log(-<realnumber>) now returns a real number
[ginac.git] / check / exam_powerlaws.cpp
index 8513caebfdb68976eb3b068c7dfe99d6c9f4a36b..4936d70001cb6c3cdf6d24b7f03238e27fcf1b96 100644 (file)
@@ -4,7 +4,7 @@
  *  this code, it is a sanity check rather deeply rooted in GiNaC's classes. */
 
 /*
- *  GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -23,7 +23,7 @@
 
 #include "exams.h"
 
-static unsigned exam_powerlaws1(void)
+static unsigned exam_powerlaws1()
 {
        // (x^a)^b = x^(a*b)
        
@@ -32,11 +32,11 @@ static unsigned exam_powerlaws1(void)
        symbol b("b");
        
        ex e1 = power(power(x,a), b);
-       if (!(is_ex_exactly_of_type(e1,power) &&
-             is_ex_exactly_of_type(e1.op(0),power) &&
-             is_ex_exactly_of_type(e1.op(0).op(0),symbol) &&
-             is_ex_exactly_of_type(e1.op(0).op(1),symbol) &&
-             is_ex_exactly_of_type(e1.op(1),symbol) &&
+       if (!(is_exactly_a<power>(e1) &&
+             is_exactly_a<power>(e1.op(0)) &&
+             is_exactly_a<symbol>(e1.op(0).op(0)) &&
+             is_exactly_a<symbol>(e1.op(0).op(1)) &&
+             is_exactly_a<symbol>(e1.op(1)) &&
              e1.is_equal(power(power(x,a),b)) )) {
                clog << "(x^a)^b, x,a,b symbolic wrong" << endl;
                clog << "returned: " << e1 << endl;
@@ -44,9 +44,9 @@ static unsigned exam_powerlaws1(void)
        }
        
        ex e2 = e1.subs(a==1);
-       if (!(is_ex_exactly_of_type(e2,power) &&
-             is_ex_exactly_of_type(e2.op(0),symbol) &&
-             is_ex_exactly_of_type(e2.op(1),symbol) &&
+       if (!(is_exactly_a<power>(e2) &&
+             is_exactly_a<symbol>(e2.op(0)) &&
+             is_exactly_a<symbol>(e2.op(1)) &&
              e2.is_equal(power(x,b)) )) {
                clog << "(x^a)^b, x,b symbolic, a==1 wrong" << endl;
                clog << "returned: " << e2 << endl;
@@ -54,11 +54,11 @@ static unsigned exam_powerlaws1(void)
        }
        
        ex e3 = e1.subs(a==-1);
-       if (!(is_ex_exactly_of_type(e3,power) &&
-             is_ex_exactly_of_type(e3.op(0),power) &&
-             is_ex_exactly_of_type(e3.op(0).op(0),symbol) &&
-             is_ex_exactly_of_type(e3.op(0).op(1),numeric) &&
-             is_ex_exactly_of_type(e3.op(1),symbol) &&
+       if (!(is_exactly_a<power>(e3) &&
+             is_exactly_a<power>(e3.op(0)) &&
+             is_exactly_a<symbol>(e3.op(0).op(0)) &&
+             is_exactly_a<numeric>(e3.op(0).op(1)) &&
+             is_exactly_a<symbol>(e3.op(1)) &&
              e3.is_equal(power(power(x,-1),b)) )) {
                clog << "(x^a)^b, x,b symbolic, a==-1 wrong" << endl;
                clog << "returned: " << e3 << endl;
@@ -66,11 +66,11 @@ static unsigned exam_powerlaws1(void)
        }
        
        ex e4 = e1.subs(lst(a==-1, b==2.5));
-       if (!(is_ex_exactly_of_type(e4,power) &&
-             is_ex_exactly_of_type(e4.op(0),power) &&
-             is_ex_exactly_of_type(e4.op(0).op(0),symbol) &&
-             is_ex_exactly_of_type(e4.op(0).op(1),numeric) &&
-             is_ex_exactly_of_type(e4.op(1),numeric) &&
+       if (!(is_exactly_a<power>(e4) &&
+             is_exactly_a<power>(e4.op(0)) &&
+             is_exactly_a<symbol>(e4.op(0).op(0)) &&
+             is_exactly_a<numeric>(e4.op(0).op(1)) &&
+             is_exactly_a<numeric>(e4.op(1)) &&
              e4.is_equal(power(power(x,-1),2.5)) )) {
                clog << "(x^a)^b, x symbolic, a==-1, b==2.5 wrong" << endl;
                clog << "returned: " << e4 << endl;
@@ -78,9 +78,9 @@ static unsigned exam_powerlaws1(void)
        }
        
        ex e5 = e1.subs(lst(a==-0.9, b==2.5));
-       if (!(is_ex_exactly_of_type(e5,power) &&
-             is_ex_exactly_of_type(e5.op(0),symbol) &&
-             is_ex_exactly_of_type(e5.op(1),numeric) &&
+       if (!(is_exactly_a<power>(e5) &&
+             is_exactly_a<symbol>(e5.op(0)) &&
+             is_exactly_a<numeric>(e5.op(1)) &&
              e5.is_equal(power(x,numeric(-0.9)*numeric(2.5))) )) {
                clog << "(x^a)^b, x symbolic, a==-0.9, b==2.5 wrong" << endl;
                clog << "returned: " << e5 << endl;
@@ -88,9 +88,9 @@ static unsigned exam_powerlaws1(void)
        }
        
        ex e6 = e1.subs(lst(a==numeric(3)+numeric(5.3)*I, b==-5));
-       if (!(is_ex_exactly_of_type(e6,power) &&
-             is_ex_exactly_of_type(e6.op(0),symbol) &&
-             is_ex_exactly_of_type(e6.op(1),numeric) &&
+       if (!(is_exactly_a<power>(e6) &&
+             is_exactly_a<symbol>(e6.op(0)) &&
+             is_exactly_a<numeric>(e6.op(1)) &&
              e6.is_equal(power(x,numeric(-15)+numeric(5.3)*numeric(-5)*I)) )) {
                clog << "(x^a)^b, x symbolic, a==3+5.3*I, b==-5 wrong" << endl;
                clog << "returned: " << e6 << endl;
@@ -100,7 +100,7 @@ static unsigned exam_powerlaws1(void)
        return 0;
 }
 
-static unsigned exam_powerlaws2(void)
+static unsigned exam_powerlaws2()
 {
        // (a*x)^b = a^b * x^b
        
@@ -109,12 +109,12 @@ static unsigned exam_powerlaws2(void)
        symbol b("b");
        
        ex e1 = power(a*x,b);
-       if (!(is_ex_exactly_of_type(e1,power) &&
-             is_ex_exactly_of_type(e1.op(0),mul) &&
+       if (!(is_exactly_a<power>(e1) &&
+             is_exactly_a<mul>(e1.op(0)) &&
              (e1.op(0).nops()==2) &&
-             is_ex_exactly_of_type(e1.op(0).op(0),symbol) &&
-             is_ex_exactly_of_type(e1.op(0).op(1),symbol) &&
-             is_ex_exactly_of_type(e1.op(1),symbol) &&
+             is_exactly_a<symbol>(e1.op(0).op(0)) &&
+             is_exactly_a<symbol>(e1.op(0).op(1)) &&
+             is_exactly_a<symbol>(e1.op(1)) &&
              e1.is_equal(power(a*x,b)) )) {
                clog << "(a*x)^b, x,a,b symbolic wrong" << endl;
                clog << "returned: " << e1 << endl;
@@ -122,12 +122,12 @@ static unsigned exam_powerlaws2(void)
        }
        
        ex e2 = e1.subs(a==3);
-       if (!(is_ex_exactly_of_type(e2,power) &&
-             is_ex_exactly_of_type(e2.op(0),mul) &&
+       if (!(is_exactly_a<power>(e2) &&
+             is_exactly_a<mul>(e2.op(0)) &&
              (e2.op(0).nops()==2) &&
-             is_ex_exactly_of_type(e2.op(0).op(0),symbol) &&
-             is_ex_exactly_of_type(e2.op(0).op(1),numeric) &&
-             is_ex_exactly_of_type(e2.op(1),symbol) &&
+             is_exactly_a<symbol>(e2.op(0).op(0)) &&
+             is_exactly_a<numeric>(e2.op(0).op(1)) &&
+             is_exactly_a<symbol>(e2.op(1)) &&
              e2.is_equal(power(3*x,b)) )) {
                clog << "(a*x)^b, x,b symbolic, a==3 wrong" << endl;
                clog << "returned: " << e2 << endl;
@@ -135,10 +135,10 @@ static unsigned exam_powerlaws2(void)
        }
        
        ex e3 = e1.subs(b==-3);
-       if (!(is_ex_exactly_of_type(e3,mul) &&
+       if (!(is_exactly_a<mul>(e3) &&
              (e3.nops()==2) &&
-             is_ex_exactly_of_type(e3.op(0),power) &&
-             is_ex_exactly_of_type(e3.op(1),power) &&
+             is_exactly_a<power>(e3.op(0)) &&
+             is_exactly_a<power>(e3.op(1)) &&
              e3.is_equal(power(a,-3)*power(x,-3)) )) {
                clog << "(a*x)^b, x,a symbolic, b==-3 wrong" << endl;
                clog << "returned: " << e3 << endl;
@@ -146,12 +146,12 @@ static unsigned exam_powerlaws2(void)
        }
        
        ex e4 = e1.subs(b==4.5);
-       if (!(is_ex_exactly_of_type(e4,power) &&
-             is_ex_exactly_of_type(e4.op(0),mul) &&
+       if (!(is_exactly_a<power>(e4) &&
+             is_exactly_a<mul>(e4.op(0)) &&
              (e4.op(0).nops()==2) &&
-             is_ex_exactly_of_type(e4.op(0).op(0),symbol) &&
-             is_ex_exactly_of_type(e4.op(0).op(1),symbol) &&
-             is_ex_exactly_of_type(e4.op(1),numeric) &&
+             is_exactly_a<symbol>(e4.op(0).op(0)) &&
+             is_exactly_a<symbol>(e4.op(0).op(1)) &&
+             is_exactly_a<numeric>(e4.op(1)) &&
              e4.is_equal(power(a*x,4.5)) )) {
                clog << "(a*x)^b, x,a symbolic, b==4.5 wrong" << endl;
                clog << "returned: " << e4 << endl;
@@ -159,10 +159,10 @@ static unsigned exam_powerlaws2(void)
        }
        
        ex e5 = e1.subs(lst(a==3.2, b==3+numeric(5)*I));
-       if (!(is_ex_exactly_of_type(e5,mul) &&
+       if (!(is_exactly_a<mul>(e5) &&
              (e5.nops()==2) &&
-             is_ex_exactly_of_type(e5.op(0),power) &&
-             is_ex_exactly_of_type(e5.op(1),numeric) &&
+             is_exactly_a<power>(e5.op(0)) &&
+             is_exactly_a<numeric>(e5.op(1)) &&
              e5.is_equal(power(x,3+numeric(5)*I)*
                                          power(numeric(3.2),3+numeric(5)*I)) )) {
                clog << "(a*x)^b, x symbolic, a==3.2, b==3+5*I wrong" << endl;
@@ -171,10 +171,10 @@ static unsigned exam_powerlaws2(void)
        }
        
        ex e6 = e1.subs(lst(a==-3.2, b==3+numeric(5)*I));
-       if (!(is_ex_exactly_of_type(e6,mul) &&
+       if (!(is_exactly_a<mul>(e6) &&
              (e6.nops()==2) &&
-             is_ex_exactly_of_type(e6.op(0),power) &&
-             is_ex_exactly_of_type(e6.op(1),numeric) &&
+             is_exactly_a<power>(e6.op(0)) &&
+             is_exactly_a<numeric>(e6.op(1)) &&
              e6.is_equal(power(-x,3+numeric(5)*I)*
                                          power(numeric(3.2),3+numeric(5)*I)) )) {
                clog << "(a*x)^b, x symbolic, a==-3.2, b==3+5*I wrong" << endl;
@@ -183,12 +183,12 @@ static unsigned exam_powerlaws2(void)
        }
        
        ex e7 = e1.subs(lst(a==3+numeric(5)*I, b==3.2));
-       if (!(is_ex_exactly_of_type(e7,power) &&
-             is_ex_exactly_of_type(e7.op(0),mul) &&
+       if (!(is_exactly_a<power>(e7) &&
+             is_exactly_a<mul>(e7.op(0)) &&
              (e7.op(0).nops()==2) &&
-             is_ex_exactly_of_type(e7.op(0).op(0),symbol) &&
-             is_ex_exactly_of_type(e7.op(0).op(1),numeric) &&
-             is_ex_exactly_of_type(e7.op(1),numeric) &&
+             is_exactly_a<symbol>(e7.op(0).op(0)) &&
+             is_exactly_a<numeric>(e7.op(0).op(1)) &&
+             is_exactly_a<numeric>(e7.op(1)) &&
              e7.is_equal(power((3+numeric(5)*I)*x,3.2)) )) {
                clog << "(a*x)^b, x symbolic, a==3+5*I, b==3.2 wrong" << endl;
                clog << "returned: " << e7 << endl;
@@ -198,7 +198,7 @@ static unsigned exam_powerlaws2(void)
        return 0;
 }
 
-static unsigned exam_powerlaws3(void)
+static unsigned exam_powerlaws3()
 {
        // numeric evaluation
 
@@ -215,7 +215,7 @@ static unsigned exam_powerlaws3(void)
        }
        
        ex e3 = power(numeric(5),numeric(1,2));
-       if (!(is_ex_exactly_of_type(e3,power) &&
+       if (!(is_exactly_a<power>(e3) &&
              e3.op(0).is_equal(numeric(5)) &&
              e3.op(1).is_equal(numeric(1,2)))) {
                clog << "5^(1/2) wrongly returned " << e3 << endl;
@@ -223,13 +223,13 @@ static unsigned exam_powerlaws3(void)
        }
        
        ex e4 = power(numeric(5),evalf(numeric(1,2)));
-       if (!(is_ex_exactly_of_type(e4,numeric))) {
+       if (!(is_exactly_a<numeric>(e4))) {
                clog << "5^(0.5) wrongly returned " << e4 << endl;
                return 1;
        }
        
        ex e5 = power(evalf(numeric(5)),numeric(1,2));
-       if (!(is_ex_exactly_of_type(e5,numeric))) {
+       if (!(is_exactly_a<numeric>(e5))) {
                clog << "5.0^(1/2) wrongly returned " << e5 << endl;
                return 1;
        }
@@ -237,7 +237,7 @@ static unsigned exam_powerlaws3(void)
        return 0;
 }
 
-static unsigned exam_powerlaws4(void)
+static unsigned exam_powerlaws4()
 {
        // test for mul::eval()
        
@@ -262,7 +262,7 @@ static unsigned exam_powerlaws4(void)
        return 0;
 }
 
-static unsigned exam_powerlaws5(void)
+static unsigned exam_powerlaws5()
 {
        // cabinet of slightly pathological cases
        
@@ -275,7 +275,7 @@ static unsigned exam_powerlaws5(void)
        }
        
        ex e2 = pow(0,a);
-       if (!(is_ex_exactly_of_type(e2,power))) {
+       if (!(is_exactly_a<power>(e2))) {
                clog << "0^a was evaluated to " << e2
                     << " though nothing is known about a." << endl;
                return 1;
@@ -284,7 +284,7 @@ static unsigned exam_powerlaws5(void)
        return 0;
 }
 
-unsigned exam_powerlaws(void)
+unsigned exam_powerlaws()
 {
        unsigned result = 0;