]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
Fix typos.
[ginac.git] / doc / tutorial / ginac.texi
index 346a2955def07a4dbcd65a2083dfbb97699a8627..52b984c5e210387b639c19f21831be596e45bc31 100644 (file)
@@ -23,7 +23,7 @@
 This is a tutorial that documents GiNaC @value{VERSION}, an open
 framework for symbolic computation within the C++ programming language.
 
 This is a tutorial that documents GiNaC @value{VERSION}, an open
 framework for symbolic computation within the C++ programming language.
 
-Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
+Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
 
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
 
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -52,7 +52,7 @@ notice identical to this one.
 
 @page
 @vskip 0pt plus 1filll
 
 @page
 @vskip 0pt plus 1filll
-Copyright @copyright{} 1999-2000 Johannes Gutenberg University Mainz, Germany
+Copyright @copyright{} 1999-2001 Johannes Gutenberg University Mainz, Germany
 @sp 2
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
 @sp 2
 Permission is granted to make and distribute verbatim copies of
 this manual provided the copyright notice and this permission notice
@@ -135,7 +135,7 @@ the near future.
 
 @section License
 The GiNaC framework for symbolic computation within the C++ programming
 
 @section License
 The GiNaC framework for symbolic computation within the C++ programming
-language is Copyright @copyright{} 1999-2000 Johannes Gutenberg
+language is Copyright @copyright{} 1999-2001 Johannes Gutenberg
 University Mainz, Germany.
 
 This program is free software; you can redistribute it and/or
 University Mainz, Germany.
 
 This program is free software; you can redistribute it and/or
@@ -707,36 +707,26 @@ mathematical objects, all of which (except for @code{ex} and some
 helpers) are internally derived from one abstract base class called
 @code{basic}.  You do not have to deal with objects of class
 @code{basic}, instead you'll be dealing with symbols, numbers,
 helpers) are internally derived from one abstract base class called
 @code{basic}.  You do not have to deal with objects of class
 @code{basic}, instead you'll be dealing with symbols, numbers,
-containers of expressions and so on.  You'll soon learn in this chapter
-how many of the functions on symbols are really classes.  This is
-because simple symbolic arithmetic is not supported by languages like
-C++ so in a certain way GiNaC has to implement its own arithmetic.
+containers of expressions and so on.
 
 @cindex container
 @cindex atom
 To get an idea about what kinds of symbolic composits may be built we
 
 @cindex container
 @cindex atom
 To get an idea about what kinds of symbolic composits may be built we
-have a look at the most important classes in the class hierarchy.  The
-oval classes are atomic ones and the squared classes are containers.
-The dashed line symbolizes a `points to' or `handles' relationship while
-the solid lines stand for `inherits from' relationship in the class
-hierarchy:
+have a look at the most important classes in the class hierarchy and
+some of the relations among the classes:
 
 @image{classhierarchy}
 
 
 @image{classhierarchy}
 
-Some of the classes shown here (the ones sitting in white boxes) are
-abstract base classes that are of no interest at all for the user.  They
-are used internally in order to avoid code duplication if two or more
-classes derived from them share certain features.  An example would be
-@code{expairseq}, which is a container for a sequence of pairs each
-consisting of one expression and a number (@code{numeric}).  What
-@emph{is} visible to the user are the derived classes @code{add} and
-@code{mul}, representing sums of terms and products, respectively.
-@xref{Internal Structures}, where these two classes are described in
-more detail.
-
-At this point, we only summarize what kind of mathematical objects are
-stored in the different classes in above diagram in order to give you a
-overview:
+The abstract classes shown here (the ones without drop-shadow) are of no
+interest for the user.  They are used internally in order to avoid code
+duplication if two or more classes derived from them share certain
+features.  An example is @code{expairseq}, a container for a sequence of
+pairs each consisting of one expression and a number (@code{numeric}).
+What @emph{is} visible to the user are the derived classes @code{add}
+and @code{mul}, representing sums and products.  @xref{Internal
+Structures}, where these two classes are described in more detail.  The
+following table shortly summarizes what kinds of mathematical objects
+are stored in the different classes:
 
 @cartouche
 @multitable @columnfractions .22 .78
 
 @cartouche
 @multitable @columnfractions .22 .78
@@ -749,8 +739,8 @@ $\pi$
 @math{Pi}
 @end ifnottex
 @item @code{numeric} @tab All kinds of numbers, @math{42}, @math{7/3*I}, @math{3.14159}@dots{}
 @math{Pi}
 @end ifnottex
 @item @code{numeric} @tab All kinds of numbers, @math{42}, @math{7/3*I}, @math{3.14159}@dots{}
-@item @code{add} @tab Sums like @math{x+y} or @math{a+(2*b)+3}
-@item @code{mul} @tab Products like @math{x*y} or @math{a*(x+y+z)*b*2}
+@item @code{add} @tab Sums like @math{x+y} or @math{a-(2*b)+3}
+@item @code{mul} @tab Products like @math{x*y} or @math{2*a^2*(x+y+z)/b}
 @item @code{power} @tab Exponentials such as @math{x^2}, @math{a^b}, 
 @tex
 $\sqrt{2}$
 @item @code{power} @tab Exponentials such as @math{x^2}, @math{a^b}, 
 @tex
 $\sqrt{2}$
@@ -759,15 +749,14 @@ $\sqrt{2}$
 @code{sqrt(}@math{2}@code{)}
 @end ifnottex
 @dots{}
 @code{sqrt(}@math{2}@code{)}
 @end ifnottex
 @dots{}
-@item @code{pseries} @tab Power Series, e.g. @math{x+1/6*x^3+1/120*x^5+O(x^7)}
+@item @code{pseries} @tab Power Series, e.g. @math{x-1/6*x^3+1/120*x^5+O(x^7)}
 @item @code{function} @tab A symbolic function like @math{sin(2*x)}
 @item @code{lst} @tab Lists of expressions [@math{x}, @math{2*y}, @math{3+z}]
 @item @code{matrix} @tab @math{n}x@math{m} matrices of expressions
 @item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
 @item @code{function} @tab A symbolic function like @math{sin(2*x)}
 @item @code{lst} @tab Lists of expressions [@math{x}, @math{2*y}, @math{3+z}]
 @item @code{matrix} @tab @math{n}x@math{m} matrices of expressions
 @item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
-@item @code{color} @tab Element of the @math{SU(3)} Lie-algebra
+@item @code{color}, @code{coloridx} @tab Element and index of the @math{SU(3)} Lie-algebra
 @item @code{isospin} @tab Element of the @math{SU(2)} Lie-algebra
 @item @code{isospin} @tab Element of the @math{SU(2)} Lie-algebra
-@item @code{idx} @tab Index of a tensor object
-@item @code{coloridx} @tab Index of a @math{SU(3)} tensor
+@item @code{idx} @tab Index of a general tensor object
 @end multitable
 @end cartouche
 
 @end multitable
 @end cartouche
 
@@ -1311,6 +1300,9 @@ avoided.
 
 @subsection Checking expression types
 @cindex @code{is_ex_of_type()}
 
 @subsection Checking expression types
 @cindex @code{is_ex_of_type()}
+@cindex @code{ex_to_numeric()}
+@cindex @code{ex_to_@dots{}}
+@cindex @code{Converting ex to other classes}
 @cindex @code{info()}
 
 Sometimes it's useful to check whether a given expression is a plain number,
 @cindex @code{info()}
 
 Sometimes it's useful to check whether a given expression is a plain number,
@@ -1322,6 +1314,20 @@ bool is_ex_of_type(const ex & e, TYPENAME t);
 bool ex::info(unsigned flag);
 @end example
 
 bool ex::info(unsigned flag);
 @end example
 
+When the test made by @code{is_ex_of_type()} returns true, it is safe to
+call one of the functions @code{ex_to_@dots{}}, where @code{@dots{}} is
+one of the class names (@xref{The Class Hierarchy}, for a list of all
+classes). For example, assuming @code{e} is an @code{ex}:
+
+@example
+@{
+    @dots{}
+    if (is_ex_of_type(e, numeric))
+        numeric n = ex_to_numeric(e);
+    @dots{}
+@}
+@end example
+
 @code{is_ex_of_type()} allows you to check whether the top-level object of
 an expression @samp{e} is an instance of the GiNaC class @samp{t}
 (@xref{The Class Hierarchy}, for a list of all classes). This is most useful,
 @code{is_ex_of_type()} allows you to check whether the top-level object of
 an expression @samp{e} is an instance of the GiNaC class @samp{t}
 (@xref{The Class Hierarchy}, for a list of all classes). This is most useful,
@@ -1408,7 +1414,9 @@ table:
 @item @code{crational_polynomial}
 @tab @dots{}a polynomial with (possibly complex) rational coefficients (such as @math{2/3+7/2*I})
 @item @code{rational_function}
 @item @code{crational_polynomial}
 @tab @dots{}a polynomial with (possibly complex) rational coefficients (such as @math{2/3+7/2*I})
 @item @code{rational_function}
-@tab @dots{}a rational function
+@tab @dots{}a rational function (@math{x+y}, @math{z/(x+y)})
+@item @code{algebraic}
+@tab @dots{}an algebraic object (@math{sqrt(2)}, @math{sqrt(x)-1})
 @end multitable
 @end cartouche
 
 @end multitable
 @end cartouche
 
@@ -1742,7 +1750,7 @@ int main()
 @cindex simplification
 @cindex temporary replacement
 
 @cindex simplification
 @cindex temporary replacement
 
-Some basic from of simplification of expressions is called for frequently.
+Some basic form of simplification of expressions is called for frequently.
 GiNaC provides the method @code{.normal()}, which converts a rational function
 into an equivalent rational function of the form @samp{numerator/denominator}
 where numerator and denominator are coprime.  If the input expression is already
 GiNaC provides the method @code{.normal()}, which converts a rational function
 into an equivalent rational function of the form @samp{numerator/denominator}
 where numerator and denominator are coprime.  If the input expression is already
@@ -2050,6 +2058,8 @@ GiNaC contains the following predefined mathematical functions:
 @tab exponential function
 @item @code{log(x)}
 @tab natural logarithm
 @tab exponential function
 @item @code{log(x)}
 @tab natural logarithm
+@item @code{Li2(x)}
+@tab Dilogarithm
 @item @code{zeta(x)}
 @tab Riemann's zeta function
 @item @code{zeta(n, x)}
 @item @code{zeta(x)}
 @tab Riemann's zeta function
 @item @code{zeta(n, x)}
@@ -2077,10 +2087,19 @@ GiNaC contains the following predefined mathematical functions:
 
 @cindex branch cut
 For functions that have a branch cut in the complex plane GiNaC follows
 
 @cindex branch cut
 For functions that have a branch cut in the complex plane GiNaC follows
-the conventions for C++ as defined in the ANSI standard.  In particular:
-the natural logarithm (@code{log}) and the square root (@code{sqrt})
-both have their branch cuts running along the negative real axis where
-the points on the axis itself belong to the upper part.
+the conventions for C++ as defined in the ANSI standard as far as
+possible.  In particular: the natural logarithm (@code{log}) and the
+square root (@code{sqrt}) both have their branch cuts running along the
+negative real axis where the points on the axis itself belong to the
+upper part (i.e. continuous with quadrant II).  The inverse
+trigonometric and hyperbolic functions are not defined for complex
+arguments by the C++ standard, however.  In GiNaC we follow the
+conventions used by CLN, which in turn follow the carefully designed
+definitions in the Common Lisp standard.  It should be noted that this
+convention is identical to the one used by the C99 standard and by most
+serious CAS.  It is to be expected that future revisions of the C++
+standard incorporate these functions in the complex domain in a manner
+compatible with C99.
 
 
 @node Input/Output, Extending GiNaC, Built-in Functions, Methods and Functions
 
 
 @node Input/Output, Extending GiNaC, Built-in Functions, Methods and Functions
@@ -2350,11 +2369,13 @@ provided by @acronym{CLN} are much better suited.
 @section Symbolic functions
 
 The easiest and most instructive way to start with is probably to
 @section Symbolic functions
 
 The easiest and most instructive way to start with is probably to
-implement your own function.  Objects of class @code{function} are
-inserted into the system via a kind of `registry'.  They get a serial
-number that is used internally to identify them but you usually need not
-worry about this.  What you have to care for are functions that are
-called when the user invokes certain methods.  These are usual
+implement your own function.  GiNaC's functions are objects of class
+@code{function}.  The preprocessor is then used to convert the function
+names to objects with a corresponding serial number that is used
+internally to identify them.  You usually need not worry about this
+number.  New functions may be inserted into the system via a kind of
+`registry'.  It is your responsibility to care for some functions that
+are called when the user invokes certain methods.  These are usual
 C++-functions accepting a number of @code{ex} as arguments and returning
 one @code{ex}.  As an example, if we have a look at a simplified
 implementation of the cosine trigonometric function, we first need a
 C++-functions accepting a number of @code{ex} as arguments and returning
 one @code{ex}.  As an example, if we have a look at a simplified
 implementation of the cosine trigonometric function, we first need a
@@ -2409,7 +2430,7 @@ enough to know how to differentiate.  But if the function you want to
 implement does have a pole somewhere in the complex plane, you need to
 write another method for Laurent expansion around that point.
 
 implement does have a pole somewhere in the complex plane, you need to
 write another method for Laurent expansion around that point.
 
-Now that all the ingrediences for @code{cos} have been set up, we need
+Now that all the ingredients for @code{cos} have been set up, we need
 to tell the system about it.  This is done by a macro and we are not
 going to descibe how it expands, please consult your preprocessor if you
 are curious:
 to tell the system about it.  This is done by a macro and we are not
 going to descibe how it expands, please consult your preprocessor if you
 are curious:
@@ -2970,9 +2991,9 @@ AC_PROG_CXX
 AC_PROG_INSTALL
 AC_LANG_CPLUSPLUS
 
 AC_PROG_INSTALL
 AC_LANG_CPLUSPLUS
 
-AM_PATH_GINAC(0.4.0, [
+AM_PATH_GINAC(0.7.0, [
   LIBS="$LIBS $GINACLIB_LIBS"
   LIBS="$LIBS $GINACLIB_LIBS"
-  CPPFLAGS="$CFLAGS $GINACLIB_CPPFLAGS"  
+  CPPFLAGS="$CPPFLAGS $GINACLIB_CPPFLAGS"  
 ], AC_MSG_ERROR([need to have GiNaC installed]))
 
 AC_OUTPUT(Makefile)
 ], AC_MSG_ERROR([need to have GiNaC installed]))
 
 AC_OUTPUT(Makefile)
@@ -2981,13 +3002,10 @@ AC_OUTPUT(Makefile)
 The only command in this which is not standard for automake
 is the @samp{AM_PATH_GINAC} macro.
 
 The only command in this which is not standard for automake
 is the @samp{AM_PATH_GINAC} macro.
 
-That command does the following:
-
-@display
-If a GiNaC version greater than 0.4.0 is found, adds @env{$GINACLIB_LIBS} to 
-@env{$LIBS} and @env{$GINACLIB_CPPFLAGS} to @env{$CPPFLAGS}. Otherwise, dies
-with the error message `need to have GiNaC installed'
-@end display
+That command does the following: If a GiNaC version greater or equal
+than 0.7.0 is found, then it adds @env{$GINACLIB_LIBS} to @env{$LIBS}
+and @env{$GINACLIB_CPPFLAGS} to @env{$CPPFLAGS}. Otherwise, it dies with
+the error message `need to have GiNaC installed'
 
 And the @file{Makefile.am}, which will be used to build the Makefile.
 
 
 And the @file{Makefile.am}, which will be used to build the Makefile.