/** @file tensor.cpp * * Implementation of GiNaC's special tensors. */ /* * GiNaC Copyright (C) 1999-2018 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "tensor.h" #include "idx.h" #include "indexed.h" #include "symmetry.h" #include "relational.h" #include "operators.h" #include "lst.h" #include "numeric.h" #include "matrix.h" #include "archive.h" #include "utils.h" #include #include #include namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(tensor, basic) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(tensdelta, tensor, print_func(&tensdelta::do_print). print_func(&tensdelta::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(tensmetric, tensor, print_func(&tensmetric::do_print). print_func(&tensmetric::do_print)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(minkmetric, tensmetric, print_func(&minkmetric::do_print). print_func(&minkmetric::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(spinmetric, tensmetric, print_func(&spinmetric::do_print). print_func(&spinmetric::do_print_latex)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(tensepsilon, tensor, print_func(&tensepsilon::do_print). print_func(&tensepsilon::do_print_latex)) ////////// // constructors ////////// tensor::tensor() { setflag(status_flags::evaluated | status_flags::expanded); } DEFAULT_CTOR(tensdelta) DEFAULT_CTOR(tensmetric) minkmetric::minkmetric() : pos_sig(false) { } spinmetric::spinmetric() { } minkmetric::minkmetric(bool ps) : pos_sig(ps) { } tensepsilon::tensepsilon() : minkowski(false), pos_sig(false) { } tensepsilon::tensepsilon(bool mink, bool ps) : minkowski(mink), pos_sig(ps) { } ////////// // archiving ////////// void minkmetric::read_archive(const archive_node& n, lst& sym_lst) { inherited::read_archive(n, sym_lst); n.find_bool("pos_sig", pos_sig); } GINAC_BIND_UNARCHIVER(minkmetric); void minkmetric::archive(archive_node &n) const { inherited::archive(n); n.add_bool("pos_sig", pos_sig); } void tensepsilon::read_archive(const archive_node& n, lst& sym_lst) { inherited::read_archive(n, sym_lst); n.find_bool("minkowski", minkowski); n.find_bool("pos_sig", pos_sig); } GINAC_BIND_UNARCHIVER(tensepsilon); void tensepsilon::archive(archive_node &n) const { inherited::archive(n); n.add_bool("minkowski", minkowski); n.add_bool("pos_sig", pos_sig); } GINAC_BIND_UNARCHIVER(tensdelta); GINAC_BIND_UNARCHIVER(tensmetric); GINAC_BIND_UNARCHIVER(spinmetric); ////////// // functions overriding virtual functions from base classes ////////// DEFAULT_COMPARE(tensor) DEFAULT_COMPARE(tensdelta) DEFAULT_COMPARE(tensmetric) DEFAULT_COMPARE(spinmetric) bool tensdelta::info(unsigned inf) const { if(inf == info_flags::real) return true; return false; } bool tensmetric::info(unsigned inf) const { if(inf == info_flags::real) return true; return false; } int minkmetric::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const minkmetric &o = static_cast(other); if (pos_sig != o.pos_sig) return pos_sig ? -1 : 1; else return inherited::compare_same_type(other); } bool minkmetric::info(unsigned inf) const { if(inf == info_flags::real) return true; return false; } int tensepsilon::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const tensepsilon &o = static_cast(other); if (minkowski != o.minkowski) return minkowski ? -1 : 1; else if (pos_sig != o.pos_sig) return pos_sig ? -1 : 1; else return inherited::compare_same_type(other); } bool tensepsilon::info(unsigned inf) const { if(inf == info_flags::real) return true; return false; } bool spinmetric::info(unsigned inf) const { if(inf == info_flags::real) return true; return false; } DEFAULT_PRINT_LATEX(tensdelta, "delta", "\\delta") DEFAULT_PRINT(tensmetric, "g") DEFAULT_PRINT_LATEX(minkmetric, "eta", "\\eta") DEFAULT_PRINT_LATEX(spinmetric, "eps", "\\varepsilon") DEFAULT_PRINT_LATEX(tensepsilon, "eps", "\\varepsilon") /** Automatic symbolic evaluation of an indexed delta tensor. */ ex tensdelta::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 3); GINAC_ASSERT(is_a(i.op(0))); const idx & i1 = ex_to(i.op(1)); const idx & i2 = ex_to(i.op(2)); // The dimension of the indices must be equal, otherwise we use the minimal // dimension if (!i1.get_dim().is_equal(i2.get_dim())) { ex min_dim = i1.minimal_dim(i2); exmap m; m[i1] = i1.replace_dim(min_dim); m[i2] = i2.replace_dim(min_dim); return i.subs(m, subs_options::no_pattern); } // Trace of delta tensor is the (effective) dimension of the space if (is_dummy_pair(i1, i2)) { try { return i1.minimal_dim(i2); } catch (std::exception &e) { return i.hold(); } } // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::integer)) { int n1 = ex_to(i1.get_value()).to_int(), n2 = ex_to(i2.get_value()).to_int(); if (n1 == n2) return _ex1; else return _ex0; } // No further simplifications return i.hold(); } /** Automatic symbolic evaluation of an indexed metric tensor. */ ex tensmetric::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 3); GINAC_ASSERT(is_a(i.op(0))); GINAC_ASSERT(is_a(i.op(1))); GINAC_ASSERT(is_a(i.op(2))); const varidx & i1 = ex_to(i.op(1)); const varidx & i2 = ex_to(i.op(2)); // The dimension of the indices must be equal, otherwise we use the minimal // dimension if (!i1.get_dim().is_equal(i2.get_dim())) { ex min_dim = i1.minimal_dim(i2); exmap m; m[i1] = i1.replace_dim(min_dim); m[i2] = i2.replace_dim(min_dim); return i.subs(m, subs_options::no_pattern); } // A metric tensor with one covariant and one contravariant index gets // replaced by a delta tensor if (i1.is_covariant() != i2.is_covariant()) return delta_tensor(i1, i2); // No further simplifications return i.hold(); } /** Automatic symbolic evaluation of an indexed Lorentz metric tensor. */ ex minkmetric::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 3); GINAC_ASSERT(is_a(i.op(0))); GINAC_ASSERT(is_a(i.op(1))); GINAC_ASSERT(is_a(i.op(2))); const varidx & i1 = ex_to(i.op(1)); const varidx & i2 = ex_to(i.op(2)); // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::nonnegint)) { int n1 = ex_to(i1.get_value()).to_int(), n2 = ex_to(i2.get_value()).to_int(); if (n1 != n2) return _ex0; else if (n1 == 0) return pos_sig ? _ex_1 : _ex1; else return pos_sig ? _ex1 : _ex_1; } // Perform the usual evaluations of a metric tensor return inherited::eval_indexed(i); } /** Automatic symbolic evaluation of an indexed metric tensor. */ ex spinmetric::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 3); GINAC_ASSERT(is_a(i.op(0))); GINAC_ASSERT(is_a(i.op(1))); GINAC_ASSERT(is_a(i.op(2))); const spinidx & i1 = ex_to(i.op(1)); const spinidx & i2 = ex_to(i.op(2)); // Convolutions are zero if (!(static_cast(i).get_dummy_indices().empty())) return _ex0; // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::nonnegint)) { int n1 = ex_to(i1.get_value()).to_int(), n2 = ex_to(i2.get_value()).to_int(); if (n1 == n2) return _ex0; else if (n1 < n2) return _ex1; else return _ex_1; } // No further simplifications return i.hold(); } /** Automatic symbolic evaluation of an indexed epsilon tensor. */ ex tensepsilon::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() > 1); GINAC_ASSERT(is_a(i.op(0))); // Convolutions are zero if (!(static_cast(i).get_dummy_indices().empty())) return _ex0; // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::nonnegint)) { // Get sign of index permutation (the indices should already be in // a canonic order but we can't assume what exactly that order is) std::vector v; v.reserve(i.nops() - 1); for (size_t j=1; j(ex_to(i.op(j)).get_value()).to_int()); int sign = permutation_sign(v.begin(), v.end()); // In a Minkowski space, check for covariant indices if (minkowski) { for (size_t j=1; j(x)) { throw(std::runtime_error("indices of epsilon tensor in Minkowski space must be of type varidx")); } if (ex_to(x).is_covariant()) { if (ex_to(x).get_value().is_zero()) { sign = (pos_sig ? -sign : sign); } else { sign = (pos_sig ? sign : -sign); } } } } return sign; } // No further simplifications return i.hold(); } bool tensor::replace_contr_index(exvector::iterator self, exvector::iterator other) const { // Try to contract the first index const idx *self_idx = &ex_to(self->op(1)); const idx *free_idx = &ex_to(self->op(2)); bool first_index_tried = false; again: if (self_idx->is_symbolic()) { for (size_t i=1; inops(); i++) { if (! is_a(other->op(i))) continue; const idx &other_idx = ex_to(other->op(i)); if (is_dummy_pair(*self_idx, other_idx)) { // Contraction found, remove this tensor and substitute the // index in the second object try { // minimal_dim() throws an exception when index dimensions are not comparable ex min_dim = self_idx->minimal_dim(other_idx); *other = other->subs(other_idx == free_idx->replace_dim(min_dim)); *self = _ex1; // *other is assigned first because assigning *self invalidates free_idx return true; } catch (std::exception &e) { return false; } } } } if (!first_index_tried) { // No contraction with the first index found, try the second index self_idx = &ex_to(self->op(2)); free_idx = &ex_to(self->op(1)); first_index_tried = true; goto again; } return false; } /** Contraction of an indexed delta tensor with something else. */ bool tensdelta::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 3); GINAC_ASSERT(is_a(self->op(0))); // Replace the dummy index with this tensor's other index and remove // the tensor (this is valid for contractions with all other tensors) return replace_contr_index(self, other); } /** Contraction of an indexed metric tensor with something else. */ bool tensmetric::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 3); GINAC_ASSERT(is_a(self->op(0))); // If contracting with the delta tensor, let the delta do it // (don't raise/lower delta indices) if (is_a(other->op(0))) return false; // Replace the dummy index with this tensor's other index and remove // the tensor return replace_contr_index(self, other); } /** Contraction of an indexed spinor metric with something else. */ bool spinmetric::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 3); GINAC_ASSERT(is_a(self->op(0))); // Contractions between spinor metrics if (is_a(other->op(0))) { const idx &self_i1 = ex_to(self->op(1)); const idx &self_i2 = ex_to(self->op(2)); const idx &other_i1 = ex_to(other->op(1)); const idx &other_i2 = ex_to(other->op(2)); if (is_dummy_pair(self_i1, other_i1)) { if (is_dummy_pair(self_i2, other_i2)) *self = _ex2; else *self = delta_tensor(self_i2, other_i2); *other = _ex1; return true; } else if (is_dummy_pair(self_i1, other_i2)) { if (is_dummy_pair(self_i2, other_i1)) *self = _ex_2; else *self = -delta_tensor(self_i2, other_i1); *other = _ex1; return true; } else if (is_dummy_pair(self_i2, other_i1)) { *self = -delta_tensor(self_i1, other_i2); *other = _ex1; return true; } else if (is_dummy_pair(self_i2, other_i2)) { *self = delta_tensor(self_i1, other_i1); *other = _ex1; return true; } } // If contracting with the delta tensor, let the delta do it // (don't raise/lower delta indices) if (is_a(other->op(0))) return false; // Try to contract first index const idx *self_idx = &ex_to(self->op(1)); const idx *free_idx = &ex_to(self->op(2)); bool first_index_tried = false; int sign = 1; again: if (self_idx->is_symbolic()) { for (size_t i=1; inops(); i++) { const idx &other_idx = ex_to(other->op(i)); if (is_dummy_pair(*self_idx, other_idx)) { // Contraction found, remove metric tensor and substitute // index in second object (assign *self last because this // invalidates free_idx) *other = other->subs(other_idx == *free_idx); *self = (static_cast(self_idx)->is_covariant() ? sign : -sign); return true; } } } if (!first_index_tried) { // No contraction with first index found, try second index self_idx = &ex_to(self->op(2)); free_idx = &ex_to(self->op(1)); first_index_tried = true; sign = -sign; goto again; } return false; } /** Contraction of epsilon tensor with something else. */ bool tensepsilon::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(is_a(self->op(0))); size_t num = self->nops() - 1; if (is_exactly_a(other->op(0)) && num+1 == other->nops()) { // Contraction of two epsilon tensors is a determinant bool variance = is_a(self->op(1)); matrix M(num, num); for (size_t i=0; iop(i+1), other->op(j+1), pos_sig); else if (variance) M(i, j) = metric_tensor(self->op(i+1), other->op(j+1)); else M(i, j) = delta_tensor(self->op(i+1), other->op(j+1)); } } int sign = minkowski ? -1 : 1; *self = sign * M.determinant().simplify_indexed(); *other = _ex1; return true; } return false; } ////////// // global functions ////////// ex delta_tensor(const ex & i1, const ex & i2) { static ex delta = dynallocate(); if (!is_a(i1) || !is_a(i2)) throw(std::invalid_argument("indices of delta tensor must be of type idx")); return indexed(delta, symmetric2(), i1, i2); } ex metric_tensor(const ex & i1, const ex & i2) { static ex metric = dynallocate(); if (!is_a(i1) || !is_a(i2)) throw(std::invalid_argument("indices of metric tensor must be of type varidx")); return indexed(metric, symmetric2(), i1, i2); } ex lorentz_g(const ex & i1, const ex & i2, bool pos_sig) { static ex metric_neg = dynallocate(false); static ex metric_pos = dynallocate(true); if (!is_a(i1) || !is_a(i2)) throw(std::invalid_argument("indices of metric tensor must be of type varidx")); return indexed(pos_sig ? metric_pos : metric_neg, symmetric2(), i1, i2); } ex spinor_metric(const ex & i1, const ex & i2) { static ex metric = dynallocate(); if (!is_a(i1) || !is_a(i2)) throw(std::invalid_argument("indices of spinor metric must be of type spinidx")); if (!ex_to(i1).get_dim().is_equal(2) || !ex_to(i2).get_dim().is_equal(2)) throw(std::runtime_error("index dimension for spinor metric must be 2")); return indexed(metric, antisymmetric2(), i1, i2); } ex epsilon_tensor(const ex & i1, const ex & i2) { static ex epsilon = dynallocate(); if (!is_a(i1) || !is_a(i2)) throw(std::invalid_argument("indices of epsilon tensor must be of type idx")); ex dim = ex_to(i1).get_dim(); if (!dim.is_equal(ex_to(i2).get_dim())) throw(std::invalid_argument("all indices of epsilon tensor must have the same dimension")); if (!ex_to(i1).get_dim().is_equal(_ex2)) throw(std::runtime_error("index dimension of epsilon tensor must match number of indices")); if(is_a(i1.op(0))||is_a(i2.op(0))) return indexed(epsilon, antisymmetric2(), i1, i2).hold(); return indexed(epsilon, antisymmetric2(), i1, i2); } ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3) { static ex epsilon = dynallocate(); if (!is_a(i1) || !is_a(i2) || !is_a(i3)) throw(std::invalid_argument("indices of epsilon tensor must be of type idx")); ex dim = ex_to(i1).get_dim(); if (!dim.is_equal(ex_to(i2).get_dim()) || !dim.is_equal(ex_to(i3).get_dim())) throw(std::invalid_argument("all indices of epsilon tensor must have the same dimension")); if (!ex_to(i1).get_dim().is_equal(_ex3)) throw(std::runtime_error("index dimension of epsilon tensor must match number of indices")); if(is_a(i1.op(0))||is_a(i2.op(0))||is_a(i3.op(0))) return indexed(epsilon, antisymmetric3(), i1, i2, i3).hold(); return indexed(epsilon, antisymmetric3(), i1, i2, i3); } ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4, bool pos_sig) { static ex epsilon_neg = dynallocate(true, false); static ex epsilon_pos = dynallocate(true, true); if (!is_a(i1) || !is_a(i2) || !is_a(i3) || !is_a(i4)) throw(std::invalid_argument("indices of Lorentz epsilon tensor must be of type varidx")); ex dim = ex_to(i1).get_dim(); if (!dim.is_equal(ex_to(i2).get_dim()) || !dim.is_equal(ex_to(i3).get_dim()) || !dim.is_equal(ex_to(i4).get_dim())) throw(std::invalid_argument("all indices of epsilon tensor must have the same dimension")); if (!ex_to(i1).get_dim().is_equal(_ex4)) throw(std::runtime_error("index dimension of epsilon tensor must match number of indices")); if(is_a(i1.op(0))||is_a(i2.op(0))||is_a(i3.op(0))||is_a(i4.op(0))) return indexed(pos_sig ? epsilon_pos : epsilon_neg, antisymmetric4(), i1, i2, i3, i4).hold(); return indexed(pos_sig ? epsilon_pos : epsilon_neg, antisymmetric4(), i1, i2, i3, i4); } } // namespace GiNaC