{Name} @tab @strong{Function}
+@item @code{inverse(z)}
+@tab returns @math{1/z}
+@cindex @code{inverse()} (numeric)
+@item @code{pow(a, b)}
+@tab exponentiation @math{a^b}
+@item @code{abs(z)}
+@tab absolute value
+@item @code{real(z)}
+@tab real part
+@cindex @code{real()}
+@item @code{imag(z)}
+@tab imaginary part
+@cindex @code{imag()}
+@item @code{csgn(z)}
+@tab complex sign (returns an @code{int})
+@item @code{numer(z)}
+@tab numerator of rational or complex rational number
+@item @code{denom(z)}
+@tab denominator of rational or complex rational number
+@item @code{sqrt(z)}
+@tab square root
+@item @code{isqrt(n)}
+@tab integer square root
+@cindex @code{isqrt()}
+@item @code{sin(z)}
+@tab sine
+@item @code{cos(z)}
+@tab cosine
+@item @code{tan(z)}
+@tab tangent
+@item @code{asin(z)}
+@tab inverse sine
+@item @code{acos(z)}
+@tab inverse cosine
+@item @code{atan(z)}
+@tab inverse tangent
+@item @code{atan(y, x)}
+@tab inverse tangent with two arguments
+@item @code{sinh(z)}
+@tab hyperbolic sine
+@item @code{cosh(z)}
+@tab hyperbolic cosine
+@item @code{tanh(z)}
+@tab hyperbolic tangent
+@item @code{asinh(z)}
+@tab inverse hyperbolic sine
+@item @code{acosh(z)}
+@tab inverse hyperbolic cosine
+@item @code{atanh(z)}
+@tab inverse hyperbolic tangent
+@item @code{exp(z)}
+@tab exponential function
+@item @code{log(z)}
+@tab natural logarithm
+@item @code{Li2(z)}
+@tab dilogarithm
+@item @code{zeta(z)}
+@tab Riemann's zeta function
+@item @code{tgamma(z)}
+@tab gamma function
+@item @code{lgamma(z)}
+@tab logarithm of gamma function
+@item @code{psi(z)}
+@tab psi (digamma) function
+@item @code{psi(n, z)}
+@tab derivatives of psi function (polygamma functions)
+@item @code{factorial(n)}
+@tab factorial function @math{n!}
+@item @code{doublefactorial(n)}
+@tab double factorial function @math{n!!}
+@cindex @code{doublefactorial()}
+@item @code{binomial(n, k)}
+@tab binomial coefficients
+@item @code{bernoulli(n)}
+@tab Bernoulli numbers
+@cindex @code{bernoulli()}
+@item @code{fibonacci(n)}
+@tab Fibonacci numbers
+@cindex @code{fibonacci()}
+@item @code{mod(a, b)}
+@tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
+@cindex @code{mod()}
+@item @code{smod(a, b)}
+@tab modulus in symmetric representation (in the range @code{[-iquo(abs(b)-1, 2), iquo(abs(b), 2)]})
+@cindex @code{smod()}
+@item @code{irem(a, b)}
+@tab integer remainder (has the sign of @math{a}, or is zero)
+@cindex @code{irem()}
+@item @code{irem(a, b, q)}
+@tab integer remainder and quotient, @code{irem(a, b, q) == a-q*b}
+@item @code{iquo(a, b)}
+@tab integer quotient
+@cindex @code{iquo()}
+@item @code{iquo(a, b, r)}
+@tab integer quotient and remainder, @code{r == a-iquo(a, b)*b}
+@item @code{gcd(a, b)}
+@tab greatest common divisor
+@item @code{lcm(a, b)}
+@tab least common multiple
+@end multitable
+@end cartouche
+
+Most of these functions are also available as symbolic functions that can be
+used in expressions (@pxref{Mathematical functions}) or, like @code{gcd()},
+as polynomial algorithms.
+
 @subsection Converting numbers
 
 Sometimes it is desirable to convert a @code{numeric} object back to a
@@ -1764,15 +2013,17 @@ more information about using matrices with indices, and about indices in
 general.
 
 The @code{matrix} class provides a couple of additional methods for
-computing determinants, traces, and characteristic polynomials:
+computing determinants, traces, characteristic polynomials and ranks:
 
 @cindex @code{determinant()}
 @cindex @code{trace()}
 @cindex @code{charpoly()}
+@cindex @code{rank()}
 @example
 ex matrix::determinant(unsigned algo=determinant_algo::automatic) const;
 ex matrix::trace() const;
 ex matrix::charpoly(const ex & lambda) const;
+unsigned matrix::rank() const;
 @end example
 
 The @samp{algo} argument of @code{determinant()} allows to select
@@ -1784,7 +2035,7 @@ file.  By default, GiNaC uses a heuristic to automatically select an
 algorithm that is likely (but not guaranteed) to give the result most
 quickly.
 
-@cindex @code{inverse()}
+@cindex @code{inverse()} (matrix)
 @cindex @code{solve()}
 Matrices may also be inverted using the @code{ex matrix::inverse()}
 method and linear systems may be solved with:
@@ -2536,7 +2787,7 @@ one form for @samp{F} and explicitly multiply it with a matrix representation
 of the metric tensor.
 
 
-@node Non-commutative objects, Methods and Functions, Indexed objects, Basic Concepts
+@node Non-commutative objects, Hash Maps, Indexed objects, Basic Concepts
 @c    node-name, next, previous, up
 @section Non-commutative objects
 
@@ -2560,7 +2811,7 @@ operator (often denoted @samp{&*}) for representing inert products of
 arbitrary objects. Rather, non-commutativity in GiNaC is a property of the
 classes of objects involved, and non-commutative products are formed with
 the usual @samp{*} operator, as are ordinary products. GiNaC is capable of
-figuring out by itself which objects commute and will group the factors
+figuring out by itself which objects commutate and will group the factors
 by their class. Consider this example:
 
 @example
@@ -2576,7 +2827,7 @@ by their class. Consider this example:
 As can be seen, GiNaC pulls out the overall commutative factor @samp{-16} and
 groups the non-commutative factors (the gammas and the su(3) generators)
 together while preserving the order of factors within each class (because
-Clifford objects commute with color objects). The resulting expression is a
+Clifford objects commutate with color objects). The resulting expression is a
 @emph{commutative} product with two factors that are themselves non-commutative
 products (@samp{gamma~mu*gamma~nu} and @samp{T.a*T.b}). For clarification,
 parentheses are placed around the non-commutative products in the output.
@@ -2594,7 +2845,7 @@ than in other computer algebra systems; they can, for example, automatically
 canonicalize themselves according to rules specified in the implementation
 of the non-commutative classes. The drawback is that to work with other than
 the built-in algebras you have to implement new classes yourself. Symbols
-always commute and it's not possible to construct non-commutative products
+always commutate and it's not possible to construct non-commutative products
 using symbols to represent the algebra elements or generators. User-defined
 functions can, however, be specified as being non-commutative.
 
@@ -2613,16 +2864,16 @@ the header file @file{flags.h}), corresponding to three categories of
 expressions in GiNaC:
 
 @itemize
-@item @code{return_types::commutative}: Commutes with everything. Most GiNaC
+@item @code{return_types::commutative}: Commutates with everything. Most GiNaC
   classes are of this kind.
 @item @code{return_types::noncommutative}: Non-commutative, belonging to a
   certain class of non-commutative objects which can be determined with the
-  @code{return_type_tinfo()} method. Expressions of this category commute
+  @code{return_type_tinfo()} method. Expressions of this category commutate
   with everything except @code{noncommutative} expressions of the same
   class.
 @item @code{return_types::noncommutative_composite}: Non-commutative, composed
   of non-commutative objects of different classes. Expressions of this
-  category don't commute with any other @code{noncommutative} or
+  category don't commutate with any other @code{noncommutative} or
   @code{noncommutative_composite} expressions.
 @end itemize
 
@@ -2673,7 +2924,7 @@ ex dirac_gamma(const ex & mu, unsigned char rl = 0);
 which takes two arguments: the index and a @dfn{representation label} in the
 range 0 to 255 which is used to distinguish elements of different Clifford
 algebras (this is also called a @dfn{spin line index}). Gammas with different
-labels commute with each other. The dimension of the index can be 4 or (in
+labels commutate with each other. The dimension of the index can be 4 or (in
 the framework of dimensional regularization) any symbolic value. Spinor
 indices on Dirac gammas are not supported in GiNaC.
 
@@ -2691,7 +2942,7 @@ write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
 GiNaC will complain and/or produce incorrect results.
 
 @cindex @code{dirac_gamma5()}
-There is a special element @samp{gamma5} that commutes with all other
+There is a special element @samp{gamma5} that commutates with all other
 gammas, has a unit square, and in 4 dimensions equals
 @samp{gamma~0 gamma~1 gamma~2 gamma~3}, provided by
 
@@ -2847,7 +3098,7 @@ ex color_T(const ex & a, unsigned char rl = 0);
 
 which takes two arguments: the index and a @dfn{representation label} in the
 range 0 to 255 which is used to distinguish elements of different color
-algebras. Objects with different labels commute with each other. The
+algebras. Objects with different labels commutate with each other. The
 dimension of the index must be exactly 8 and it should be of class @code{idx},
 not @code{varidx}.
 
@@ -2946,7 +3197,43 @@ standing. For example:
 @end example
 
 
-@node Methods and Functions, Information About Expressions, Non-commutative objects, Top
+@node Hash Maps, Methods and Functions, Non-commutative objects, Basic Concepts
+@c    node-name, next, previous, up
+@section Hash Maps
+@cindex hash maps
+@cindex @code{exhashmap} (class)
+
+For your convenience, GiNaC offers the container template @code{exhashmap<T>}
+that can be used as a drop-in replacement for the STL
+@code{std::map<ex, T, ex_is_less>}, using hash tables to provide faster,
+typically constant-time, element look-up than @code{map<>}.
+
+@code{exhashmap<>} supports all @code{map<>} members and operations, with the
+following differences:
+
+@itemize @bullet
+@item
+no @code{lower_bound()} and @code{upper_bound()} methods
+@item
+no reverse iterators, no @code{rbegin()}/@code{rend()}
+@item 
+no @code{operator<(exhashmap, exhashmap)}
+@item
+the comparison function object @code{key_compare} is hardcoded to
+@code{ex_is_less}
+@item
+the constructor @code{exhashmap(size_t n)} allows specifying the minimum
+initial hash table size (the actual table size after construction may be
+larger than the specified value)
+@item
+the method @code{size_t bucket_count()} returns the current size of the hash
+table
+@item 
+@code{insert()} and @code{erase()} operations invalidate all iterators
+@end itemize
+
+
+@node Methods and Functions, Information About Expressions, Hash Maps, Top
 @c    node-name, next, previous, up
 @chapter Methods and Functions
 @cindex polynomial
@@ -3078,7 +3365,7 @@ table:
 @multitable @columnfractions .30 .70
 @item @strong{Flag} @tab @strong{Returns true if the object is@dots{}}
 @item @code{numeric}
-@tab @dots{}a number (same as @code{is_<numeric>(...)})
+@tab @dots{}a number (same as @code{is_a<numeric>(...)})
 @item @code{real}
 @tab @dots{}a real integer, rational or float (i.e. is not complex)
 @item @code{rational}
@@ -3143,24 +3430,23 @@ table:
 @end cartouche
 
 To determine whether an expression is commutative or non-commutative and if
-so, with which other expressions it would commute, you use the methods
+so, with which other expressions it would commutate, you use the methods
 @code{return_type()} and @code{return_type_tinfo()}. @xref{Non-commutative objects},
 for an explanation of these.
 
 
 @subsection Accessing subexpressions
-@cindex @code{nops()}
-@cindex @code{op()}
 @cindex container
-@cindex @code{relational} (class)
 
 Many GiNaC classes, like @code{add}, @code{mul}, @code{lst}, and
 @code{function}, act as containers for subexpressions. For example, the
 subexpressions of a sum (an @code{add} object) are the individual terms,
 and the subexpressions of a @code{function} are the function's arguments.
 
-GiNaC provides two ways of accessing subexpressions. The first way is to use
-the two methods
+@cindex @code{nops()}
+@cindex @code{op()}
+GiNaC provides several ways of accessing subexpressions. The first way is to
+use the two methods
 
 @example
 size_t ex::nops();
@@ -3174,6 +3460,8 @@ in the expression, while @code{op(i)} returns the @code{i}-th
 @code{indexed} objects, @code{op(0)} is the base expression and @code{op(i)},
 @math{i>0} are the indices.
 
+@cindex iterators
+@cindex @code{const_iterator}
 The second way to access subexpressions is via the STL-style random-access
 iterator class @code{const_iterator} and the methods
 
@@ -3187,7 +3475,7 @@ const_iterator ex::end();
 If the expression has no subexpressions, then @code{begin() == end()}. These
 iterators can also be used in conjunction with non-modifying STL algorithms.
 
-Here is an example that (non-recursively) prints all the subexpressions of a
+Here is an example that (non-recursively) prints the subexpressions of a
 given expression in three different ways:
 
 @example
@@ -3207,7 +3495,56 @@ given expression in three different ways:
 @}
 @end example
 
-Additionally, the left-hand and right-hand side expressions of objects of
+@cindex @code{const_preorder_iterator}
+@cindex @code{const_postorder_iterator}
+@code{op()}/@code{nops()} and @code{const_iterator} only access an
+expression's immediate children. GiNaC provides two additional iterator
+classes, @code{const_preorder_iterator} and @code{const_postorder_iterator},
+that iterate over all objects in an expression tree, in preorder or postorder,
+respectively. They are STL-style forward iterators, and are created with the
+methods
+
+@example
+const_preorder_iterator ex::preorder_begin();
+const_preorder_iterator ex::preorder_end();
+const_postorder_iterator ex::postorder_begin();
+const_postorder_iterator ex::postorder_end();
+@end example
+
+The following example illustrates the differences between
+@code{const_iterator}, @code{const_preorder_iterator}, and
+@code{const_postorder_iterator}:
+
+@example
+@{
+    symbol A("A"), B("B"), C("C");
+    ex e = lst(lst(A, B), C);
+
+    std::copy(e.begin(), e.end(),
+              std::ostream_iterator<ex>(cout, "\n"));
+    // @{A,B@}
+    // C
+
+    std::copy(e.preorder_begin(), e.preorder_end(),
+              std::ostream_iterator<ex>(cout, "\n"));
+    // @{@{A,B@},C@}
+    // @{A,B@}
+    // A
+    // B
+    // C
+
+    std::copy(e.postorder_begin(), e.postorder_end(),
+              std::ostream_iterator<ex>(cout, "\n"));
+    // A
+    // B
+    // @{A,B@}
+    // C
+    // @{@{A,B@},C@}
+@}
+@end example
+
+@cindex @code{relational} (class)
+Finally, the left-hand side and right-hand side expressions of objects of
 class @code{relational} (and only of these) can also be accessed with the
 methods
 
@@ -4135,6 +4472,21 @@ lst gather_indices(const ex & e)
 @}
 @end example
 
+Alternatively, you could use pre- or postorder iterators for the tree
+traversal:
+
+@example
+lst gather_indices(const ex & e)
+@{
+    gather_indices_visitor v;
+    for (const_preorder_iterator i = e.preorder_begin();
+         i != e.preorder_end(); ++i) @{
+        i->accept(v);
+    @}
+    return v.get_result();
+@}
+@end example
+
 
 @node Polynomial Arithmetic, Rational Expressions, Visitors and Tree Traversal, Methods and Functions
 @c    node-name, next, previous, up
@@ -4293,7 +4645,7 @@ constants, functions and indexed objects as well:
 
 @example
 @{
-    symbol a("a"), b("b"), c("c");
+    symbol a("a"), b("b"), c("c"), x("x");
     idx i(symbol("i"), 3);
 
     ex e = pow(sin(x) - cos(x), 4);
@@ -4371,7 +4723,7 @@ content parts). The product of unit, content, and primitive part is the
 original polynomial.
 
 
-@subsection GCD and LCM
+@subsection GCD, LCM and resultant
 @cindex GCD
 @cindex LCM
 @cindex @code{gcd()}
@@ -4408,6 +4760,38 @@ int main()
 @}
 @end example
 
+@cindex resultant
+@cindex @code{resultant()}
+
+The resultant of two expressions only makes sense with polynomials.
+It is always computed with respect to a specific symbol within the
+expressions. The function has the interface
+
+@example
+ex resultant(const ex & a, const ex & b, const ex & s);
+@end example
+
+Resultants are symmetric in @code{a} and @code{b}. The following example
+computes the resultant of two expressions with respect to @code{x} and
+@code{y}, respectively:
+
+@example
+#include <ginac/ginac.h>
+using namespace GiNaC;
+
+int main()
+@{
+    symbol x("x"), y("y");
+
+    ex e1 = x+pow(y,2), e2 = 2*pow(x,3)-1; // x+y^2, 2*x^3-1
+    ex r;
+    
+    r = resultant(e1, e2, x); 
+    // -> 1+2*y^6
+    r = resultant(e1, e2, y); 
+    // -> 1-4*x^3+4*x^6
+@}
+@end example
 
 @subsection Square-free decomposition
 @cindex square-free decomposition
@@ -4900,9 +5284,9 @@ GiNaC contains the following predefined mathematical functions:
 @item @code{psi(n, x)}
 @tab derivatives of psi function (polygamma functions)
 @item @code{factorial(n)}
-@tab factorial function
+@tab factorial function @math{n!}
 @cindex @code{factorial()}
-@item @code{binomial(n, m)}
+@item @code{binomial(n, k)}
 @tab binomial coefficients
 @cindex @code{binomial()}
 @item @code{Order(x)}
@@ -5923,6 +6307,24 @@ print_func<C>(<C++ function>)
 
 option which is explained in the next section.
 
+@subsection Functions with a variable number of arguments
+
+The @code{DECLARE_FUNCTION} and @code{REGISTER_FUNCTION} macros define
+functions with a fixed number of arguments. Sometimes, though, you may need
+to have a function that accepts a variable number of expressions. One way to
+accomplish this is to pass variable-length lists as arguments. The
+@code{Li()} function uses this method for multiple polylogarithms.
+
+It is also possible to define functions that accept a different number of
+parameters under the same function name, such as the @code{psi()} function
+which can be called either as @code{psi(z)} (the digamma function) or as
+@code{psi(n, z)} (polygamma functions). These are actually two different
+functions in GiNaC that, however, have the same name. Defining such
+functions is not possible with the macros but requires manually fiddling
+with GiNaC internals. If you are interested, please consult the GiNaC source
+code for the @code{psi()} function (@file{inifcns.h} and
+@file{inifcns_gamma.cpp}).
+
 
 @node Printing, Structures, Symbolic functions, Extending GiNaC
 @c    node-name, next, previous, up