]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
documentation update
[ginac.git] / doc / tutorial / ginac.texi
index c86114df5b9e07a415190953923634203d6fae81..80000ff98d670931c189f145c1efab55e89be3b2 100644 (file)
@@ -23,7 +23,7 @@
 This is a tutorial that documents GiNaC @value{VERSION}, an open
 framework for symbolic computation within the C++ programming language.
 
-Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
 
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -52,7 +52,7 @@ notice identical to this one.
 
 @page
 @vskip 0pt plus 1filll
-Copyright @copyright{} 1999-2001 Johannes Gutenberg University Mainz, Germany
+Copyright @copyright{} 1999-2003 Johannes Gutenberg University Mainz, Germany
 @sp 2
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -135,7 +135,7 @@ the near future.
 
 @section License
 The GiNaC framework for symbolic computation within the C++ programming
-language is Copyright @copyright{} 1999-2001 Johannes Gutenberg
+language is Copyright @copyright{} 1999-2003 Johannes Gutenberg
 University Mainz, Germany.
 
 This program is free software; you can redistribute it and/or
@@ -734,7 +734,7 @@ containers of expressions and so on.
 
 @cindex container
 @cindex atom
-To get an idea about what kinds of symbolic composits may be built we
+To get an idea about what kinds of symbolic composites may be built we
 have a look at the most important classes in the class hierarchy and
 some of the relations among the classes:
 
@@ -895,7 +895,7 @@ can use the expression's @code{.subs()} method (@pxref{Substituting Expressions}
 For storing numerical things, GiNaC uses Bruno Haible's library CLN.
 The classes therein serve as foundation classes for GiNaC.  CLN stands
 for Class Library for Numbers or alternatively for Common Lisp Numbers.
-In order to find out more about CLN's internals the reader is refered to
+In order to find out more about CLN's internals, the reader is referred to
 the documentation of that library.  @inforef{Introduction, , cln}, for
 more information. Suffice to say that it is by itself build on top of
 another library, the GNU Multiple Precision library GMP, which is an
@@ -931,10 +931,22 @@ int main()
     numeric trott("1.0841015122311136151E-2");
     
     std::cout << two*p << std::endl;  // floating point 6.283...
+    ...
+@end example
+
+@cindex @code{I}
+@cindex complex numbers
+The imaginary unit in GiNaC is a predefined @code{numeric} object with the
+name @code{I}:
+
+@example
+    ...
+    numeric z1 = 2-3*I;                    // exact complex number 2-3i
+    numeric z2 = 5.9+1.6*I;                // complex floating point number
 @}
 @end example
 
-It may be tempting to construct numbers writing @code{numeric r(3/2)}.
+It may be tempting to construct fractions by writing @code{numeric r(3/2)}.
 This would, however, call C's built-in operator @code{/} for integers
 first and result in a numeric holding a plain integer 1.  @strong{Never
 use the operator @code{/} on integers} unless you know exactly what you
@@ -984,13 +996,22 @@ The above example prints the following output to screen:
 
 @example
 in 17 digits:
-0.333333333333333333
-3.14159265358979324
+0.33333333333333333334
+3.1415926535897932385
 in 60 digits:
-0.333333333333333333333333333333333333333333333333333333333333333333
-3.14159265358979323846264338327950288419716939937510582097494459231
+0.33333333333333333333333333333333333333333333333333333333333333333334
+3.1415926535897932384626433832795028841971693993751058209749445923078
 @end example
 
+@cindex rounding
+Note that the last number is not necessarily rounded as you would
+naively expect it to be rounded in the decimal system.  But note also,
+that in both cases you got a couple of extra digits.  This is because
+numbers are internally stored by CLN as chunks of binary digits in order
+to match your machine's word size and to not waste precision.  Thus, on
+architectures with different word size, the above output might even
+differ with regard to actually computed digits.
+
 It should be clear that objects of class @code{numeric} should be used
 for constructing numbers or for doing arithmetic with them.  The objects
 one deals with most of the time are the polymorphic expressions @code{ex}.
@@ -1333,21 +1354,31 @@ second one in the range 0@dots{}@math{n-1}.
 There are a couple of ways to construct matrices, with or without preset
 elements:
 
+@cindex @code{lst_to_matrix()}
+@cindex @code{diag_matrix()}
+@cindex @code{unit_matrix()}
+@cindex @code{symbolic_matrix()}
 @example
 matrix::matrix(unsigned r, unsigned c);
 matrix::matrix(unsigned r, unsigned c, const lst & l);
 ex lst_to_matrix(const lst & l);
 ex diag_matrix(const lst & l);
+ex unit_matrix(unsigned x);
+ex unit_matrix(unsigned r, unsigned c);
+ex symbolic_matrix(unsigned r, unsigned c, const string & base_name);
+ex symbolic_matrix(unsigned r, unsigned c, const string & base_name, const string & tex_base_name);
 @end example
 
 The first two functions are @code{matrix} constructors which create a matrix
 with @samp{r} rows and @samp{c} columns. The matrix elements can be
 initialized from a (flat) list of expressions @samp{l}. Otherwise they are
 all set to zero. The @code{lst_to_matrix()} function constructs a matrix
-from a list of lists, each list representing a matrix row. Finally,
-@code{diag_matrix()} constructs a diagonal matrix given the list of diagonal
-elements. Note that the last two functions return expressions, not matrix
-objects.
+from a list of lists, each list representing a matrix row. @code{diag_matrix()}
+constructs a diagonal matrix given the list of diagonal elements.
+@code{unit_matrix()} creates an @samp{x} by @samp{x} (or @samp{r} by @samp{c})
+unit matrix. And finally, @code{symbolic_matrix} constructs a matrix filled
+with newly generated symbols made of the specified base name and the
+position of each element in the matrix.
 
 Matrix elements can be accessed and set using the parenthesis (function call)
 operator:
@@ -1361,27 +1392,32 @@ It is also possible to access the matrix elements in a linear fashion with
 the @code{op()} method. But C++-style subscripting with square brackets
 @samp{[]} is not available.
 
-Here are a couple of examples that all construct the same 2x2 diagonal
-matrix:
+Here are a couple of examples of constructing matrices:
 
 @example
 @{
     symbol a("a"), b("b");
-    ex e;
 
     matrix M(2, 2);
     M(0, 0) = a;
     M(1, 1) = b;
-    e = M;
-
-    e = matrix(2, 2, lst(a, 0, 0, b));
+    cout << M << endl;
+     // -> [[a,0],[0,b]]
 
-    e = lst_to_matrix(lst(lst(a, 0), lst(0, b)));
+    cout << matrix(2, 2, lst(a, 0, 0, b)) << endl;
+     // -> [[a,0],[0,b]]
 
-    e = diag_matrix(lst(a, b));
+    cout << lst_to_matrix(lst(lst(a, 0), lst(0, b))) << endl;
+     // -> [[a,0],[0,b]]
 
-    cout << e << endl;
+    cout << diag_matrix(lst(a, b)) << endl;
      // -> [[a,0],[0,b]]
+
+    cout << unit_matrix(3) << endl;
+     // -> [[1,0,0],[0,1,0],[0,0,1]]
+
+    cout << symbolic_matrix(2, 3, "x") << endl;
+     // -> [[x00,x01,x02],[x10,x11,x12]]
 @}
 @end example
 
@@ -1471,6 +1507,9 @@ general.
 The @code{matrix} class provides a couple of additional methods for
 computing determinants, traces, and characteristic polynomials:
 
+@cindex @code{determinant()}
+@cindex @code{trace()}
+@cindex @code{charpoly()}
 @example
 ex matrix::determinant(unsigned algo = determinant_algo::automatic) const;
 ex matrix::trace(void) const;
@@ -1857,9 +1896,9 @@ indices into a canonical order which allows for some immediate simplifications:
      // -> 2*A.j.i
     cout << indexed(B, sy_anti(), i, j)
           + indexed(B, sy_anti(), j, i) << endl;
-     // -> -B.j.i
+     // -> 0
     cout << indexed(B, sy_anti(), i, j, k)
-          + indexed(B, sy_anti(), j, i, k) << endl;
+          - indexed(B, sy_anti(), j, k, i) << endl;
      // -> 0
     ...
 @end example
@@ -1874,8 +1913,8 @@ not dummy indices are called @dfn{free indices}. Numeric indices are neither
 dummy nor free indices.
 
 To be recognized as a dummy index pair, the two indices must be of the same
-class and dimension and their value must be the same single symbol (an index
-like @samp{2*n+1} is never a dummy index). If the indices are of class
+class and their value must be the same single symbol (an index like
+@samp{2*n+1} is never a dummy index). If the indices are of class
 @code{varidx} they must also be of opposite variance; if they are of class
 @code{spinidx} they must be both dotted or both undotted.
 
@@ -2360,28 +2399,29 @@ ex dirac_ONE(unsigned char rl = 0);
 multiples of the unity element, even though it's customary to omit it.
 E.g. instead of @code{dirac_gamma(mu)*(dirac_slash(q,4)+m)} you have to
 write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
-GiNaC may produce incorrect results.
+GiNaC will complain and/or produce incorrect results.
 
 @cindex @code{dirac_gamma5()}
-There's a special element @samp{gamma5} that commutes with all other
-gammas and in 4 dimensions equals @samp{gamma~0 gamma~1 gamma~2 gamma~3},
-provided by
+There is a special element @samp{gamma5} that commutes with all other
+gammas, has a unit square, and in 4 dimensions equals
+@samp{gamma~0 gamma~1 gamma~2 gamma~3}, provided by
 
 @example
 ex dirac_gamma5(unsigned char rl = 0);
 @end example
 
-@cindex @code{dirac_gamma6()}
-@cindex @code{dirac_gamma7()}
-The two additional functions
+@cindex @code{dirac_gammaL()}
+@cindex @code{dirac_gammaR()}
+The chiral projectors @samp{(1+/-gamma5)/2} are also available as proper
+objects, constructed by
 
 @example
-ex dirac_gamma6(unsigned char rl = 0);
-ex dirac_gamma7(unsigned char rl = 0);
+ex dirac_gammaL(unsigned char rl = 0);
+ex dirac_gammaR(unsigned char rl = 0);
 @end example
 
-return @code{dirac_ONE(rl) + dirac_gamma5(rl)} and @code{dirac_ONE(rl) - dirac_gamma5(rl)},
-respectively.
+They observe the relations @samp{gammaL^2 = gammaL}, @samp{gammaR^2 = gammaR},
+and @samp{gammaL gammaR = gammaR gammaL = 0}.
 
 @cindex @code{dirac_slash()}
 Finally, the function
@@ -2396,9 +2436,11 @@ with a unique index whose dimension is given by the @code{dim} argument).
 Such slashed expressions are printed with a trailing backslash, e.g. @samp{e\}.
 
 In products of dirac gammas, superfluous unity elements are automatically
-removed, squares are replaced by their values and @samp{gamma5} is
-anticommuted to the front. The @code{simplify_indexed()} function performs
-contractions in gamma strings, for example
+removed, squares are replaced by their values, and @samp{gamma5}, @samp{gammaL}
+and @samp{gammaR} are moved to the front.
+
+The @code{simplify_indexed()} function performs contractions in gamma strings,
+for example
 
 @example
 @{
@@ -2991,6 +3033,7 @@ Notes:
   are also valid patterns.
 @end itemize
 
+@subsection Matching expressions
 @cindex @code{match()}
 The most basic application of patterns is to check whether an expression
 matches a given pattern. This is done by the function
@@ -3100,6 +3143,7 @@ FAIL
 @{$0==x^2@}
 @end example
 
+@subsection Matching parts of expressions
 @cindex @code{has()}
 A more general way to look for patterns in expressions is provided by the
 member function
@@ -3149,9 +3193,9 @@ bool ex::find(const ex & pattern, lst & found);
 @end example
 
 works a bit like @code{has()} but it doesn't stop upon finding the first
-match. Instead, it appends all found matches to the specified list. If there
-are multiple occurrences of the same expression, it is entered only once to
-the list. @code{find()} returns false if no matches were found (in
+match. Instead, it inserts all found matches into the specified list. If
+there are multiple occurrences of the same expression, it is entered only
+once to the list. @code{find()} returns false if no matches were found (in
 @command{ginsh}, it returns an empty list):
 
 @example
@@ -3168,6 +3212,7 @@ sin(y)*a+sin(x)*b+sin(x)*a+sin(y)*b
 @{sin(y),sin(x)@}
 @end example
 
+@subsection Substituting expressions
 @cindex @code{subs()}
 Probably the most useful application of patterns is to use them for
 substituting expressions with the @code{subs()} method. Wildcards can be
@@ -3182,11 +3227,11 @@ Some examples:
 b^3+a^3+(x+y)^3
 > subs(a^4+b^4+(x+y)^4,$1^2==$1^3);
 b^4+a^4+(x+y)^4
-> subs((a+b+c)^2,a+b=x);
+> subs((a+b+c)^2,a+b==x);
 (a+b+c)^2
 > subs((a+b+c)^2,a+b+$1==x+$1);
 (x+c)^2
-> subs(a+2*b,a+b=x);
+> subs(a+2*b,a+b==x);
 a+2*b
 > subs(4*x^3-2*x^2+5*x-1,x==a);
 -1+5*a-2*a^2+4*a^3
@@ -3363,6 +3408,7 @@ argument. You can not use functions like @samp{diff()}, @samp{op()},
 @subsection Expanding and collecting
 @cindex @code{expand()}
 @cindex @code{collect()}
+@cindex @code{collect_common_factors()}
 
 A polynomial in one or more variables has many equivalent
 representations.  Some useful ones serve a specific purpose.  Consider
@@ -3421,6 +3467,25 @@ d*sin(x)+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*p+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*q
 (1+q+d*(1+q+p)+p)*sin(y)+(1+q+d*(1+q+p)+p)*sin(x)
 @end example
 
+Polynomials can often be brought into a more compact form by collecting
+common factors from the terms of sums. This is accomplished by the function
+
+@example
+ex collect_common_factors(const ex & e);
+@end example
+
+This function doesn't perform a full factorization but only looks for
+factors which are already explicitly present:
+
+@example
+> collect_common_factors(a*x+a*y);
+(x+y)*a
+> collect_common_factors(a*x^2+2*a*x*y+a*y^2);
+a*(2*x*y+y^2+x^2)
+> collect_common_factors(a*(b*(a+c)*x+b*((a+c)*x+(a+c)*y)*y));
+(c+a)*a*(x*y+y^2+x)*b
+@end example
+
 @subsection Degree and coefficients
 @cindex @code{degree()}
 @cindex @code{ldegree()}
@@ -3434,9 +3499,34 @@ int ex::degree(const ex & s);
 int ex::ldegree(const ex & s);
 @end example
 
-which also work reliably on non-expanded input polynomials (they even work
-on rational functions, returning the asymptotic degree). To extract
-a coefficient with a certain power from an expanded polynomial you use
+These functions only work reliably if the input polynomial is collected in
+terms of the object @samp{s}. Otherwise, they are only guaranteed to return
+the upper/lower bounds of the exponents. If you need accurate results, you
+have to call @code{expand()} and/or @code{collect()} on the input polynomial.
+For example
+
+@example
+> a=(x+1)^2-x^2;
+(1+x)^2-x^2;
+> degree(a,x);
+2
+> degree(expand(a),x);
+1
+@end example
+
+@code{degree()} also works on rational functions, returning the asymptotic
+degree:
+
+@example
+> degree((x+1)/(x^3+1),x);
+-2
+@end example
+
+If the input is not a polynomial or rational function in the variable @samp{s},
+the behavior of @code{degree()} and @code{ldegree()} is undefined.
+
+To extract a coefficient with a certain power from an expanded
+polynomial you use
 
 @example
 ex ex::coeff(const ex & s, int n);
@@ -3617,28 +3707,32 @@ GiNaC still lacks proper factorization support.  Some form of
 factorization is, however, easily implemented by noting that factors
 appearing in a polynomial with power two or more also appear in the
 derivative and hence can easily be found by computing the GCD of the
-original polynomial and its derivatives.  Any system has an interface
-for this so called square-free factorization.  So we provide one, too:
+original polynomial and its derivatives.  Any decent system has an
+interface for this so called square-free factorization.  So we provide
+one, too:
 @example
 ex sqrfree(const ex & a, const lst & l = lst());
 @end example
-Here is an example that by the way illustrates how the result may depend
-on the order of differentiation:
+Here is an example that by the way illustrates how the exact form of the
+result may slightly depend on the order of differentiation, calling for
+some care with subsequent processing of the result:
 @example
     ...
     symbol x("x"), y("y");
-    ex BiVarPol = expand(pow(x-2*y*x,3) * pow(x+y,2) * (x-y));
+    ex BiVarPol = expand(pow(2-2*y,3) * pow(1+x*y,2) * pow(x-2*y,2) * (x+y));
 
     cout << sqrfree(BiVarPol, lst(x,y)) << endl;
-     // -> (y+x)^2*(-1+6*y+8*y^3-12*y^2)*(y-x)*x^3
+     // -> 8*(1-y)^3*(y*x^2-2*y+x*(1-2*y^2))^2*(y+x)
 
     cout << sqrfree(BiVarPol, lst(y,x)) << endl;
-     // -> (1-2*y)^3*(y+x)^2*(-y+x)*x^3
+     // -> 8*(1-y)^3*(-y*x^2+2*y+x*(-1+2*y^2))^2*(y+x)
 
     cout << sqrfree(BiVarPol) << endl;
      // -> depending on luck, any of the above
     ...
 @end example
+Note also, how factors with the same exponents are not fully factorized
+with this method.
 
 
 @node Rational Expressions, Symbolic Differentiation, Polynomial Arithmetic, Methods and Functions
@@ -3848,14 +3942,14 @@ Only calling the series method makes the last output simplify to
 @math{1-v^2/c^2+O(v^10)}, without that call we would just have a long
 series raised to the power @math{-2}.
 
-@cindex M@'echain's formula
+@cindex Machin's formula
 As another instructive application, let us calculate the numerical 
 value of Archimedes' constant
 @tex
 $\pi$
 @end tex
 (for which there already exists the built-in constant @code{Pi}) 
-using M@'echain's amazing formula
+using Machin's amazing formula
 @tex
 $\pi=16$~atan~$\!\left(1 \over 5 \right)-4$~atan~$\!\left(1 \over 239 \right)$.
 @end tex
@@ -3873,7 +3967,7 @@ the order term off:
 #include <ginac/ginac.h>
 using namespace GiNaC;
 
-ex mechain_pi(int degr)
+ex machin_pi(int degr)
 @{
     symbol x;
     ex pi_expansion = series_to_poly(atan(x).series(x,degr));
@@ -3888,7 +3982,7 @@ int main()
     using std::endl;  // ...dealing with this namespace std.
     ex pi_frac;
     for (int i=2; i<12; i+=2) @{
-        pi_frac = mechain_pi(i);
+        pi_frac = machin_pi(i);
         cout << i << ":\t" << pi_frac << endl
              << "\t" << pi_frac.evalf() << endl;
     @}
@@ -4139,9 +4233,9 @@ numbers are written.
 The above example will produce (note the @code{x^2} being converted to @code{x*x}):
 
 @example
-float f = (3.000000e+00/2.000000e+00)*(x*x)+4.500000e+00;
-double d = (3.000000e+00/2.000000e+00)*(x*x)+4.500000e+00;
-cl_N n = (cln::cl_F("3.0")/cln::cl_F("2.0"))*(x*x)+cln::cl_F("4.5");
+float f = (3.0/2.0)*(x*x)+4.500000e+00;
+double d = (3.0/2.0)*(x*x)+4.5000000000000000e+00;
+cl_N n = cln::cl_RA("3/2")*(x*x)+cln::cl_F("4.5_17");
 @end example
 
 The @code{print_context} type @code{print_tree} provides a dump of the
@@ -4248,19 +4342,22 @@ and have the @samp{x} and @samp{y} correspond to the symbols @code{x} and
 desired symbols to the @code{>>} stream input operator.
 
 Instead, GiNaC lets you construct an expression from a string, specifying the
-list of symbols to be used:
+list of symbols and indices to be used:
 
 @example
 @{
-    symbol x("x"), y("y");
-    ex e("2*x+sin(y)", lst(x, y));
+    symbol x("x"), y("y"), p("p");
+    idx i(symbol("i"), 3);
+    ex e("2*x+sin(y)+p.i", lst(x, y, p, i));
 @}
 @end example
 
 The input syntax is the same as that used by @command{ginsh} and the stream
-output operator @code{<<}. The symbols in the string are matched by name to
-the symbols in the list and if GiNaC encounters a symbol not specified in
-the list it will throw an exception.
+output operator @code{<<}. The symbols and indices in the string are matched
+by name to the symbols and indices in the list and if GiNaC encounters a
+symbol or index not specified in the list it will throw an exception. Only
+indices whose values are single symbols can be used (i.e. numeric indices
+or compound indices as in "A.(2*n+1)" are not allowed).
 
 With this constructor, it's also easy to implement interactive GiNaC programs:
 
@@ -5656,7 +5753,7 @@ simple_SOURCES = simple.cpp
 @end example
 
 This @file{Makefile.am}, says that we are building a single executable,
-from a single sourcefile @file{simple.cpp}. Since every program
+from a single source file @file{simple.cpp}. Since every program
 we are building uses GiNaC we simply added the GiNaC options
 to @env{$LIBS} and @env{$CPPFLAGS}, but in other circumstances, we might
 want to specify them on a per-program basis: for instance by