/** @file tensor.cpp * * Implementation of GiNaC's special tensors. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "tensor.h" #include "idx.h" #include "indexed.h" #include "symmetry.h" #include "relational.h" #include "lst.h" #include "numeric.h" #include "matrix.h" #include "print.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(tensor, basic) GINAC_IMPLEMENT_REGISTERED_CLASS(tensdelta, tensor) GINAC_IMPLEMENT_REGISTERED_CLASS(tensmetric, tensor) GINAC_IMPLEMENT_REGISTERED_CLASS(minkmetric, tensmetric) GINAC_IMPLEMENT_REGISTERED_CLASS(spinmetric, tensmetric) GINAC_IMPLEMENT_REGISTERED_CLASS(tensepsilon, tensor) ////////// // default ctor, dtor, copy ctor, assignment operator and helpers ////////// DEFAULT_CTORS(tensor) DEFAULT_CTORS(tensdelta) DEFAULT_CTORS(tensmetric) DEFAULT_COPY(spinmetric) DEFAULT_DESTROY(spinmetric) DEFAULT_DESTROY(minkmetric) DEFAULT_DESTROY(tensepsilon) minkmetric::minkmetric() : pos_sig(false) { tinfo_key = TINFO_minkmetric; } spinmetric::spinmetric() { tinfo_key = TINFO_spinmetric; } minkmetric::minkmetric(bool ps) : pos_sig(ps) { tinfo_key = TINFO_minkmetric; } void minkmetric::copy(const minkmetric & other) { inherited::copy(other); pos_sig = other.pos_sig; } tensepsilon::tensepsilon() : minkowski(false), pos_sig(false) { tinfo_key = TINFO_tensepsilon; } tensepsilon::tensepsilon(bool mink, bool ps) : minkowski(mink), pos_sig(ps) { tinfo_key = TINFO_tensepsilon; } void tensepsilon::copy(const tensepsilon & other) { inherited::copy(other); minkowski = other.minkowski; pos_sig = other.pos_sig; } ////////// // archiving ////////// DEFAULT_ARCHIVING(tensor) DEFAULT_ARCHIVING(tensdelta) DEFAULT_ARCHIVING(tensmetric) DEFAULT_ARCHIVING(spinmetric) DEFAULT_UNARCHIVE(minkmetric) DEFAULT_UNARCHIVE(tensepsilon) minkmetric::minkmetric(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { n.find_bool("pos_sig", pos_sig); } void minkmetric::archive(archive_node &n) const { inherited::archive(n); n.add_bool("pos_sig", pos_sig); } tensepsilon::tensepsilon(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { n.find_bool("minkowski", minkowski); n.find_bool("pos_sig", pos_sig); } void tensepsilon::archive(archive_node &n) const { inherited::archive(n); n.add_bool("minkowski", minkowski); n.add_bool("pos_sig", pos_sig); } ////////// // functions overriding virtual functions from base classes ////////// DEFAULT_COMPARE(tensor) DEFAULT_COMPARE(tensdelta) DEFAULT_COMPARE(tensmetric) DEFAULT_COMPARE(spinmetric) int minkmetric::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const minkmetric &o = static_cast(other); if (pos_sig != o.pos_sig) return pos_sig ? -1 : 1; else return inherited::compare_same_type(other); } int tensepsilon::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const tensepsilon &o = static_cast(other); if (minkowski != o.minkowski) return minkowski ? -1 : 1; else if (pos_sig != o.pos_sig) return pos_sig ? -1 : 1; else return inherited::compare_same_type(other); } DEFAULT_PRINT_LATEX(tensdelta, "delta", "\\delta") DEFAULT_PRINT(tensmetric, "g") DEFAULT_PRINT_LATEX(minkmetric, "eta", "\\eta") DEFAULT_PRINT_LATEX(spinmetric, "eps", "\\varepsilon") DEFAULT_PRINT_LATEX(tensepsilon, "eps", "\\varepsilon") /** Automatic symbolic evaluation of an indexed delta tensor. */ ex tensdelta::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 3); GINAC_ASSERT(is_a(i.op(0))); const idx & i1 = ex_to(i.op(1)); const idx & i2 = ex_to(i.op(2)); // Trace of delta tensor is the dimension of the space if (is_dummy_pair(i1, i2)) return i1.get_dim(); // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::integer)) { int n1 = ex_to(i1.get_value()).to_int(), n2 = ex_to(i2.get_value()).to_int(); if (n1 == n2) return _ex1; else return _ex0; } // No further simplifications return i.hold(); } /** Automatic symbolic evaluation of an indexed metric tensor. */ ex tensmetric::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 3); GINAC_ASSERT(is_a(i.op(0))); GINAC_ASSERT(is_a(i.op(1))); GINAC_ASSERT(is_a(i.op(2))); const varidx & i1 = ex_to(i.op(1)); const varidx & i2 = ex_to(i.op(2)); // A metric tensor with one covariant and one contravariant index gets // replaced by a delta tensor if (i1.is_covariant() != i2.is_covariant()) return delta_tensor(i1, i2); // No further simplifications return i.hold(); } /** Automatic symbolic evaluation of an indexed Lorentz metric tensor. */ ex minkmetric::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 3); GINAC_ASSERT(is_a(i.op(0))); GINAC_ASSERT(is_a(i.op(1))); GINAC_ASSERT(is_a(i.op(2))); const varidx & i1 = ex_to(i.op(1)); const varidx & i2 = ex_to(i.op(2)); // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::nonnegint)) { int n1 = ex_to(i1.get_value()).to_int(), n2 = ex_to(i2.get_value()).to_int(); if (n1 != n2) return _ex0; else if (n1 == 0) return pos_sig ? _ex_1 : _ex1; else return pos_sig ? _ex1 : _ex_1; } // Perform the usual evaluations of a metric tensor return inherited::eval_indexed(i); } /** Automatic symbolic evaluation of an indexed metric tensor. */ ex spinmetric::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() == 3); GINAC_ASSERT(is_a(i.op(0))); GINAC_ASSERT(is_a(i.op(1))); GINAC_ASSERT(is_a(i.op(2))); const spinidx & i1 = ex_to(i.op(1)); const spinidx & i2 = ex_to(i.op(2)); // Convolutions are zero if (!(static_cast(i).get_dummy_indices().empty())) return _ex0; // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::nonnegint)) { int n1 = ex_to(i1.get_value()).to_int(), n2 = ex_to(i2.get_value()).to_int(); if (n1 == n2) return _ex0; else if (n1 < n2) return _ex1; else return _ex_1; } // No further simplifications return i.hold(); } /** Automatic symbolic evaluation of an indexed epsilon tensor. */ ex tensepsilon::eval_indexed(const basic & i) const { GINAC_ASSERT(is_a(i)); GINAC_ASSERT(i.nops() > 1); GINAC_ASSERT(is_a(i.op(0))); // Convolutions are zero if (!(static_cast(i).get_dummy_indices().empty())) return _ex0; // Numeric evaluation if (static_cast(i).all_index_values_are(info_flags::nonnegint)) { // Get sign of index permutation (the indices should already be in // a canonic order but we can't assume what exactly that order is) std::vector v; v.reserve(i.nops() - 1); for (unsigned j=1; j(ex_to(i.op(j)).get_value()).to_int()); int sign = permutation_sign(v.begin(), v.end()); // In a Minkowski space, check for covariant indices if (minkowski) { for (unsigned j=1; j(x).is_covariant()) if (ex_to(x).get_value().is_zero()) sign = (pos_sig ? -sign : sign); else sign = (pos_sig ? sign : -sign); } } return sign; } // No further simplifications return i.hold(); } /** Contraction of an indexed delta tensor with something else. */ bool tensdelta::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 3); GINAC_ASSERT(is_a(self->op(0))); // Try to contract first index const idx *self_idx = &ex_to(self->op(1)); const idx *free_idx = &ex_to(self->op(2)); bool first_index_tried = false; again: if (self_idx->is_symbolic()) { for (unsigned i=1; inops(); i++) { const idx &other_idx = ex_to(other->op(i)); if (is_dummy_pair(*self_idx, other_idx)) { // Contraction found, remove delta tensor and substitute // index in second object *self = _ex1; *other = other->subs(other_idx == *free_idx); return true; } } } if (!first_index_tried) { // No contraction with first index found, try second index self_idx = &ex_to(self->op(2)); free_idx = &ex_to(self->op(1)); first_index_tried = true; goto again; } return false; } /** Contraction of an indexed metric tensor with something else. */ bool tensmetric::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 3); GINAC_ASSERT(is_a(self->op(0))); // If contracting with the delta tensor, let the delta do it // (don't raise/lower delta indices) if (is_ex_of_type(other->op(0), tensdelta)) return false; // Try to contract first index const idx *self_idx = &ex_to(self->op(1)); const idx *free_idx = &ex_to(self->op(2)); bool first_index_tried = false; again: if (self_idx->is_symbolic()) { for (unsigned i=1; inops(); i++) { const idx &other_idx = ex_to(other->op(i)); if (is_dummy_pair(*self_idx, other_idx)) { // Contraction found, remove metric tensor and substitute // index in second object *self = _ex1; *other = other->subs(other_idx == *free_idx); return true; } } } if (!first_index_tried) { // No contraction with first index found, try second index self_idx = &ex_to(self->op(2)); free_idx = &ex_to(self->op(1)); first_index_tried = true; goto again; } return false; } /** Contraction of an indexed spinor metric with something else. */ bool spinmetric::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(self->nops() == 3); GINAC_ASSERT(is_a(self->op(0))); // Contractions between spinor metrics if (is_ex_of_type(other->op(0), spinmetric)) { const idx &self_i1 = ex_to(self->op(1)); const idx &self_i2 = ex_to(self->op(2)); const idx &other_i1 = ex_to(other->op(1)); const idx &other_i2 = ex_to(other->op(2)); if (is_dummy_pair(self_i1, other_i1)) { if (is_dummy_pair(self_i2, other_i2)) *self = _ex2; else *self = delta_tensor(self_i2, other_i2); *other = _ex1; return true; } else if (is_dummy_pair(self_i1, other_i2)) { if (is_dummy_pair(self_i2, other_i1)) *self = _ex_2; else *self = -delta_tensor(self_i2, other_i1); *other = _ex1; return true; } else if (is_dummy_pair(self_i2, other_i1)) { *self = -delta_tensor(self_i1, other_i2); *other = _ex1; return true; } else if (is_dummy_pair(self_i2, other_i2)) { *self = delta_tensor(self_i1, other_i1); *other = _ex1; return true; } } // If contracting with the delta tensor, let the delta do it // (don't raise/lower delta indices) if (is_ex_of_type(other->op(0), tensdelta)) return false; // Try to contract first index const idx *self_idx = &ex_to(self->op(1)); const idx *free_idx = &ex_to(self->op(2)); bool first_index_tried = false; int sign = 1; again: if (self_idx->is_symbolic()) { for (unsigned i=1; inops(); i++) { const idx &other_idx = ex_to(other->op(i)); if (is_dummy_pair(*self_idx, other_idx)) { // Contraction found, remove metric tensor and substitute // index in second object *self = (static_cast(self_idx)->is_covariant() ? sign : -sign); *other = other->subs(other_idx == *free_idx); return true; } } } if (!first_index_tried) { // No contraction with first index found, try second index self_idx = &ex_to(self->op(2)); free_idx = &ex_to(self->op(1)); first_index_tried = true; sign = -sign; goto again; } return false; } /** Contraction of epsilon tensor with something else. */ bool tensepsilon::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const { GINAC_ASSERT(is_a(*self)); GINAC_ASSERT(is_a(*other)); GINAC_ASSERT(is_a(self->op(0))); unsigned num = self->nops() - 1; if (is_ex_exactly_of_type(other->op(0), tensepsilon) && num+1 == other->nops()) { // Contraction of two epsilon tensors is a determinant ex dim = ex_to(self->op(1)).get_dim(); matrix M(num, num); for (int i=0; iop(i+1), other->op(j+1), pos_sig); else M(i, j) = metric_tensor(self->op(i+1), other->op(j+1)); } } int sign = minkowski ? -1 : 1; *self = sign * M.determinant().simplify_indexed(); *other = _ex1; return true; } else if (other->return_type() == return_types::commutative) { #if 0 // This handles eps.i.j.k * p.j * p.k = 0 // Maybe something like this should go to simplify_indexed() because // such relations are true for any antisymmetric tensors... exvector c; // Handle all indices of the epsilon tensor for (int i=0; iop(i+1); // Look whether there's a contraction with this index exvector::const_iterator ait, aitend = v.end(); for (ait = v.begin(); ait != aitend; ait++) { if (ait == self) continue; if (is_a(*ait) && ait->return_type() == return_types::commutative && ex_to(*ait).has_dummy_index_for(idx) && ait->nops() == 2) { // Yes, did we already have another contraction with the same base expression? ex base = ait->op(0); if (std::find_if(c.begin(), c.end(), bind2nd(ex_is_equal(), base)) == c.end()) { // No, add the base expression to the list c.push_back(base); } else { // Yes, the contraction is zero *self = _ex0; *other = _ex0; return true; } } } } #endif } return false; } ////////// // global functions ////////// ex delta_tensor(const ex & i1, const ex & i2) { if (!is_ex_of_type(i1, idx) || !is_ex_of_type(i2, idx)) throw(std::invalid_argument("indices of delta tensor must be of type idx")); return indexed(tensdelta(), sy_symm(), i1, i2); } ex metric_tensor(const ex & i1, const ex & i2) { if (!is_ex_of_type(i1, varidx) || !is_ex_of_type(i2, varidx)) throw(std::invalid_argument("indices of metric tensor must be of type varidx")); return indexed(tensmetric(), sy_symm(), i1, i2); } ex lorentz_g(const ex & i1, const ex & i2, bool pos_sig) { if (!is_ex_of_type(i1, varidx) || !is_ex_of_type(i2, varidx)) throw(std::invalid_argument("indices of metric tensor must be of type varidx")); return indexed(minkmetric(pos_sig), sy_symm(), i1, i2); } ex spinor_metric(const ex & i1, const ex & i2) { if (!is_ex_of_type(i1, spinidx) || !is_ex_of_type(i2, spinidx)) throw(std::invalid_argument("indices of spinor metric must be of type spinidx")); if (!ex_to(i1).get_dim().is_equal(2) || !ex_to(i2).get_dim().is_equal(2)) throw(std::runtime_error("index dimension for spinor metric must be 2")); return indexed(spinmetric(), sy_anti(), i1, i2); } ex epsilon_tensor(const ex & i1, const ex & i2) { if (!is_ex_of_type(i1, idx) || !is_ex_of_type(i2, idx)) throw(std::invalid_argument("indices of epsilon tensor must be of type idx")); ex dim = ex_to(i1).get_dim(); if (!dim.is_equal(ex_to(i2).get_dim())) throw(std::invalid_argument("all indices of epsilon tensor must have the same dimension")); if (!ex_to(i1).get_dim().is_equal(_ex2)) throw(std::runtime_error("index dimension of epsilon tensor must match number of indices")); return indexed(tensepsilon(), sy_anti(), i1, i2); } ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3) { if (!is_ex_of_type(i1, idx) || !is_ex_of_type(i2, idx) || !is_ex_of_type(i3, idx)) throw(std::invalid_argument("indices of epsilon tensor must be of type idx")); ex dim = ex_to(i1).get_dim(); if (!dim.is_equal(ex_to(i2).get_dim()) || !dim.is_equal(ex_to(i3).get_dim())) throw(std::invalid_argument("all indices of epsilon tensor must have the same dimension")); if (!ex_to(i1).get_dim().is_equal(_ex3)) throw(std::runtime_error("index dimension of epsilon tensor must match number of indices")); return indexed(tensepsilon(), sy_anti(), i1, i2, i3); } ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4, bool pos_sig) { if (!is_ex_of_type(i1, varidx) || !is_ex_of_type(i2, varidx) || !is_ex_of_type(i3, varidx) || !is_ex_of_type(i4, varidx)) throw(std::invalid_argument("indices of Lorentz epsilon tensor must be of type varidx")); ex dim = ex_to(i1).get_dim(); if (!dim.is_equal(ex_to(i2).get_dim()) || !dim.is_equal(ex_to(i3).get_dim()) || !dim.is_equal(ex_to(i4).get_dim())) throw(std::invalid_argument("all indices of epsilon tensor must have the same dimension")); if (!ex_to(i1).get_dim().is_equal(_ex4)) throw(std::runtime_error("index dimension of epsilon tensor must match number of indices")); return indexed(tensepsilon(true, pos_sig), sy_anti(), i1, i2, i3, i4); } ex eps0123(const ex & i1, const ex & i2, const ex & i3, const ex & i4, bool pos_sig) { if (!is_ex_of_type(i1, varidx) || !is_ex_of_type(i2, varidx) || !is_ex_of_type(i3, varidx) || !is_ex_of_type(i4, varidx)) throw(std::invalid_argument("indices of epsilon tensor must be of type varidx")); ex dim = ex_to(i1).get_dim(); if (dim.is_equal(4)) return lorentz_eps(i1, i2, i3, i4, pos_sig); else return indexed(tensepsilon(true, pos_sig), sy_anti(), i1, i2, i3, i4); } } // namespace GiNaC