lst(0) now works as expected
[ginac.git] / check / check_lsolve.cpp
index 80bfdc1283ec4863b4eb5a2e74fa2b8f468707f7..4c98fc510c5605454795a6d166e20fb508b041b2 100644 (file)
@@ -1,10 +1,11 @@
 /** @file check_lsolve.cpp
  *
  *  These test routines do some simple checks on solving linear systems of
- *  symbolic equations. */
+ *  symbolic equations.  They are a well-tried resource for cross-checking
+ *  the underlying symbolic manipulations. */
 
 /*
- *  GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -22,6 +23,7 @@
  */
 
 #include "checks.h"
+#include <sstream>
 
 static unsigned check_matrix_solve(unsigned m, unsigned n, unsigned p,
                                                                   unsigned degree)
@@ -49,9 +51,9 @@ static unsigned check_matrix_solve(unsigned m, unsigned n, unsigned p,
        matrix X(n,p);
        for (unsigned i=0; i<n; ++i) {
                for (unsigned j=0; j<p; ++j) {
-                       char buf[4];
-                       ostrstream(buf,sizeof(buf)) << i << j << ends;
-                       x.push_back(symbol(string("x")+buf));
+                       ostringstream buf;
+                       buf << "x" << i << j << ends;
+                       x.push_back(symbol(buf.str()));
                        X.set(i,j,x[p*i+j]);
                }
        }
@@ -95,16 +97,16 @@ static unsigned check_inifcns_lsolve(unsigned n)
 {
        unsigned result = 0;
        
-       for (int repetition=0; repetition<100; ++repetition) {
+       for (int repetition=0; repetition<200; ++repetition) {
                // create two size n vectors of symbols, one for the coefficients
                // a[0],..,a[n], one for indeterminates x[0]..x[n]:
                vector<symbol> a;
                vector<symbol> x;
                for (unsigned i=0; i<n; ++i) {
-                       char buf[3];
-                       ostrstream(buf,sizeof(buf)) << i << ends;
-                       a.push_back(symbol(string("a")+buf));
-                       x.push_back(symbol(string("x")+buf));
+                       ostringstream buf;
+                       buf << i << ends;
+                       a.push_back(symbol(string("a")+buf.str()));
+                       x.push_back(symbol(string("x")+buf.str()));
                }
                lst eqns;  // equation list
                lst vars;  // variable list
@@ -154,7 +156,7 @@ static unsigned check_inifcns_lsolve(unsigned n)
        return result;
 }
 
-unsigned check_lsolve(void)
+unsigned check_lsolve()
 {
        unsigned result = 0;
        
@@ -162,23 +164,23 @@ unsigned check_lsolve(void)
        clog << "---------linear solve:" << endl;
        
        // solve some numeric linear systems
-       for (unsigned n=1; n<12; ++n)
+       for (unsigned n=1; n<14; ++n)
                result += check_matrix_solve(n, n, 1, 0);
        cout << '.' << flush;
        // solve some underdetermined numeric systems
-       for (unsigned n=1; n<12; ++n)
+       for (unsigned n=1; n<14; ++n)
                result += check_matrix_solve(n+1, n, 1, 0);
        cout << '.' << flush;
        // solve some overdetermined numeric systems
-       for (unsigned n=1; n<12; ++n)
+       for (unsigned n=1; n<14; ++n)
                result += check_matrix_solve(n, n+1, 1, 0);
        cout << '.' << flush;
        // solve some multiple numeric systems
-       for (unsigned n=1; n<12; ++n)
+       for (unsigned n=1; n<14; ++n)
                result += check_matrix_solve(n, n, n/3+1, 0);
        cout << '.' << flush;
        // solve some symbolic linear systems
-       for (unsigned n=1; n<7; ++n)
+       for (unsigned n=1; n<8; ++n)
                result += check_matrix_solve(n, n, 1, 2);
        cout << '.' << flush;