/** @file symmetry.cpp * * Implementation of GiNaC's symmetry definitions. */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "symmetry.h" #include "lst.h" #include "numeric.h" // for factorial() #include "print.h" #include "archive.h" #include "utils.h" #include "debugmsg.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(symmetry, basic) ////////// // default constructor, destructor, copy constructor assignment operator and helpers ////////// symmetry::symmetry() : type(none) { debugmsg("symmetry default constructor", LOGLEVEL_CONSTRUCT); tinfo_key = TINFO_symmetry; } void symmetry::copy(const symmetry & other) { inherited::copy(other); type = other.type; indices = other.indices; children = other.children; } DEFAULT_DESTROY(symmetry) ////////// // other constructors ////////// symmetry::symmetry(unsigned i) : type(none) { debugmsg("symmetry constructor from unsigned", LOGLEVEL_CONSTRUCT); indices.insert(i); tinfo_key = TINFO_symmetry; } symmetry::symmetry(symmetry_type t, const symmetry &c1, const symmetry &c2) : type(t) { debugmsg("symmetry constructor from symmetry_type,symmetry &,symmetry &", LOGLEVEL_CONSTRUCT); add(c1); add(c2); tinfo_key = TINFO_symmetry; } ////////// // archiving ////////// /** Construct object from archive_node. */ symmetry::symmetry(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("symmetry ctor from archive_node", LOGLEVEL_CONSTRUCT); unsigned t; if (!(n.find_unsigned("type", t))) throw (std::runtime_error("unknown symmetry type in archive")); type = (symmetry_type)t; unsigned i = 0; while (true) { ex e; if (n.find_ex("child", e, sym_lst, i)) add(ex_to(e)); else break; i++; } if (i == 0) { while (true) { unsigned u; if (n.find_unsigned("index", u, i)) indices.insert(u); else break; i++; } } } /** Archive the object. */ void symmetry::archive(archive_node &n) const { inherited::archive(n); n.add_unsigned("type", type); if (children.empty()) { std::set::const_iterator i = indices.begin(), iend = indices.end(); while (i != iend) { n.add_unsigned("index", *i); i++; } } else { exvector::const_iterator i = children.begin(), iend = children.end(); while (i != iend) { n.add_ex("child", *i); i++; } } } DEFAULT_UNARCHIVE(symmetry) ////////// // functions overriding virtual functions from bases classes ////////// int symmetry::compare_same_type(const basic & other) const { GINAC_ASSERT(is_of_type(other, symmetry)); const symmetry &o = static_cast(other); // All symmetry trees are equal. They are not supposed to appear in // ordinary expressions anyway... return 0; } void symmetry::print(const print_context & c, unsigned level = 0) const { debugmsg("symmetry print", LOGLEVEL_PRINT); if (children.empty()) { if (indices.size() > 0) c.s << *(indices.begin()); } else { switch (type) { case none: c.s << '!'; break; case symmetric: c.s << '+'; break; case antisymmetric: c.s << '-'; break; case cyclic: c.s << '@'; break; default: c.s << '?'; break; } c.s << '('; unsigned num = children.size(); for (unsigned i=0; i(children[0]).indices.size() != c.indices.size()) throw (std::logic_error("symmetry:add(): children must have same number of indices")); } // Compute union of indices and check whether the two sets are disjoint std::set un; set_union(indices.begin(), indices.end(), c.indices.begin(), c.indices.end(), inserter(un, un.begin())); if (un.size() != indices.size() + c.indices.size()) throw (std::logic_error("symmetry::add(): the same index appears in more than one child")); // Set new index set indices.swap(un); // Add child node children.push_back(c); return *this; } void symmetry::validate(unsigned n) { if (indices.upper_bound(n - 1) != indices.end()) throw (std::range_error("symmetry::verify(): index values are out of range")); if (type != none && indices.empty()) { for (unsigned i=0; i { exvector::iterator v; public: sy_is_less(exvector::iterator v_) : v(v_) {} bool operator() (const ex &lh, const ex &rh) const { GINAC_ASSERT(is_ex_exactly_of_type(lh, symmetry)); GINAC_ASSERT(is_ex_exactly_of_type(rh, symmetry)); GINAC_ASSERT(ex_to(lh).indices.size() == ex_to(rh).indices.size()); std::set::const_iterator ait = ex_to(lh).indices.begin(), aitend = ex_to(lh).indices.end(), bit = ex_to(rh).indices.begin(); while (ait != aitend) { int cmpval = v[*ait].compare(v[*bit]); if (cmpval < 0) return true; else if (cmpval > 0) return false; ++ait; ++bit; } return false; } }; class sy_swap : public std::binary_function { exvector::iterator v; public: bool &swapped; sy_swap(exvector::iterator v_, bool &s) : v(v_), swapped(s) {} void operator() (const ex &lh, const ex &rh) { GINAC_ASSERT(is_ex_exactly_of_type(lh, symmetry)); GINAC_ASSERT(is_ex_exactly_of_type(rh, symmetry)); GINAC_ASSERT(ex_to(lh).indices.size() == ex_to(rh).indices.size()); std::set::const_iterator ait = ex_to(lh).indices.begin(), aitend = ex_to(lh).indices.end(), bit = ex_to(rh).indices.begin(); while (ait != aitend) { v[*ait].swap(v[*bit]); ++ait; ++bit; } swapped = true; } }; int canonicalize(exvector::iterator v, const symmetry &symm) { // No children? Then do nothing if (symm.children.empty()) return INT_MAX; // Canonicalize children first bool something_changed = false; int sign = 1; exvector::const_iterator first = symm.children.begin(), last = symm.children.end(); while (first != last) { GINAC_ASSERT(is_ex_exactly_of_type(*first, symmetry)); int child_sign = canonicalize(v, ex_to(*first)); if (child_sign == 0) return 0; if (child_sign != INT_MAX) { something_changed = true; sign *= child_sign; } first++; } // Now reorder the children first = symm.children.begin(); switch (symm.type) { case symmetry::symmetric: // Sort the children in ascending order shaker_sort(first, last, sy_is_less(v), sy_swap(v, something_changed)); break; case symmetry::antisymmetric: // Sort the children in ascending order, keeping track of the signum sign *= permutation_sign(first, last, sy_is_less(v), sy_swap(v, something_changed)); break; case symmetry::cyclic: // Permute the smallest child to the front cyclic_permutation(first, last, min_element(first, last, sy_is_less(v)), sy_swap(v, something_changed)); break; default: break; } return something_changed ? sign : INT_MAX; } // Symmetrize/antisymmetrize over a vector of objects static ex symm(const ex & e, exvector::const_iterator first, exvector::const_iterator last, bool asymmetric) { // Need at least 2 objects for this operation int num = last - first; if (num < 2) return e; // Transform object vector to a list exlist iv_lst; iv_lst.insert(iv_lst.begin(), first, last); lst orig_lst(iv_lst, true); // Create index vectors for permutation unsigned *iv = new unsigned[num], *iv2; for (unsigned i=0; i