lexer: when switching to another output stream, clean last read character.
[ginac.git] / check / exam_inifcns_nstdsums.cpp
index 35f9ddbbb32dddc698da42963b18ff4cdeeb7b8e..ec843da3ab5544ea8b9eda8c0f4c3a8a19d0a541 100644 (file)
@@ -4,7 +4,7 @@
  *  functions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include "exams.h"
-
+#include <iostream>
 #include <fstream>
+#include "ginac.h"
+using namespace std;
+using namespace GiNaC;
+
 
 
 ////////////////////////////////////////////////////////////////////////////////
@@ -220,23 +223,164 @@ static unsigned inifcns_test_zeta()
 }
 
 
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+//  H/Li exam
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+
+
+static unsigned inifcns_test_LiG()
+{
+       int digitsbuf = Digits;
+       Digits = 17;
+       ex prec = 5 * pow(10, -(int)Digits);
+       numeric almostone("0.99999999999999999999");
+       unsigned result = 0;
+
+       lst res;
+       
+       res.append(Li(lst(4), lst(6)).hold() - Li(4, 6.0));
+       res.append(G(lst(0,0,5.0,0,2.0,0,0,0,3.0),0.5).hold()
+                  + Li(lst(3,2,4), lst(numeric(1,10), numeric(5,2), numeric(2,3))));
+       res.append(Li(lst(2,1,1), lst(almostone, almostone, almostone)) - zeta(lst(2,1,1)));
+
+       // check Li_{1,1} against known expression
+       symbol x("x"), y("y");
+       ex eps = 1e-30*I;
+       ex s1 = Li(lst(1,1),lst(x,y));
+       ex s2 = log(1-1/x/y-eps)*log((1-1/x-eps)/(1/x/y-1/x)) + Li(2,(1-1/x/y-eps)/(1/x-1/x/y))
+                       - log(-1/x/y-eps)*log((-1/x-eps)/(1/x/y-1/x)) - Li(2,(-1/x/y-eps)/(1/x-1/x/y))
+                       - log(-1/x/y-eps)*log(1-1/x-eps) + log(-1/x/y-eps)*log(-1/x-eps);
+       res.append(s1.subs(lst(x==numeric(1)/2, y==3)) - s2.subs(lst(x==numeric(1)/2, y==3)));
+       res.append(s1.subs(lst(x==numeric(3)/2, y==numeric(1)/2)) - s2.subs(lst(x==numeric(3)/2, y==numeric(1)/2)));
+       res.append(s1.subs(lst(x==2, y==numeric(4)/5)) - s2.subs(lst(x==2, y==numeric(4)/5)));
+
+       // shuffle and quasi-shuffle identities
+       res.append(G(lst(0,0.2),1).hold() * G(lst(0.5),1).hold() - G(lst(0.5,0,0.2),1).hold()
+                       - G(lst(0,0.5,0.2),1).hold() - G(lst(0,0.2,0.5),1).hold());
+       res.append(G(lst(0,0.5),1).hold() * G(lst(0.6),1).hold() - G(lst(0,0.5,0.5*0.6),1).hold()
+                       - G(lst(0.6,0,0.5*0.6),1).hold() + G(lst(0,0,0.5*0.6),1).hold());
+       res.append(Li(lst(2),lst(numeric(1,5))).hold() * Li(lst(3),lst(7)).hold() - Li(lst(2,3),lst(numeric(1,5),7)).hold()
+                       - Li(lst(3,2),lst(7,numeric(1,5))).hold() - Li(lst(5),lst(numeric(7,5))).hold());
+       symbol a1, a2, a3, a4;
+       res.append((G(lst(a1,a2),1) * G(lst(a3,a4),1) - G(lst(a1,a2,a3,a4),1)
+                       - G(lst(a1,a3,a2,a4),1) - G(lst(a3,a1,a2,a4),1)
+                       - G(lst(a1,a3,a4,a2),1) - G(lst(a3,a1,a4,a2),1) - G(lst(a3,a4,a1,a2),1))
+                               .subs(lst(a1==numeric(1)/10, a2==numeric(3)/10, a3==numeric(7)/10, a4==5)));
+       res.append(G(lst(-0.009),1).hold() * G(lst(-8,1.4999),1).hold() - G(lst(-0.009,-8,1.4999),1).hold()
+                       - G(lst(-8,-0.009,1.4999),1).hold() - G(lst(-8,1.4999,-0.009),1).hold());
+       res.append(G(lst(sqrt(numeric(1)/2)+I*sqrt(numeric(1)/2)),1).hold() * G(lst(1.51,-0.999),1).hold()
+                       - G(lst(sqrt(numeric(1)/2)+I*sqrt(numeric(1)/2),1.51,-0.999),1).hold()
+                       - G(lst(1.51,sqrt(numeric(1)/2)+I*sqrt(numeric(1)/2),-0.999),1).hold()
+                       - G(lst(1.51,-0.999,sqrt(numeric(1)/2)+I*sqrt(numeric(1)/2)),1).hold());
+       // checks for hoelder convolution which is used if one argument has a distance to one smaller than 0.01 
+       res.append(G(lst(0, 1.2, 1, 1.01), 1).hold() - G(lst(0, 1.2, 1, numeric("1.009999999999999999")), 1).hold());
+
+       for (lst::const_iterator it = res.begin(); it != res.end(); it++) {
+               ex diff = abs((*it).evalf());
+               if (diff > prec) {
+                       clog << *it << " seems to be wrong: " << diff << endl;
+                       result++;
+               }
+               cout << "." << flush;
+       }
+
+       return result;
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+//  legacy exam - checking for historical bugs
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+
+
+static unsigned inifcns_test_legacy()
+{
+       Digits = 17;
+       ex prec = 5 * pow(10, -(int)Digits);
+
+       unsigned result = 0;
+
+       ex r1 = zeta(lst(1,1,1,1,1,1),lst(-1,-1,-1,1,1,1));
+       if ((r1.evalf() - numeric("-0.0012588769028204890704")) > prec) {
+               clog << "zeta({1,1,1,1,1,1},{-1,-1,-1,1,1,1}) seems to be wrong." << endl;
+               result++;
+       }
+
+       ex x1 = exp(2*Pi*I/13).evalf();
+       ex x2 = exp(24*Pi*I/13).evalf();
+       ex r2 = Li(lst(2),lst(x1)).hold().evalf();
+       ex r3 = Li(lst(2),lst(x2)).hold().evalf();
+       if ( abs(r2-conjugate(r3)) > prec ) {
+               clog << "Legacy test 2 seems to be wrong." << endl;
+               result++;
+       }
+
+       ex x3 = exp(5*Pi*I/3).evalf();
+       ex r4 = Li(lst(3),lst(x3)).hold().evalf();
+       if ( abs(r4 - numeric("0.40068563438653142847-0.95698384815740185713*I")) > prec ) {
+               clog << "Legacy test 3 seems to be wrong." << endl;
+               result++;
+       }
+
+       Digits = 100;
+       prec = 5 * pow(10, -(int)Digits);
+       ex x0 = 1.;
+          x1 = exp(Pi*I/3).evalf();
+          x2 = exp(2*Pi*I/3).evalf();
+          x3 = -1.;
+       ex x4 = exp(4*Pi*I/3).evalf();
+       ex x5 = exp(5*Pi*I/3).evalf();
+
+       ex r5 = Li(lst(1,1,1,1),lst(x2,x4,x3,x0)).hold().evalf();
+       ex r6 = Li(lst(1,1,1,1),lst(x4,x2,x3,x0)).hold().evalf();
+       if ( abs(r5-conjugate(r6)) > prec ) {
+               clog << "Legacy test 4 seems to be wrong." << endl;
+               result++;
+       }
+
+       ex r7 = Li(lst(1,2,1),lst(x3,x2,x4)).hold().evalf()
+               +Li(lst(1,1,2),lst(x3,x2,x4)).hold().evalf()
+               +Li(lst(1,1,1,1),lst(x3,x0,x2,x4)).hold().evalf()
+               +Li(lst(1,1,1,1),lst(x3,x2,x0,x4)).hold().evalf()
+               +Li(lst(1,1,1,1),lst(x3,x2,x4,x0)).hold().evalf()
+               +Li(lst(1,2,1),lst(x2,x1,x0)).hold().evalf()
+               +Li(lst(1,1,2),lst(x2,x3,x4)).hold().evalf()
+               +Li(lst(1,1,1,1),lst(x2,x4,x3,x0)).hold().evalf()
+               +Li(lst(1,1,1,1),lst(x2,x3,x4,x0)).hold().evalf()
+               +Li(lst(1,1,1,1),lst(x2,x3,x0,x4)).hold().evalf()
+               +Li(lst(2,2),lst(x5,x4)).hold().evalf()
+               +Li(lst(2,1,1),lst(x5,x0,x4)).hold().evalf()
+               +Li(lst(2,1,1),lst(x5,x4,x0)).hold().evalf()
+               -Li(lst(1,1),lst(x3,x0)).hold().evalf()*Li(lst(1,1),lst(x2,x4)).hold().evalf();
+       if ( abs(r7) > prec ) {
+               clog << "Legacy test 5 seems to be wrong." << endl;
+               result++;
+       }
+
+       return result;
+}
+
+
 unsigned exam_inifcns_nstdsums(void)
 {
        unsigned result = 0;
        
        cout << "examining consistency of nestedsums functions" << flush;
-       clog << "----------consistency of nestedsums functions:" << endl;
        
        result += inifcns_test_zeta();
        result += inifcns_test_S();
        result += inifcns_test_HLi();
-       
-       if (!result) {
-               cout << " passed " << endl;
-               clog << "(no output)" << endl;
-       } else {
-               cout << " failed " << endl;
-       }
+       result += inifcns_test_LiG();
+       result += inifcns_test_legacy();
        
        return result;
 }
+
+int main(int argc, char** argv)
+{
+       return exam_inifcns_nstdsums();
+}