/** @file utils.h * * Interface to several small and furry utilities needed within GiNaC but not * of any interest to the user of the library. */ /* * GiNaC Copyright (C) 1999-2020 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef GINAC_UTILS_H #define GINAC_UTILS_H #include "assertion.h" #include #include // for uintptr_t #include namespace GiNaC { /** Exception class thrown by functions to signal unimplemented functionality * so the expression may just be .hold() */ class dunno {}; // some compilers (e.g. cygwin) define a macro log2, causing confusion #ifdef log2 #undef log2 #endif unsigned log2(unsigned n); /** Rotate bits of unsigned value by one bit to the left. * This can be necessary if the user wants to define its own hashes. */ inline unsigned rotate_left(unsigned n) { return (n & 0x80000000U) ? (n << 1 | 0x00000001U) : (n << 1); } /** Compare two pointers (just to establish some sort of canonical order). * @return -1, 0, or 1 */ template inline int compare_pointers(const T * a, const T * b) { // '<' is not defined for pointers that don't point to the same array, // but std::less is. if (std::less()(a, b)) return -1; else if (std::less()(b, a)) return 1; return 0; } /** Truncated multiplication with golden ratio, for computing hash values. */ inline unsigned golden_ratio_hash(uintptr_t n) { return n * UINT64_C(0x4f1bbcdd); } /* Compute the sign of a permutation of a container, with and without an explicitly supplied comparison function. If the sign returned is 1 or -1, the container is sorted after the operation. */ template int permutation_sign(It first, It last) { using std::swap; if (first == last) return 0; --last; if (first == last) return 0; It flag = first; int sign = 1; do { It i = last, other = last; --other; bool swapped = false; while (i != first) { if (*i < *other) { swap(*other, *i); flag = other; swapped = true; sign = -sign; } else if (!(*other < *i)) return 0; --i; if (i != first) --other; } if (!swapped) return sign; ++flag; if (flag == last) return sign; first = flag; i = first; other = first; ++other; swapped = false; while (i != last) { if (*other < *i) { swap(*i, *other); flag = other; swapped = true; sign = -sign; } else if (!(*i < *other)) return 0; ++i; if (i != last) ++other; } if (!swapped) return sign; last = flag; --last; } while (first != last); return sign; } template int permutation_sign(It first, It last, Cmp comp, Swap swapit) { if (first == last) return 0; --last; if (first == last) return 0; It flag = first; int sign = 1; do { It i = last, other = last; --other; bool swapped = false; while (i != first) { if (comp(*i, *other)) { swapit(*other, *i); flag = other; swapped = true; sign = -sign; } else if (!comp(*other, *i)) return 0; --i; if (i != first) --other; } if (!swapped) return sign; ++flag; if (flag == last) return sign; first = flag; i = first; other = first; ++other; swapped = false; while (i != last) { if (comp(*other, *i)) { swapit(*i, *other); flag = other; swapped = true; sign = -sign; } else if (!comp(*i, *other)) return 0; ++i; if (i != last) ++other; } if (!swapped) return sign; last = flag; --last; } while (first != last); return sign; } /* Implementation of shaker sort, only compares adjacent elements. */ template void shaker_sort(It first, It last, Cmp comp, Swap swapit) { if (first == last) return; --last; if (first == last) return; It flag = first; do { It i = last, other = last; --other; bool swapped = false; while (i != first) { if (comp(*i, *other)) { swapit(*other, *i); flag = other; swapped = true; } --i; if (i != first) --other; } if (!swapped) return; ++flag; if (flag == last) return; first = flag; i = first; other = first; ++other; swapped = false; while (i != last) { if (comp(*other, *i)) { swapit(*i, *other); flag = other; swapped = true; } ++i; if (i != last) ++other; } if (!swapped) return; last = flag; --last; } while (first != last); } /* In-place cyclic permutation of a container (no copying, only swapping). */ template void cyclic_permutation(It first, It last, It new_first, Swap swapit) { unsigned num = last - first; again: if (first == new_first || num < 2) return; unsigned num1 = new_first - first, num2 = last - new_first; if (num1 >= num2) { It a = first, b = new_first; while (b != last) { swapit(*a, *b); ++a; ++b; } if (num1 > num2) { first += num2; num = num1; goto again; } } else { It a = new_first, b = last; do { --a; --b; swapit(*a, *b); } while (a != first); last -= num1; num = num2; goto again; } } /** Base class for generating all bounded combinatorial partitions of an integer * n with exactly m parts in non-decreasing order. */ class basic_partition_generator { protected: // Partitions n into m parts, not including zero parts. // (Cf. OEIS sequence A008284; implementation adapted from Jörg Arndt's // FXT library) struct mpartition2 { // partition: x[1] + x[2] + ... + x[m] = n and sentinel x[0] == 0 std::vector x; unsigned n; // n>0 unsigned m; // 0 partition; // current partition mutable bool current_updated; // whether partition vector has been updated public: partition_with_zero_parts_generator(unsigned n_, unsigned m_) : basic_partition_generator(n_, 1), m(m_), partition(m_), current_updated(false) { } // returns current partition in non-decreasing order, padded with zeros const std::vector& get() const { if (!current_updated) { for (unsigned i = 0; i < m - mpgen.m; ++i) partition[i] = 0; // pad with zeros for (unsigned i = m - mpgen.m; i < m; ++i) partition[i] = mpgen.x[i - m + mpgen.m + 1]; current_updated = true; } return partition; } bool next() { current_updated = false; if (!mpgen.next_partition()) { if (mpgen.m == m || mpgen.m == mpgen.n) return false; // current is last // increment number of parts mpgen = mpartition2(mpgen.n, mpgen.m + 1); } return true; } }; /** Generate all bounded combinatorial partitions of an integer n with exactly * m parts (not including zero parts) in non-decreasing order. */ class partition_generator : public basic_partition_generator { private: mutable std::vector partition; // current partition mutable bool current_updated; // whether partition vector has been updated public: partition_generator(unsigned n_, unsigned m_) : basic_partition_generator(n_, m_), partition(m_), current_updated(false) { } // returns current partition in non-decreasing order, padded with zeros const std::vector& get() const { if (!current_updated) { for (unsigned i = 0; i < mpgen.m; ++i) partition[i] = mpgen.x[i + 1]; current_updated = true; } return partition; } bool next() { current_updated = false; return mpgen.next_partition(); } }; /** Generate all compositions of a partition of an integer n, starting with the * compositions which has non-decreasing order. */ class composition_generator { private: // Generates all distinct permutations of a multiset. // (Based on Aaron Williams' algorithm 1 from "Loopless Generation of // Multiset Permutations using a Constant Number of Variables by Prefix // Shifts." ) struct coolmulti { // element of singly linked list struct element { unsigned value; element* next; element(unsigned val, element* n) : value(val), next(n) {} ~element() { // recurses down to the end of the singly linked list delete next; } }; element *head, *i, *after_i; // NB: Partition must be sorted in non-decreasing order. explicit coolmulti(const std::vector& partition) : head(nullptr), i(nullptr), after_i(nullptr) { for (unsigned n = 0; n < partition.size(); ++n) { head = new element(partition[n], head); if (n <= 1) i = head; } after_i = i->next; } ~coolmulti() { // deletes singly linked list delete head; } void next_permutation() { element *before_k; if (after_i->next != nullptr && i->value >= after_i->next->value) before_k = after_i; else before_k = i; element *k = before_k->next; before_k->next = k->next; k->next = head; if (k->value < head->value) i = k; after_i = i->next; head = k; } bool finished() const { return after_i->next == nullptr && after_i->value >= head->value; } } cmgen; bool atend; // needed for simplifying iteration over permutations bool trivial; // likewise, true if all elements are equal mutable std::vector composition; // current compositions mutable bool current_updated; // whether composition vector has been updated public: explicit composition_generator(const std::vector& partition) : cmgen(partition), atend(false), trivial(true), composition(partition.size()), current_updated(false) { for (unsigned i=1; i& get() const { if (!current_updated) { coolmulti::element* it = cmgen.head; size_t i = 0; while (it != nullptr) { composition[i] = it->value; it = it->next; ++i; } current_updated = true; } return composition; } bool next() { // This ugly contortion is needed because the original coolmulti // algorithm requires code duplication of the payload procedure, // one before the loop and one inside it. if (trivial || atend) return false; cmgen.next_permutation(); current_updated = false; atend = cmgen.finished(); return true; } }; /** Compute the multinomial coefficient n!/(p1!*p2!*...*pk!) where * n = p1+p2+...+pk, i.e. p is a partition of n. */ const numeric multinomial_coefficient(const std::vector & p); // Collection of `construct on first use' wrappers for safely avoiding // internal object replication without running into the `static // initialization order fiasco'. This chest of numbers helps speed up // the library but should not be used outside it since it is // potentially confusing. class ex; extern const numeric *_num_120_p; extern const ex _ex_120; extern const numeric *_num_60_p; extern const ex _ex_60; extern const numeric *_num_48_p; extern const ex _ex_48; extern const numeric *_num_30_p; extern const ex _ex_30; extern const numeric *_num_25_p; extern const ex _ex_25; extern const numeric *_num_24_p; extern const ex _ex_24; extern const numeric *_num_20_p; extern const ex _ex_20; extern const numeric *_num_18_p; extern const ex _ex_18; extern const numeric *_num_15_p; extern const ex _ex_15; extern const numeric *_num_12_p; extern const ex _ex_12; extern const numeric *_num_11_p; extern const ex _ex_11; extern const numeric *_num_10_p; extern const ex _ex_10; extern const numeric *_num_9_p; extern const ex _ex_9; extern const numeric *_num_8_p; extern const ex _ex_8; extern const numeric *_num_7_p; extern const ex _ex_7; extern const numeric *_num_6_p; extern const ex _ex_6; extern const numeric *_num_5_p; extern const ex _ex_5; extern const numeric *_num_4_p; extern const ex _ex_4; extern const numeric *_num_3_p; extern const ex _ex_3; extern const numeric *_num_2_p; extern const ex _ex_2; extern const numeric *_num_1_p; extern const ex _ex_1; extern const numeric *_num_1_2_p; extern const ex _ex_1_2; extern const numeric *_num_1_3_p; extern const ex _ex_1_3; extern const numeric *_num_1_4_p; extern const ex _ex_1_4; extern const numeric *_num0_p; extern const basic *_num0_bp; extern const ex _ex0; extern const numeric *_num1_4_p; extern const ex _ex1_4; extern const numeric *_num1_3_p; extern const ex _ex1_3; extern const numeric *_num1_2_p; extern const ex _ex1_2; extern const numeric *_num1_p; extern const ex _ex1; extern const numeric *_num2_p; extern const ex _ex2; extern const numeric *_num3_p; extern const ex _ex3; extern const numeric *_num4_p; extern const ex _ex4; extern const numeric *_num5_p; extern const ex _ex5; extern const numeric *_num6_p; extern const ex _ex6; extern const numeric *_num7_p; extern const ex _ex7; extern const numeric *_num8_p; extern const ex _ex8; extern const numeric *_num9_p; extern const ex _ex9; extern const numeric *_num10_p; extern const ex _ex10; extern const numeric *_num11_p; extern const ex _ex11; extern const numeric *_num12_p; extern const ex _ex12; extern const numeric *_num15_p; extern const ex _ex15; extern const numeric *_num18_p; extern const ex _ex18; extern const numeric *_num20_p; extern const ex _ex20; extern const numeric *_num24_p; extern const ex _ex24; extern const numeric *_num25_p; extern const ex _ex25; extern const numeric *_num30_p; extern const ex _ex30; extern const numeric *_num48_p; extern const ex _ex48; extern const numeric *_num60_p; extern const ex _ex60; extern const numeric *_num120_p; extern const ex _ex120; // Helper macros for class implementations (mostly useful for trivial classes) #define DEFAULT_CTOR(classname) \ classname::classname() { setflag(status_flags::evaluated | status_flags::expanded); } #define DEFAULT_COMPARE(classname) \ int classname::compare_same_type(const basic & other) const \ { \ /* by default, the objects are always identical */ \ return 0; \ } #define DEFAULT_PRINT(classname, text) \ void classname::do_print(const print_context & c, unsigned level) const \ { \ c.s << text; \ } #define DEFAULT_PRINT_LATEX(classname, text, latex) \ DEFAULT_PRINT(classname, text) \ void classname::do_print_latex(const print_latex & c, unsigned level) const \ { \ c.s << latex; \ } } // namespace GiNaC #endif // ndef GINAC_UTILS_H