]> www.ginac.de Git - ginac.git/blobdiff - doc/tutorial/ginac.texi
- added ex::unitcontprim()
[ginac.git] / doc / tutorial / ginac.texi
index 9b73ed5c635f6ab37faebd959fa778a6c63919f1..35dbebc76b6c0eb0c553ddb1d373244dfa28e7ed 100644 (file)
@@ -602,6 +602,17 @@ insane amounts of memory and CPU time.  Feel free to kill them if your
 machine catches fire.  Another quite important intent is to allow people
 to fiddle around with optimization.
 
+By default, the only documentation that will be built is this tutorial
+in @file{.info} format. To build the GiNaC tutorial and reference manual
+in HTML, DVI, PostScript, or PDF formats, use one of
+
+@example
+$ make html
+$ make dvi
+$ make ps
+$ make pdf
+@end example
+
 Generally, the top-level Makefile runs recursively to the
 subdirectories.  It is therefore safe to go into any subdirectory
 (@code{doc/}, @code{ginsh/}, @dots{}) and simply type @code{make}
@@ -637,7 +648,7 @@ All the header files will be installed into @file{@var{PREFIX}/include/ginac/}
 (or @file{@var{INCLUDEDIR}/ginac/}, if specified).
 
 @item
-All documentation (HTML and Postscript) will be stuffed into
+All documentation (info) will be stuffed into
 @file{@var{PREFIX}/share/doc/GiNaC/} (or
 @file{@var{DATADIR}/doc/GiNaC/}, if @var{DATADIR} was specified).
 
@@ -953,35 +964,175 @@ $\sin 2x$
 @cindex hierarchy of classes
 
 @cindex atom
-Symbols are for symbolic manipulation what atoms are for chemistry.  You
-can declare objects of class @code{symbol} as any other object simply by
-saying @code{symbol x,y;}.  There is, however, a catch in here having to
-do with the fact that C++ is a compiled language.  The information about
-the symbol's name is thrown away by the compiler but at a later stage
-you may want to print expressions holding your symbols.  In order to
-avoid confusion GiNaC's symbols are able to know their own name.  This
-is accomplished by declaring its name for output at construction time in
-the fashion @code{symbol x("x");}.  If you declare a symbol using the
-default constructor (i.e. without string argument) the system will deal
-out a unique name.  That name may not be suitable for printing but for
-internal routines when no output is desired it is often enough.  We'll
-come across examples of such symbols later in this tutorial.
-
-This implies that the strings passed to symbols at construction time may
-not be used for comparing two of them.  It is perfectly legitimate to
-write @code{symbol x("x"),y("x");} but it is likely to lead into
-trouble.  Here, @code{x} and @code{y} are different symbols and
-statements like @code{x-y} will not be simplified to zero although the
-output @code{x-x} looks funny.  Such output may also occur when there
-are two different symbols in two scopes, for instance when you call a
-function that declares a symbol with a name already existent in a symbol
-in the calling function.  Again, comparing them (using @code{operator==}
-for instance) will always reveal their difference.  Watch out, please.
+Symbolic indeterminates, or @dfn{symbols} for short, are for symbolic
+manipulation what atoms are for chemistry.
+
+A typical symbol definition looks like this:
+@example
+symbol x("x");
+@end example
+
+This definition actually contains three very different things:
+@itemize
+@item a C++ variable named @code{x}
+@item a @code{symbol} object stored in this C++ variable; this object
+  represents the symbol in a GiNaC expression
+@item the string @code{"x"} which is the name of the symbol, used (almost)
+  exclusively for printing expressions holding the symbol
+@end itemize
+
+Symbols have an explicit name, supplied as a string during construction,
+because in C++, variable names can't be used as values, and the C++ compiler
+throws them away during compilation.
+
+It is possible to omit the symbol name in the definition:
+@example
+symbol x;
+@end example
+
+In this case, GiNaC will assign the symbol an internal, unique name of the
+form @code{symbolNNN}. This won't affect the usability of the symbol but
+the output of your calculations will become more readable if you give your
+symbols sensible names (for intermediate expressions that are only used
+internally such anonymous symbols can be quite useful, however).
+
+Now, here is one important property of GiNaC that differentiates it from
+other computer algebra programs you may have used: GiNaC does @emph{not} use
+the names of symbols to tell them apart, but a (hidden) serial number that
+is unique for each newly created @code{symbol} object. In you want to use
+one and the same symbol in different places in your program, you must only
+create one @code{symbol} object and pass that around. If you create another
+symbol, even if it has the same name, GiNaC will treat it as a different
+indeterminate.
+
+Observe:
+@example
+ex f(int n)
+@{
+    symbol x("x");
+    return pow(x, n);
+@}
+
+int main()
+@{
+    symbol x("x");
+    ex e = f(6);
+
+    cout << e << endl;
+     // prints "x^6" which looks right, but...
+
+    cout << e.degree(x) << endl;
+     // ...this doesn't work. The symbol "x" here is different from the one
+     // in f() and in the expression returned by f(). Consequently, it
+     // prints "0".
+@}
+@end example
+
+One possibility to ensure that @code{f()} and @code{main()} use the same
+symbol is to pass the symbol as an argument to @code{f()}:
+@example
+ex f(int n, const ex & x)
+@{
+    return pow(x, n);
+@}
+
+int main()
+@{
+    symbol x("x");
+
+    // Now, f() uses the same symbol.
+    ex e = f(6, x);
+
+    cout << e.degree(x) << endl;
+     // prints "6", as expected
+@}
+@end example
+
+Another possibility would be to define a global symbol @code{x} that is used
+by both @code{f()} and @code{main()}. If you are using global symbols and
+multiple compilation units you must take special care, however. Suppose
+that you have a header file @file{globals.h} in your program that defines
+a @code{symbol x("x");}. In this case, every unit that includes
+@file{globals.h} would also get its own definition of @code{x} (because
+header files are just inlined into the source code by the C++ preprocessor),
+and hence you would again end up with multiple equally-named, but different,
+symbols. Instead, the @file{globals.h} header should only contain a
+@emph{declaration} like @code{extern symbol x;}, with the definition of
+@code{x} moved into a C++ source file such as @file{globals.cpp}.
+
+A different approach to ensuring that symbols used in different parts of
+your program are identical is to create them with a @emph{factory} function
+like this one:
+@example
+const symbol & get_symbol(const string & s)
+@{
+    static map<string, symbol> directory;
+    map<string, symbol>::iterator i = directory.find(s);
+    if (i != directory.end())
+        return i->second;
+    else
+        return directory.insert(make_pair(s, symbol(s))).first->second;
+@}
+@end example
+
+This function returns one newly constructed symbol for each name that is
+passed in, and it returns the same symbol when called multiple times with
+the same name. Using this symbol factory, we can rewrite our example like
+this:
+@example
+ex f(int n)
+@{
+    return pow(get_symbol("x"), n);
+@}
+
+int main()
+@{
+    ex e = f(6);
+
+    // Both calls of get_symbol("x") yield the same symbol.
+    cout << e.degree(get_symbol("x")) << endl;
+     // prints "6"
+@}
+@end example
+
+Instead of creating symbols from strings we could also have
+@code{get_symbol()} take, for example, an integer number as its argument.
+In this case, we would probably want to give the generated symbols names
+that include this number, which can be accomplished with the help of an
+@code{ostringstream}.
+
+In general, if you're getting weird results from GiNaC such as an expression
+@samp{x-x} that is not simplified to zero, you should check your symbol
+definitions.
+
+As we said, the names of symbols primarily serve for purposes of expression
+output. But there are actually two instances where GiNaC uses the names for
+identifying symbols: When constructing an expression from a string, and when
+recreating an expression from an archive (@pxref{Input/Output}).
+
+In addition to its name, a symbol may contain a special string that is used
+in LaTeX output:
+@example
+symbol x("x", "\\Box");
+@end example
+
+This creates a symbol that is printed as "@code{x}" in normal output, but
+as "@code{\Box}" in LaTeX code (@xref{Input/Output}, for more
+information about the different output formats of expressions in GiNaC).
+GiNaC automatically creates proper LaTeX code for symbols having names of
+greek letters (@samp{alpha}, @samp{mu}, etc.).
+
+@cindex @code{subs()}
+Symbols in GiNaC can't be assigned values. If you need to store results of
+calculations and give them a name, use C++ variables of type @code{ex}.
+If you want to replace a symbol in an expression with something else, you
+can invoke the expression's @code{.subs()} method
+(@pxref{Substituting Expressions}).
 
 @cindex @code{realsymbol()}
-Symbols are expected to stand in for complex values by default, i.e. they live
+By default, symbols are expected to stand in for complex values, i.e. they live
 in the complex domain.  As a consequence, operations like complex conjugation,
-for example (see @ref{Complex Conjugation}), do @emph{not} evaluate if applied
+for example (@pxref{Complex Conjugation}), do @emph{not} evaluate if applied
 to such symbols. Likewise @code{log(exp(x))} does not evaluate to @code{x},
 because of the unknown imaginary part of @code{x}.
 On the other hand, if you are sure that your symbols will hold only real values, you
@@ -989,12 +1140,6 @@ would like to have such functions evaluated. Therefore GiNaC allows you to speci
 the domain of the symbol. Instead of @code{symbol x("x");} you can write
 @code{realsymbol x("x");} to tell GiNaC that @code{x} stands in for real values.
 
-@cindex @code{subs()}
-Although symbols can be assigned expressions for internal reasons, you
-should not do it (and we are not going to tell you how it is done).  If
-you want to replace a symbol with something else in an expression, you
-can use the expression's @code{.subs()} method (@pxref{Substituting Expressions}).
-
 
 @node Numbers, Constants, Symbols, Basic Concepts
 @c    node-name, next, previous, up
@@ -1205,6 +1350,120 @@ can be applied is listed in the following table.
 @end multitable
 @end cartouche
 
+@subsection Numeric functions
+
+The following functions can be applied to @code{numeric} objects and will be
+evaluated immediately:
+
+@cartouche
+@multitable @columnfractions .30 .70
+@item @strong{Name} @tab @strong{Function}
+@item @code{inverse(z)}
+@tab returns @math{1/z}
+@cindex @code{inverse()} (numeric)
+@item @code{pow(a, b)}
+@tab exponentiation @math{a^b}
+@item @code{abs(z)}
+@tab absolute value
+@item @code{real(z)}
+@tab real part
+@cindex @code{real()}
+@item @code{imag(z)}
+@tab imaginary part
+@cindex @code{imag()}
+@item @code{csgn(z)}
+@tab complex sign (returns an @code{int})
+@item @code{numer(z)}
+@tab numerator of rational or complex rational number
+@item @code{denom(z)}
+@tab denominator of rational or complex rational number
+@item @code{sqrt(z)}
+@tab square root
+@item @code{isqrt(n)}
+@tab integer square root
+@cindex @code{isqrt()}
+@item @code{sin(z)}
+@tab sine
+@item @code{cos(z)}
+@tab cosine
+@item @code{tan(z)}
+@tab tangent
+@item @code{asin(z)}
+@tab inverse sine
+@item @code{acos(z)}
+@tab inverse cosine
+@item @code{atan(z)}
+@tab inverse tangent
+@item @code{atan(y, x)}
+@tab inverse tangent with two arguments
+@item @code{sinh(z)}
+@tab hyperbolic sine
+@item @code{cosh(z)}
+@tab hyperbolic cosine
+@item @code{tanh(z)}
+@tab hyperbolic tangent
+@item @code{asinh(z)}
+@tab inverse hyperbolic sine
+@item @code{acosh(z)}
+@tab inverse hyperbolic cosine
+@item @code{atanh(z)}
+@tab inverse hyperbolic tangent
+@item @code{exp(z)}
+@tab exponential function
+@item @code{log(z)}
+@tab natural logarithm
+@item @code{Li2(z)}
+@tab dilogarithm
+@item @code{zeta(z)}
+@tab Riemann's zeta function
+@item @code{tgamma(z)}
+@tab gamma function
+@item @code{lgamma(z)}
+@tab logarithm of gamma function
+@item @code{psi(z)}
+@tab psi (digamma) function
+@item @code{psi(n, z)}
+@tab derivatives of psi function (polygamma functions)
+@item @code{factorial(n)}
+@tab factorial function @math{n!}
+@item @code{doublefactorial(n)}
+@tab double factorial function @math{n!!}
+@cindex @code{doublefactorial()}
+@item @code{binomial(n, k)}
+@tab binomial coefficients
+@item @code{bernoulli(n)}
+@tab Bernoulli numbers
+@cindex @code{bernoulli()}
+@item @code{fibonacci(n)}
+@tab Fibonacci numbers
+@cindex @code{fibonacci()}
+@item @code{mod(a, b)}
+@tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
+@cindex @code{mod()}
+@item @code{smod(a, b)}
+@tab modulus in symmetric representation (in the range @code{[-iquo(abs(b)-1, 2), iquo(abs(b), 2)]})
+@cindex @code{smod()}
+@item @code{irem(a, b)}
+@tab integer remainder (has the sign of @math{a}, or is zero)
+@cindex @code{irem()}
+@item @code{irem(a, b, q)}
+@tab integer remainder and quotient, @code{irem(a, b, q) == a-q*b}
+@item @code{iquo(a, b)}
+@tab integer quotient
+@cindex @code{iquo()}
+@item @code{iquo(a, b, r)}
+@tab integer quotient and remainder, @code{r == a-iquo(a, b)*b}
+@item @code{gcd(a, b)}
+@tab greatest common divisor
+@item @code{lcm(a, b)}
+@tab least common multiple
+@end multitable
+@end cartouche
+
+Most of these functions are also available as symbolic functions that can be
+used in expressions (@pxref{Mathematical functions}) or, like @code{gcd()},
+as polynomial algorithms.
+
 @subsection Converting numbers
 
 Sometimes it is desirable to convert a @code{numeric} object back to a
@@ -1765,15 +2024,17 @@ more information about using matrices with indices, and about indices in
 general.
 
 The @code{matrix} class provides a couple of additional methods for
-computing determinants, traces, and characteristic polynomials:
+computing determinants, traces, characteristic polynomials and ranks:
 
 @cindex @code{determinant()}
 @cindex @code{trace()}
 @cindex @code{charpoly()}
+@cindex @code{rank()}
 @example
 ex matrix::determinant(unsigned algo=determinant_algo::automatic) const;
 ex matrix::trace() const;
 ex matrix::charpoly(const ex & lambda) const;
+unsigned matrix::rank() const;
 @end example
 
 The @samp{algo} argument of @code{determinant()} allows to select
@@ -1785,7 +2046,7 @@ file.  By default, GiNaC uses a heuristic to automatically select an
 algorithm that is likely (but not guaranteed) to give the result most
 quickly.
 
-@cindex @code{inverse()}
+@cindex @code{inverse()} (matrix)
 @cindex @code{solve()}
 Matrices may also be inverted using the @code{ex matrix::inverse()}
 method and linear systems may be solved with:
@@ -2561,7 +2822,7 @@ operator (often denoted @samp{&*}) for representing inert products of
 arbitrary objects. Rather, non-commutativity in GiNaC is a property of the
 classes of objects involved, and non-commutative products are formed with
 the usual @samp{*} operator, as are ordinary products. GiNaC is capable of
-figuring out by itself which objects commute and will group the factors
+figuring out by itself which objects commutate and will group the factors
 by their class. Consider this example:
 
 @example
@@ -2577,7 +2838,7 @@ by their class. Consider this example:
 As can be seen, GiNaC pulls out the overall commutative factor @samp{-16} and
 groups the non-commutative factors (the gammas and the su(3) generators)
 together while preserving the order of factors within each class (because
-Clifford objects commute with color objects). The resulting expression is a
+Clifford objects commutate with color objects). The resulting expression is a
 @emph{commutative} product with two factors that are themselves non-commutative
 products (@samp{gamma~mu*gamma~nu} and @samp{T.a*T.b}). For clarification,
 parentheses are placed around the non-commutative products in the output.
@@ -2595,7 +2856,7 @@ than in other computer algebra systems; they can, for example, automatically
 canonicalize themselves according to rules specified in the implementation
 of the non-commutative classes. The drawback is that to work with other than
 the built-in algebras you have to implement new classes yourself. Symbols
-always commute and it's not possible to construct non-commutative products
+always commutate and it's not possible to construct non-commutative products
 using symbols to represent the algebra elements or generators. User-defined
 functions can, however, be specified as being non-commutative.
 
@@ -2614,16 +2875,16 @@ the header file @file{flags.h}), corresponding to three categories of
 expressions in GiNaC:
 
 @itemize
-@item @code{return_types::commutative}: Commutes with everything. Most GiNaC
+@item @code{return_types::commutative}: Commutates with everything. Most GiNaC
   classes are of this kind.
 @item @code{return_types::noncommutative}: Non-commutative, belonging to a
   certain class of non-commutative objects which can be determined with the
-  @code{return_type_tinfo()} method. Expressions of this category commute
+  @code{return_type_tinfo()} method. Expressions of this category commutate
   with everything except @code{noncommutative} expressions of the same
   class.
 @item @code{return_types::noncommutative_composite}: Non-commutative, composed
   of non-commutative objects of different classes. Expressions of this
-  category don't commute with any other @code{noncommutative} or
+  category don't commutate with any other @code{noncommutative} or
   @code{noncommutative_composite} expressions.
 @end itemize
 
@@ -2674,7 +2935,7 @@ ex dirac_gamma(const ex & mu, unsigned char rl = 0);
 which takes two arguments: the index and a @dfn{representation label} in the
 range 0 to 255 which is used to distinguish elements of different Clifford
 algebras (this is also called a @dfn{spin line index}). Gammas with different
-labels commute with each other. The dimension of the index can be 4 or (in
+labels commutate with each other. The dimension of the index can be 4 or (in
 the framework of dimensional regularization) any symbolic value. Spinor
 indices on Dirac gammas are not supported in GiNaC.
 
@@ -2692,7 +2953,7 @@ write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
 GiNaC will complain and/or produce incorrect results.
 
 @cindex @code{dirac_gamma5()}
-There is a special element @samp{gamma5} that commutes with all other
+There is a special element @samp{gamma5} that commutates with all other
 gammas, has a unit square, and in 4 dimensions equals
 @samp{gamma~0 gamma~1 gamma~2 gamma~3}, provided by
 
@@ -2752,20 +3013,25 @@ for example
 
 @cindex @code{dirac_trace()}
 To calculate the trace of an expression containing strings of Dirac gammas
-you use the function
+you use one of the functions
 
 @example
+ex dirac_trace(const ex & e, const std::set<unsigned char> & rls, const ex & trONE = 4);
+ex dirac_trace(const ex & e, const lst & rll, const ex & trONE = 4);
 ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4);
 @end example
 
-This function takes the trace of all gammas with the specified representation
-label; gammas with other labels are left standing. The last argument to
+These functions take the trace over all gammas in the specified set @code{rls}
+or list @code{rll} of representation labels, or the single label @code{rl};
+gammas with other labels are left standing. The last argument to
 @code{dirac_trace()} is the value to be returned for the trace of the unity
-element, which defaults to 4. The @code{dirac_trace()} function is a linear
-functional that is equal to the usual trace only in @math{D = 4} dimensions.
-In particular, the functional is not cyclic in @math{D != 4} dimensions when
-acting on expressions containing @samp{gamma5}, so it's not a proper trace.
-This @samp{gamma5} scheme is described in greater detail in
+element, which defaults to 4.
+
+The @code{dirac_trace()} function is a linear functional that is equal to the
+ordinary matrix trace only in @math{D = 4} dimensions. In particular, the
+functional is not cyclic in @math{D != 4} dimensions when acting on
+expressions containing @samp{gamma5}, so it's not a proper trace. This
+@samp{gamma5} scheme is described in greater detail in
 @cite{The Role of gamma5 in Dimensional Regularization}.
 
 The value of the trace itself is also usually different in 4 and in
@@ -2848,7 +3114,7 @@ ex color_T(const ex & a, unsigned char rl = 0);
 
 which takes two arguments: the index and a @dfn{representation label} in the
 range 0 to 255 which is used to distinguish elements of different color
-algebras. Objects with different labels commute with each other. The
+algebras. Objects with different labels commutate with each other. The
 dimension of the index must be exactly 8 and it should be of class @code{idx},
 not @code{varidx}.
 
@@ -2927,16 +3193,19 @@ expressions containing color objects:
 @end example
 
 @cindex @code{color_trace()}
-To calculate the trace of an expression containing color objects you use the
-function
+To calculate the trace of an expression containing color objects you use one
+of the functions
 
 @example
+ex color_trace(const ex & e, const std::set<unsigned char> & rls);
+ex color_trace(const ex & e, const lst & rll);
 ex color_trace(const ex & e, unsigned char rl = 0);
 @end example
 
-This function takes the trace of all color @samp{T} objects with the
-specified representation label; @samp{T}s with other labels are left
-standing. For example:
+These functions take the trace over all color @samp{T} objects in the
+specified set @code{rls} or list @code{rll} of representation labels, or the
+single label @code{rl}; @samp{T}s with other labels are left standing. For
+example:
 
 @example
     ...
@@ -3115,7 +3384,7 @@ table:
 @multitable @columnfractions .30 .70
 @item @strong{Flag} @tab @strong{Returns true if the object is@dots{}}
 @item @code{numeric}
-@tab @dots{}a number (same as @code{is_<numeric>(...)})
+@tab @dots{}a number (same as @code{is_a<numeric>(...)})
 @item @code{real}
 @tab @dots{}a real integer, rational or float (i.e. is not complex)
 @item @code{rational}
@@ -3180,7 +3449,7 @@ table:
 @end cartouche
 
 To determine whether an expression is commutative or non-commutative and if
-so, with which other expressions it would commute, you use the methods
+so, with which other expressions it would commutate, you use the methods
 @code{return_type()} and @code{return_type_tinfo()}. @xref{Non-commutative objects},
 for an explanation of these.
 
@@ -4395,7 +4664,7 @@ constants, functions and indexed objects as well:
 
 @example
 @{
-    symbol a("a"), b("b"), c("c");
+    symbol a("a"), b("b"), c("c"), x("x");
     idx i(symbol("i"), 3);
 
     ex e = pow(sin(x) - cos(x), 4);
@@ -4456,6 +4725,7 @@ in which case the value of @code{q} is undefined.
 @cindex @code{unit()}
 @cindex @code{content()}
 @cindex @code{primpart()}
+@cindex @code{unitcontprim()}
 
 The methods
 
@@ -4463,17 +4733,29 @@ The methods
 ex ex::unit(const ex & x);
 ex ex::content(const ex & x);
 ex ex::primpart(const ex & x);
+ex ex::primpart(const ex & x, const ex & c);
 @end example
 
 return the unit part, content part, and primitive polynomial of a multivariate
 polynomial with respect to the variable @samp{x} (the unit part being the sign
 of the leading coefficient, the content part being the GCD of the coefficients,
 and the primitive polynomial being the input polynomial divided by the unit and
-content parts). The product of unit, content, and primitive part is the
-original polynomial.
+content parts). The second variant of @code{primpart()} expects the previously
+calculated content part of the polynomial in @code{c}, which enables it to
+work faster in the case where the content part has already been computed. The
+product of unit, content, and primitive part is the original polynomial.
 
+Additionally, the method
 
-@subsection GCD and LCM
+@example
+void ex::unitcontprim(const ex & x, ex & u, ex & c, ex & p);
+@end example
+
+computes the unit, content, and primitive parts in one go, returning them
+in @code{u}, @code{c}, and @code{p}, respectively.
+
+
+@subsection GCD, LCM and resultant
 @cindex GCD
 @cindex LCM
 @cindex @code{gcd()}
@@ -4510,6 +4792,38 @@ int main()
 @}
 @end example
 
+@cindex resultant
+@cindex @code{resultant()}
+
+The resultant of two expressions only makes sense with polynomials.
+It is always computed with respect to a specific symbol within the
+expressions. The function has the interface
+
+@example
+ex resultant(const ex & a, const ex & b, const ex & s);
+@end example
+
+Resultants are symmetric in @code{a} and @code{b}. The following example
+computes the resultant of two expressions with respect to @code{x} and
+@code{y}, respectively:
+
+@example
+#include <ginac/ginac.h>
+using namespace GiNaC;
+
+int main()
+@{
+    symbol x("x"), y("y");
+
+    ex e1 = x+pow(y,2), e2 = 2*pow(x,3)-1; // x+y^2, 2*x^3-1
+    ex r;
+    
+    r = resultant(e1, e2, x); 
+    // -> 1+2*y^6
+    r = resultant(e1, e2, y); 
+    // -> 1-4*x^3+4*x^6
+@}
+@end example
 
 @subsection Square-free decomposition
 @cindex square-free decomposition
@@ -5002,9 +5316,9 @@ GiNaC contains the following predefined mathematical functions:
 @item @code{psi(n, x)}
 @tab derivatives of psi function (polygamma functions)
 @item @code{factorial(n)}
-@tab factorial function
+@tab factorial function @math{n!}
 @cindex @code{factorial()}
-@item @code{binomial(n, m)}
+@item @code{binomial(n, k)}
 @tab binomial coefficients
 @cindex @code{binomial()}
 @item @code{Order(x)}
@@ -6025,6 +6339,24 @@ print_func<C>(<C++ function>)
 
 option which is explained in the next section.
 
+@subsection Functions with a variable number of arguments
+
+The @code{DECLARE_FUNCTION} and @code{REGISTER_FUNCTION} macros define
+functions with a fixed number of arguments. Sometimes, though, you may need
+to have a function that accepts a variable number of expressions. One way to
+accomplish this is to pass variable-length lists as arguments. The
+@code{Li()} function uses this method for multiple polylogarithms.
+
+It is also possible to define functions that accept a different number of
+parameters under the same function name, such as the @code{psi()} function
+which can be called either as @code{psi(z)} (the digamma function) or as
+@code{psi(n, z)} (polygamma functions). These are actually two different
+functions in GiNaC that, however, have the same name. Defining such
+functions is not possible with the macros but requires manually fiddling
+with GiNaC internals. If you are interested, please consult the GiNaC source
+code for the @code{psi()} function (@file{inifcns.h} and
+@file{inifcns_gamma.cpp}).
+
 
 @node Printing, Structures, Symbolic functions, Extending GiNaC
 @c    node-name, next, previous, up