/** @file symmetry.cpp * * Implementation of GiNaC's symmetry definitions. */ /* * GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include "symmetry.h" #include "lst.h" #include "numeric.h" // for factorial() #include "operators.h" #include "archive.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(symmetry, basic, print_func(&symmetry::do_print). print_func(&symmetry::do_print_tree)) /* Some notes about the structure of a symmetry tree: - The leaf nodes of the tree are of type "none", have one index, and no children (of course). They are constructed by the symmetry(unsigned) constructor. - Leaf nodes are the only nodes that only have one index. - Container nodes contain two or more children. The "indices" set member is the set union of the index sets of all children, and the "children" vector stores the children themselves. - The index set of each child of a "symm", "anti" or "cycl" node must have the same size. It follows that the children of such a node are either all leaf nodes, or all container nodes with two or more indices. */ ////////// // default constructor ////////// symmetry::symmetry() : inherited(&symmetry::tinfo_static), type(none) { setflag(status_flags::evaluated | status_flags::expanded); } ////////// // other constructors ////////// symmetry::symmetry(unsigned i) : inherited(&symmetry::tinfo_static), type(none) { indices.insert(i); setflag(status_flags::evaluated | status_flags::expanded); } symmetry::symmetry(symmetry_type t, const symmetry &c1, const symmetry &c2) : inherited(&symmetry::tinfo_static), type(t) { add(c1); add(c2); setflag(status_flags::evaluated | status_flags::expanded); } ////////// // archiving ////////// /** Construct object from archive_node. */ symmetry::symmetry(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) { unsigned t; if (!(n.find_unsigned("type", t))) throw (std::runtime_error("unknown symmetry type in archive")); type = (symmetry_type)t; unsigned i = 0; while (true) { ex e; if (n.find_ex("child", e, sym_lst, i)) add(ex_to(e)); else break; i++; } if (i == 0) { while (true) { unsigned u; if (n.find_unsigned("index", u, i)) indices.insert(u); else break; i++; } } } /** Archive the object. */ void symmetry::archive(archive_node &n) const { inherited::archive(n); n.add_unsigned("type", type); if (children.empty()) { std::set::const_iterator i = indices.begin(), iend = indices.end(); while (i != iend) { n.add_unsigned("index", *i); i++; } } else { exvector::const_iterator i = children.begin(), iend = children.end(); while (i != iend) { n.add_ex("child", *i); i++; } } } DEFAULT_UNARCHIVE(symmetry) ////////// // functions overriding virtual functions from base classes ////////// int symmetry::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); // For archiving purposes we need to have an ordering of symmetries. const symmetry &othersymm = ex_to(other); // Compare type. if (type > othersymm.type) return 1; if (type < othersymm.type) return -1; // Compare the index set. size_t this_size = indices.size(); size_t that_size = othersymm.indices.size(); if (this_size > that_size) return 1; if (this_size < that_size) return -1; typedef std::set::iterator set_it; set_it end = indices.end(); for (set_it i=indices.begin(),j=othersymm.indices.begin(); i!=end; ++i,++j) { if(*i < *j) return 1; if(*i > *j) return -1; } // Compare the children. if (children.size() > othersymm.children.size()) return 1; if (children.size() < othersymm.children.size()) return -1; for (size_t i=0; i(children[i]) .compare_same_type(ex_to(othersymm.children[i])); if (cmpval) return cmpval; } return 0; } unsigned symmetry::calchash() const { unsigned v = golden_ratio_hash((p_int)tinfo()); if (type == none) { v = rotate_left(v); v ^= *(indices.begin()); } else { for (exvector::const_iterator i=children.begin(); i!=children.end(); ++i) { v = rotate_left(v); v ^= i->gethash(); } } if (flags & status_flags::evaluated) { setflag(status_flags::hash_calculated); hashvalue = v; } return v; } void symmetry::do_print(const print_context & c, unsigned level) const { if (children.empty()) { if (indices.size() > 0) c.s << *(indices.begin()); else c.s << "none"; } else { switch (type) { case none: c.s << '!'; break; case symmetric: c.s << '+'; break; case antisymmetric: c.s << '-'; break; case cyclic: c.s << '@'; break; default: c.s << '?'; break; } c.s << '('; size_t num = children.size(); for (size_t i=0; i"; break; } c.s << ", indices=("; if (!indices.empty()) { std::set::const_iterator i = indices.begin(), end = indices.end(); --end; while (i != end) c.s << *i++ << ","; c.s << *i; } c.s << ")\n"; exvector::const_iterator i = children.begin(), end = children.end(); while (i != end) { i->print(c, level + c.delta_indent); ++i; } } ////////// // non-virtual functions in this class ////////// bool symmetry::has_cyclic() const { if (type == cyclic) return true; for (exvector::const_iterator i=children.begin(); i!=children.end(); ++i) if (ex_to(*i).has_cyclic()) return true; return false; } symmetry &symmetry::add(const symmetry &c) { // All children must have the same number of indices if (type != none && !children.empty()) { GINAC_ASSERT(is_exactly_a(children[0])); if (ex_to(children[0]).indices.size() != c.indices.size()) throw (std::logic_error("symmetry:add(): children must have same number of indices")); } // Compute union of indices and check whether the two sets are disjoint std::set un; set_union(indices.begin(), indices.end(), c.indices.begin(), c.indices.end(), inserter(un, un.begin())); if (un.size() != indices.size() + c.indices.size()) throw (std::logic_error("symmetry::add(): the same index appears in more than one child")); // Set new index set indices.swap(un); // Add child node children.push_back(c); return *this; } void symmetry::validate(unsigned n) { if (indices.upper_bound(n - 1) != indices.end()) throw (std::range_error("symmetry::verify(): index values are out of range")); if (type != none && indices.empty()) { for (unsigned i=0; isetflag(status_flags::dynallocated); return ex_to(s); } static const symmetry & index1() { static ex s = (new symmetry(1))->setflag(status_flags::dynallocated); return ex_to(s); } static const symmetry & index2() { static ex s = (new symmetry(2))->setflag(status_flags::dynallocated); return ex_to(s); } static const symmetry & index3() { static ex s = (new symmetry(3))->setflag(status_flags::dynallocated); return ex_to(s); } const symmetry & not_symmetric() { static ex s = (new symmetry)->setflag(status_flags::dynallocated); return ex_to(s); } const symmetry & symmetric2() { static ex s = (new symmetry(symmetry::symmetric, index0(), index1()))->setflag(status_flags::dynallocated); return ex_to(s); } const symmetry & symmetric3() { static ex s = (new symmetry(symmetry::symmetric, index0(), index1()))->add(index2()).setflag(status_flags::dynallocated); return ex_to(s); } const symmetry & symmetric4() { static ex s = (new symmetry(symmetry::symmetric, index0(), index1()))->add(index2()).add(index3()).setflag(status_flags::dynallocated); return ex_to(s); } const symmetry & antisymmetric2() { static ex s = (new symmetry(symmetry::antisymmetric, index0(), index1()))->setflag(status_flags::dynallocated); return ex_to(s); } const symmetry & antisymmetric3() { static ex s = (new symmetry(symmetry::antisymmetric, index0(), index1()))->add(index2()).setflag(status_flags::dynallocated); return ex_to(s); } const symmetry & antisymmetric4() { static ex s = (new symmetry(symmetry::antisymmetric, index0(), index1()))->add(index2()).add(index3()).setflag(status_flags::dynallocated); return ex_to(s); } class sy_is_less : public std::binary_function { exvector::iterator v; public: sy_is_less(exvector::iterator v_) : v(v_) {} bool operator() (const ex &lh, const ex &rh) const { GINAC_ASSERT(is_exactly_a(lh)); GINAC_ASSERT(is_exactly_a(rh)); GINAC_ASSERT(ex_to(lh).indices.size() == ex_to(rh).indices.size()); std::set::const_iterator ait = ex_to(lh).indices.begin(), aitend = ex_to(lh).indices.end(), bit = ex_to(rh).indices.begin(); while (ait != aitend) { int cmpval = v[*ait].compare(v[*bit]); if (cmpval < 0) return true; else if (cmpval > 0) return false; ++ait; ++bit; } return false; } }; class sy_swap : public std::binary_function { exvector::iterator v; public: bool &swapped; sy_swap(exvector::iterator v_, bool &s) : v(v_), swapped(s) {} void operator() (const ex &lh, const ex &rh) { GINAC_ASSERT(is_exactly_a(lh)); GINAC_ASSERT(is_exactly_a(rh)); GINAC_ASSERT(ex_to(lh).indices.size() == ex_to(rh).indices.size()); std::set::const_iterator ait = ex_to(lh).indices.begin(), aitend = ex_to(lh).indices.end(), bit = ex_to(rh).indices.begin(); while (ait != aitend) { v[*ait].swap(v[*bit]); ++ait; ++bit; } swapped = true; } }; int canonicalize(exvector::iterator v, const symmetry &symm) { // Less than two elements? Then do nothing if (symm.indices.size() < 2) return std::numeric_limits::max(); // Canonicalize children first bool something_changed = false; int sign = 1; exvector::const_iterator first = symm.children.begin(), last = symm.children.end(); while (first != last) { GINAC_ASSERT(is_exactly_a(*first)); int child_sign = canonicalize(v, ex_to(*first)); if (child_sign == 0) return 0; if (child_sign != std::numeric_limits::max()) { something_changed = true; sign *= child_sign; } first++; } // Now reorder the children first = symm.children.begin(); switch (symm.type) { case symmetry::symmetric: // Sort the children in ascending order shaker_sort(first, last, sy_is_less(v), sy_swap(v, something_changed)); break; case symmetry::antisymmetric: // Sort the children in ascending order, keeping track of the signum sign *= permutation_sign(first, last, sy_is_less(v), sy_swap(v, something_changed)); if (sign == 0) return 0; break; case symmetry::cyclic: // Permute the smallest child to the front cyclic_permutation(first, last, min_element(first, last, sy_is_less(v)), sy_swap(v, something_changed)); break; default: break; } return something_changed ? sign : std::numeric_limits::max(); } // Symmetrize/antisymmetrize over a vector of objects static ex symm(const ex & e, exvector::const_iterator first, exvector::const_iterator last, bool asymmetric) { // Need at least 2 objects for this operation unsigned num = last - first; if (num < 2) return e; // Transform object vector to a lst (for subs()) lst orig_lst(first, last); // Create index vectors for permutation unsigned *iv = new unsigned[num], *iv2; for (unsigned i=0; i