- gamma() -> Gamma().
[ginac.git] / doc / tutorial / ginac.texi
index 1d060689837613c748f78bc52102d9423c5d36f2..89a7b29da32d4df2d78f6bf9654f5c15efc38a02 100644 (file)
@@ -387,15 +387,15 @@ tan(x)^2+1
 x-1/6*x^3+Order(x^4)
 > series(1/tan(x),x,0,4);
 x^(-1)-1/3*x+Order(x^2)
-> series(gamma(x),x,0,3);
-x^(-1)-EulerGamma+(1/12*Pi^2+1/2*EulerGamma^2)*x
-+(-1/3*zeta(3)-1/12*Pi^2*EulerGamma-1/6*EulerGamma^3)*x^2+Order(x^3)
+> series(Gamma(x),x,0,3);
+x^(-1)-gamma+(1/12*Pi^2+1/2*gamma^2)*x+
+(-1/3*zeta(3)-1/12*Pi^2*gamma-1/6*gamma^3)*x^2+Order(x^3)
 > evalf(");
 x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
 -(0.90747907608088628905)*x^2+Order(x^3)
-> series(gamma(2*sin(x)-2),x,Pi/2,6);
--(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*EulerGamma^2-1/240)*(x-1/2*Pi)^2
--EulerGamma-1/12+Order((x-1/2*Pi)^3)
+> series(Gamma(2*sin(x)-2),x,Pi/2,6);
+-(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*gamma^2-1/240)*(x-1/2*Pi)^2
+-gamma-1/12+Order((x-1/2*Pi)^3)
 @end example
 
 Here we have made use of the @command{ginsh}-command @code{"} to pop the
@@ -1013,7 +1013,7 @@ following table.
 
 @cindex @code{Pi}
 @cindex @code{Catalan}
-@cindex @code{EulerGamma}
+@cindex @code{gamma}
 @cindex @code{evalf()}
 Constants behave pretty much like symbols except that they return some
 specific number when the method @code{.evalf()} is called.
@@ -1029,7 +1029,7 @@ The predefined known constants are:
 @item @code{Catalan}
 @tab Catalan's constant
 @tab 0.91596559417721901505460351493238411
-@item @code{EulerGamma}
+@item @code{gamma}
 @tab Euler's (or Euler-Mascheroni) constant
 @tab 0.57721566490153286060651209008240243
 @end multitable
@@ -1146,11 +1146,11 @@ int main()
     symbol x("x"), y("y");
     
     ex foo = x+y/2;
-    cout << "gamma(" << foo << ") -> " << gamma(foo) << endl;
+    cout << "Gamma(" << foo << ") -> " << Gamma(foo) << endl;
     ex bar = foo.subs(y==1);
-    cout << "gamma(" << bar << ") -> " << gamma(bar) << endl;
+    cout << "Gamma(" << bar << ") -> " << Gamma(bar) << endl;
     ex foobar = bar.subs(x==7);
-    cout << "gamma(" << foobar << ") -> " << gamma(foobar) << endl;
+    cout << "Gamma(" << foobar << ") -> " << Gamma(foobar) << endl;
     // ...
 @}
 @end example
@@ -1159,9 +1159,9 @@ This program shows how the function returns itself twice and finally an
 expression that may be really useful:
 
 @example
-gamma(x+(1/2)*y) -> gamma(x+(1/2)*y)
-gamma(x+1/2) -> gamma(x+1/2)
-gamma(15/2) -> (135135/128)*Pi^(1/2)
+Gamma(x+(1/2)*y) -> Gamma(x+(1/2)*y)
+Gamma(x+1/2) -> Gamma(x+1/2)
+Gamma(15/2) -> (135135/128)*Pi^(1/2)
 @end example
 
 @cindex branch cut