]> www.ginac.de Git - ginac.git/blobdiff - check/exam_inifcns.cpp
Add test cases for improved abs(arg).
[ginac.git] / check / exam_inifcns.cpp
index 47cc10404c43f45217890a0a0f694a8e91826440..bd7168ed704f328ffd774794d80ea913d22df392 100644 (file)
@@ -4,7 +4,7 @@
  *  functions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include "exams.h"
+#include "ginac.h"
+using namespace GiNaC;
+
+#include <iostream>
+using namespace std;
 
 /* Assorted tests on other transcendental functions. */
-static unsigned inifcns_consist_trans(void)
+static unsigned inifcns_consist_trans()
 {
+       using GiNaC::asin; using GiNaC::acos;
+       using GiNaC::asinh; using GiNaC::acosh; using GiNaC::atanh;
+
        unsigned result = 0;
        symbol x("x");
        ex chk;
@@ -90,17 +97,39 @@ static unsigned inifcns_consist_trans(void)
                ++result;
        }
        
+       // check consistency of log and eta phases:
+       for (int r1=-1; r1<=1; ++r1) {
+               for (int i1=-1; i1<=1; ++i1) {
+                       ex x1 = r1+I*i1;
+                       if (x1.is_zero())
+                               continue;
+                       for (int r2=-1; r2<=1; ++r2) {
+                               for (int i2=-1; i2<=1; ++i2) {
+                                       ex x2 = r2+I*i2;
+                                       if (x2.is_zero())
+                                               continue;
+                                       if (abs(evalf(eta(x1,x2)-log(x1*x2)+log(x1)+log(x2)))>.1e-12) {
+                                               clog << "either eta(x,y), log(x), log(y) or log(x*y) is wrong"
+                                                    << " at x==" << x1 << ", y==" << x2 << endl;
+                                               ++result;
+                                       }
+                               }
+                       }
+               }
+       }
+               
        return result;
 }
 
 /* Simple tests on the tgamma function.  We stuff in arguments where the results
  * exists in closed form and check if it's ok. */
-static unsigned inifcns_consist_gamma(void)
+static unsigned inifcns_consist_gamma()
 {
+       using GiNaC::tgamma;
        unsigned result = 0;
        ex e;
        
-       e = tgamma(ex(1));
+       e = tgamma(1);
        for (int i=2; i<8; ++i)
                e += tgamma(ex(i));
        if (e != numeric(874)) {
@@ -109,7 +138,7 @@ static unsigned inifcns_consist_gamma(void)
                ++result;
        }
        
-       e = tgamma(ex(1));
+       e = tgamma(1);
        for (int i=2; i<8; ++i)
                e *= tgamma(ex(i));     
        if (e != numeric(24883200)) {
@@ -140,8 +169,11 @@ static unsigned inifcns_consist_gamma(void)
 
 /* Simple tests on the Psi-function (aka polygamma-function).  We stuff in
    arguments where the result exists in closed form and check if it's ok. */
-static unsigned inifcns_consist_psi(void)
+static unsigned inifcns_consist_psi()
 {
+       using GiNaC::log;
+       using GiNaC::tgamma;
+
        unsigned result = 0;
        symbol x;
        ex e, f;
@@ -162,7 +194,7 @@ static unsigned inifcns_consist_psi(void)
 /* Simple tests on the Riemann Zeta function.  We stuff in arguments where the
  * result exists in closed form and check if it's ok.  Of course, this checks
  * the Bernoulli numbers as a side effect. */
-static unsigned inifcns_consist_zeta(void)
+static unsigned inifcns_consist_zeta()
 {
        unsigned result = 0;
        ex e;
@@ -187,24 +219,221 @@ static unsigned inifcns_consist_zeta(void)
        return result;
 }
 
-unsigned exam_inifcns(void)
+static unsigned inifcns_consist_abs()
+{
+       unsigned result = 0;
+       realsymbol a("a"), b("b"), x("x"), y("y");
+       possymbol p("p");
+       symbol z("z");
+
+       if (!abs(exp(x+I*y)).eval().is_equal(exp(x)))
+               ++result;
+
+       if (!abs(pow(p,a+I*b)).eval().is_equal(pow(p,a)))
+               ++result;
+
+       if (!abs(sqrt(p)).eval().is_equal(sqrt(p)))
+               ++result;
+
+       if (!abs(-sqrt(p)).eval().is_equal(sqrt(p)))
+               ++result;
+
+       // also checks that abs(p)=p
+       if (!abs(pow(p,a+I*b)).eval().is_equal(pow(p,a)))
+               ++result;
+
+       if (!abs(pow(x+I*y,a)).eval().is_equal(pow(abs(x+I*y),a)))
+               ++result;
+
+       // it is not necessary a simplification if the following is really evaluated
+       if (!abs(pow(x+I*y,a+I*b)).eval().is_equal(abs(pow(x+I*y,a+I*b))))
+               ++result;
+
+       // check expansion of abs
+       if (!abs(-7*z*a*p).expand(expand_options::expand_transcendental).is_equal(7*abs(z)*abs(a)*p))
+               ++result;
+
+       if (!abs(z.conjugate()).eval().is_equal(abs(z)))
+               ++result;
+
+       if (!abs(step(z)).eval().is_equal(step(z)))
+               ++result;
+
+       if (!abs(p).info(info_flags::positive) || !abs(a).info(info_flags::real))
+               ++result;
+
+       if (abs(a).info(info_flags::positive) || !abs(a).info(info_flags::real))
+               ++result;
+
+       if (abs(z).info(info_flags::positive) || !abs(z).info(info_flags::real))
+               ++result;
+
+       return result;
+}
+
+static unsigned inifcns_consist_exp()
+{
+       unsigned result = 0;
+       symbol a("a"), b("b");
+
+       if (!exp(a+b).expand(expand_options::expand_transcendental).is_equal(exp(a)*exp(b)))
+               ++result;
+
+       // shall not be expanded since the arg is not add
+       if (!exp(pow(a+b,2)).expand(expand_options::expand_transcendental).is_equal(exp(pow(a+b,2))))
+               ++result;
+
+       // expand now
+       if (!exp(pow(a+b,2)).expand(expand_options::expand_function_args | expand_options::expand_transcendental)
+               .is_equal(exp(a*a)*exp(b*b)*exp(2*a*b)))
+               ++result;
+
+       return result;
+}
+
+static unsigned inifcns_consist_log()
+{
+       unsigned result = 0;
+       symbol z("a"), w("b");
+       realsymbol a("a"), b("b");
+       possymbol p("p"), q("q");
+
+       // do not expand
+       if (!log(z*w).expand(expand_options::expand_transcendental).is_equal(log(z*w)))
+               ++result;
+
+       // do not expand
+       if (!log(a*b).expand(expand_options::expand_transcendental).is_equal(log(a*b)))
+               ++result;
+
+       // shall expand
+       if (!log(p*q).expand(expand_options::expand_transcendental).is_equal(log(p) + log(q)))
+               ++result;
+
+       // a bit more complicated
+       ex e1 = log(-7*p*pow(q,3)*a*pow(b,2)*z*w).expand(expand_options::expand_transcendental);
+       ex e2 = log(7)+log(p)+log(pow(q,3))+log(-z*a*w*pow(b,2));
+       if (!e1.is_equal(e2))
+               ++result;
+
+       // shall not do for non-real powers
+       if (ex(log(pow(p,z))).is_equal(z*log(p)))
+               ++result;
+
+       // shall not do for non-positive basis
+       if (ex(log(pow(a,b))).is_equal(b*log(a)))
+               ++result;
+
+       // infinite recursion log_series
+       ex e(log(-p));
+       ex ser = ex_to<pseries>(e.series(z, 1))
+               .convert_to_poly(/* no_order = */ true);
+       if (!ser.is_equal(e)) {
+               clog << "series(" << e << ", " << z << "): wrong result" << endl;
+               ++result;
+       }
+
+       return result;
+}
+
+static unsigned inifcns_consist_various()
+{
+       unsigned result = 0;
+       symbol n;
+       
+       if ( binomial(n, 0) != 1 ) {
+               clog << "ERROR: binomial(n,0) != 1" << endl;            
+               ++result;
+       }
+       
+       return result;
+}
+
+/* Several tests for derivetives */
+static unsigned inifcns_consist_derivatives()
+{
+       unsigned result = 0;
+       symbol z, w;
+       realsymbol x;
+       ex e, e1;
+
+       e=pow(x,z).conjugate().diff(x);
+       e1=pow(x,z).conjugate()*z.conjugate()/x;
+       if (! (e-e1).normal().is_zero() ) {
+               clog << "ERROR: pow(x,z).conjugate().diff(x) " << e << " != " << e1 << endl;
+               ++result;
+       }
+
+       e=pow(w,z).conjugate().diff(w);
+       e1=pow(w,z).conjugate()*z.conjugate()/w;
+       if ( (e-e1).normal().is_zero() ) {
+               clog << "ERROR: pow(w,z).conjugate().diff(w) " << e << " = " << e1 << endl;
+               ++result;
+       }
+
+       e=atanh(x).imag_part().diff(x);
+       if (! e.is_zero() ) {
+               clog << "ERROR: atanh(x).imag_part().diff(x) " << e << " != 0" << endl;
+               ++result;
+       }
+
+       e=atanh(w).imag_part().diff(w);
+       if ( e.is_zero() ) {
+               clog << "ERROR: atanh(w).imag_part().diff(w) " << e << " = 0" << endl;
+               ++result;
+       }
+
+       e=atanh(x).real_part().diff(x);
+       e1=pow(1-x*x,-1);
+       if (! (e-e1).normal().is_zero() ) {
+               clog << "ERROR: atanh(x).real_part().diff(x) " << e << " != " << e1 << endl;
+               ++result;
+       }
+
+       e=atanh(w).real_part().diff(w);
+       e1=pow(1-w*w,-1);
+       if ( (e-e1).normal().is_zero() ) {
+               clog << "ERROR: atanh(w).real_part().diff(w) " << e << " = " << e1 << endl;
+               ++result;
+       }
+
+       e=abs(log(z)).diff(z);
+       e1=(conjugate(log(z))/z+log(z)/conjugate(z))/abs(log(z))/2;
+       if (! (e-e1).normal().is_zero() ) {
+               clog << "ERROR: abs(log(z)).diff(z) " << e << " != " << e1 << endl;
+               ++result;
+       }
+
+       e=Order(pow(x,4)).diff(x);
+       e1=Order(pow(x,3));
+       if (! (e-e1).normal().is_zero() ) {
+               clog << "ERROR: Order(pow(x,4)).diff(x) " << e << " != " << e1 << endl;
+               ++result;
+       }
+
+       return result;
+}
+
+unsigned exam_inifcns()
 {
        unsigned result = 0;
        
        cout << "examining consistency of symbolic functions" << flush;
-       clog << "----------consistency of symbolic functions:" << endl;
        
        result += inifcns_consist_trans();  cout << '.' << flush;
        result += inifcns_consist_gamma();  cout << '.' << flush;
        result += inifcns_consist_psi();  cout << '.' << flush;
        result += inifcns_consist_zeta();  cout << '.' << flush;
-       
-       if (!result) {
-               cout << " passed " << endl;
-               clog << "(no output)" << endl;
-       } else {
-               cout << " failed " << endl;
-       }
+       result += inifcns_consist_abs();  cout << '.' << flush;
+       result += inifcns_consist_exp();  cout << '.' << flush;
+       result += inifcns_consist_log();  cout << '.' << flush;
+       result += inifcns_consist_various();  cout << '.' << flush;
+       result += inifcns_consist_derivatives();  cout << '.' << flush;
        
        return result;
 }
+
+int main(int argc, char** argv)
+{
+       return exam_inifcns();
+}