synced to 1.2 (typos, better ncmul::degree() and ::coeff())
[ginac.git] / check / exam_differentiation.cpp
index 331d3649131cc28335d61f3287fa177a3070b375..ccb97dab9a8926c55598585ffd683ec5ffb36028 100644 (file)
@@ -3,7 +3,7 @@
  *  Tests for symbolic differentiation, including various functions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -26,7 +26,7 @@ static unsigned check_diff(const ex &e, const symbol &x,
                                                   const ex &d, unsigned nth=1)
 {
        ex ed = e.diff(x, nth);
-       if ((ed - d).compare(ex(0)) != 0) {
+       if (!(ed - d).is_zero()) {
                switch (nth) {
                case 0:
                        clog << "zeroth ";
@@ -45,9 +45,7 @@ static unsigned check_diff(const ex &e, const symbol &x,
                clog << "derivative of " << e << " by " << x << " returned "
                     << ed << " instead of " << d << endl;
                clog << "returned:" << endl;
-               ed.printtree(clog);
-               clog << endl << "instead of" << endl;
-               d.printtree(clog);
+               clog << tree << ed << "instead of\n" << d << dflt;
 
                return 1;
        }
@@ -55,7 +53,7 @@ static unsigned check_diff(const ex &e, const symbol &x,
 }
 
 // Simple (expanded) polynomials
-static unsigned exam_differentiation1(void)
+static unsigned exam_differentiation1()
 {
        unsigned result = 0;
        symbol x("x"), y("y");
@@ -86,7 +84,7 @@ static unsigned exam_differentiation1(void)
 }
 
 // Trigonometric functions
-static unsigned exam_differentiation2(void)
+static unsigned exam_differentiation2()
 {
        unsigned result = 0;
        symbol x("x"), y("y"), a("a"), b("b");
@@ -135,7 +133,7 @@ static unsigned exam_differentiation2(void)
 }
        
 // exp function
-static unsigned exam_differentiation3(void)
+static unsigned exam_differentiation3()
 {
        unsigned result = 0;
        symbol x("x"), y("y"), a("a"), b("b");
@@ -163,7 +161,7 @@ static unsigned exam_differentiation3(void)
 }
 
 // log functions
-static unsigned exam_differentiation4(void)
+static unsigned exam_differentiation4()
 {
        unsigned result = 0;
        symbol x("x"), y("y"), a("a"), b("b");
@@ -193,7 +191,7 @@ static unsigned exam_differentiation4(void)
 }
 
 // Functions with two variables
-static unsigned exam_differentiation5(void)
+static unsigned exam_differentiation5()
 {
        unsigned result = 0;
        symbol x("x"), y("y"), a("a"), b("b");
@@ -214,7 +212,7 @@ static unsigned exam_differentiation5(void)
 }
 
 // Series
-static unsigned exam_differentiation6(void)
+static unsigned exam_differentiation6()
 {
        symbol x("x");
        ex e, d, ed;
@@ -225,7 +223,7 @@ static unsigned exam_differentiation6(void)
        ed = series_to_poly(ed);
        d = series_to_poly(d);
        
-       if ((ed - d).compare(ex(0)) != 0) {
+       if (!(ed - d).is_zero()) {
                clog << "derivative of " << e << " by " << x << " returned "
                     << ed << " instead of " << d << ")" << endl;
                return 1;
@@ -234,7 +232,7 @@ static unsigned exam_differentiation6(void)
 }
 
 // Hashing can help a lot, if differentiation is done cleverly
-static unsigned exam_differentiation7(void)
+static unsigned exam_differentiation7()
 {
        symbol x("x");
        ex P = x + pow(x,3);
@@ -257,7 +255,7 @@ static unsigned exam_differentiation7(void)
        return 0;
 }
 
-unsigned exam_differentiation(void)
+unsigned exam_differentiation()
 {
        unsigned result = 0;