/** @file pseries.cpp * * Implementation of class for extended truncated power series and * methods for series expansion. */ /* * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "pseries.h" #include "add.h" #include "inifcns.h" #include "lst.h" #include "mul.h" #include "power.h" #include "relational.h" #include "symbol.h" #include "archive.h" #include "utils.h" #include "debugmsg.h" #ifndef NO_NAMESPACE_GINAC namespace GiNaC { #endif // ndef NO_NAMESPACE_GINAC GINAC_IMPLEMENT_REGISTERED_CLASS(pseries, basic) /* * Default constructor, destructor, copy constructor, assignment operator and helpers */ pseries::pseries() : basic(TINFO_pseries) { debugmsg("pseries default constructor", LOGLEVEL_CONSTRUCT); } pseries::~pseries() { debugmsg("pseries destructor", LOGLEVEL_DESTRUCT); destroy(false); } pseries::pseries(const pseries &other) { debugmsg("pseries copy constructor", LOGLEVEL_CONSTRUCT); copy(other); } const pseries &pseries::operator=(const pseries & other) { debugmsg("pseries operator=", LOGLEVEL_ASSIGNMENT); if (this != &other) { destroy(true); copy(other); } return *this; } void pseries::copy(const pseries &other) { inherited::copy(other); seq = other.seq; var = other.var; point = other.point; } void pseries::destroy(bool call_parent) { if (call_parent) inherited::destroy(call_parent); } /* * Other constructors */ /** Construct pseries from a vector of coefficients and powers. * expair.rest holds the coefficient, expair.coeff holds the power. * The powers must be integers (positive or negative) and in ascending order; * the last coefficient can be Order(_ex1()) to represent a truncated, * non-terminating series. * * @param rel_ expansion variable and point (must hold a relational) * @param ops_ vector of {coefficient, power} pairs (coefficient must not be zero) * @return newly constructed pseries */ pseries::pseries(const ex &rel_, const epvector &ops_) : basic(TINFO_pseries), seq(ops_) { debugmsg("pseries constructor from ex,epvector", LOGLEVEL_CONSTRUCT); GINAC_ASSERT(is_ex_exactly_of_type(rel_, relational)); GINAC_ASSERT(is_ex_exactly_of_type(rel_.lhs(),symbol)); point = rel_.rhs(); var = *static_cast(rel_.lhs().bp); } /* * Archiving */ /** Construct object from archive_node. */ pseries::pseries(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("pseries constructor from archive_node", LOGLEVEL_CONSTRUCT); for (unsigned int i=0; true; ++i) { ex rest; ex coeff; if (n.find_ex("coeff", rest, sym_lst, i) && n.find_ex("power", coeff, sym_lst, i)) seq.push_back(expair(rest, coeff)); else break; } n.find_ex("var", var, sym_lst); n.find_ex("point", point, sym_lst); } /** Unarchive the object. */ ex pseries::unarchive(const archive_node &n, const lst &sym_lst) { return (new pseries(n, sym_lst))->setflag(status_flags::dynallocated); } /** Archive the object. */ void pseries::archive(archive_node &n) const { inherited::archive(n); epvector::const_iterator i = seq.begin(), iend = seq.end(); while (i != iend) { n.add_ex("coeff", i->rest); n.add_ex("power", i->coeff); ++i; } n.add_ex("var", var); n.add_ex("point", point); } ////////// // functions overriding virtual functions from bases classes ////////// basic *pseries::duplicate() const { debugmsg("pseries duplicate", LOGLEVEL_DUPLICATE); return new pseries(*this); } void pseries::print(std::ostream &os, unsigned upper_precedence) const { debugmsg("pseries print", LOGLEVEL_PRINT); for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { // omit zero terms if (i->rest.is_zero()) continue; // print a sign, if needed if (i!=seq.begin()) os << '+'; if (!is_order_function(i->rest)) { // print 'rest', i.e. the expansion coefficient if (i->rest.info(info_flags::numeric) && i->rest.info(info_flags::positive)) { os << i->rest; } else os << "(" << i->rest << ')'; // print 'coeff', something like (x-1)^42 if (!i->coeff.is_zero()) { os << '*'; if (!point.is_zero()) os << '(' << var-point << ')'; else os << var; if (i->coeff.compare(_ex1())) { os << '^'; if (i->coeff.info(info_flags::negative)) os << '(' << i->coeff << ')'; else os << i->coeff; } } } else { os << Order(power(var-point,i->coeff)); } } } void pseries::printraw(std::ostream &os) const { debugmsg("pseries printraw", LOGLEVEL_PRINT); os << "pseries(" << var << ";" << point << ";"; for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) { os << "(" << (*i).rest << "," << (*i).coeff << "),"; } os << ")"; } void pseries::printtree(std::ostream & os, unsigned indent) const { debugmsg("pseries printtree",LOGLEVEL_PRINT); os << std::string(indent,' ') << "pseries " << ", hash=" << hashvalue << " (0x" << std::hex << hashvalue << std::dec << ")" << ", flags=" << flags << std::endl; for (unsigned i=0; i= seq.size()) throw (std::out_of_range("op() out of range")); return seq[i].rest * power(var - point, seq[i].coeff); } ex &pseries::let_op(int i) { throw (std::logic_error("let_op not defined for pseries")); } /** Return degree of highest power of the series. This is usually the exponent * of the Order term. If s is not the expansion variable of the series, the * series is examined termwise. */ int pseries::degree(const symbol &s) const { if (var.is_equal(s)) { // Return last exponent if (seq.size()) return ex_to_numeric((*(seq.end() - 1)).coeff).to_int(); else return 0; } else { epvector::const_iterator it = seq.begin(), itend = seq.end(); if (it == itend) return 0; int max_pow = INT_MIN; while (it != itend) { int pow = it->rest.degree(s); if (pow > max_pow) max_pow = pow; ++it; } return max_pow; } } /** Return degree of lowest power of the series. This is usually the exponent * of the leading term. If s is not the expansion variable of the series, the * series is examined termwise. If s is the expansion variable but the * expansion point is not zero the series is not expanded to find the degree. * I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */ int pseries::ldegree(const symbol &s) const { if (var.is_equal(s)) { // Return first exponent if (seq.size()) return ex_to_numeric((*(seq.begin())).coeff).to_int(); else return 0; } else { epvector::const_iterator it = seq.begin(), itend = seq.end(); if (it == itend) return 0; int min_pow = INT_MAX; while (it != itend) { int pow = it->rest.ldegree(s); if (pow < min_pow) min_pow = pow; ++it; } return min_pow; } } ex pseries::coeff(const symbol &s, int n) const { if (var.is_equal(s)) { if (seq.size() == 0) return _ex0(); // Binary search in sequence for given power numeric looking_for = numeric(n); int lo = 0, hi = seq.size() - 1; while (lo <= hi) { int mid = (lo + hi) / 2; GINAC_ASSERT(is_ex_exactly_of_type(seq[mid].coeff, numeric)); int cmp = ex_to_numeric(seq[mid].coeff).compare(looking_for); switch (cmp) { case -1: lo = mid + 1; break; case 0: return seq[mid].rest; case 1: hi = mid - 1; break; default: throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1")); } } return _ex0(); } else return convert_to_poly().coeff(s, n); } ex pseries::collect(const symbol &s) const { return *this; } /** Evaluate coefficients. */ ex pseries::eval(int level) const { if (level == 1) return this->hold(); if (level == -max_recursion_level) throw (std::runtime_error("pseries::eval(): recursion limit exceeded")); // Construct a new series with evaluated coefficients epvector new_seq; new_seq.reserve(seq.size()); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { new_seq.push_back(expair(it->rest.eval(level-1), it->coeff)); ++it; } return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); } /** Evaluate coefficients numerically. */ ex pseries::evalf(int level) const { if (level == 1) return *this; if (level == -max_recursion_level) throw (std::runtime_error("pseries::evalf(): recursion limit exceeded")); // Construct a new series with evaluated coefficients epvector new_seq; new_seq.reserve(seq.size()); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { new_seq.push_back(expair(it->rest.evalf(level-1), it->coeff)); ++it; } return (new pseries(relational(var,point), new_seq))->setflag(status_flags::dynallocated | status_flags::evaluated); } ex pseries::subs(const lst & ls, const lst & lr) const { // If expansion variable is being substituted, convert the series to a // polynomial and do the substitution there because the result might // no longer be a power series if (ls.has(var)) return convert_to_poly(true).subs(ls, lr); // Otherwise construct a new series with substituted coefficients and // expansion point epvector newseq; newseq.reserve(seq.size()); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { newseq.push_back(expair(it->rest.subs(ls, lr), it->coeff)); ++it; } return (new pseries(relational(var,point.subs(ls, lr)), newseq))->setflag(status_flags::dynallocated); } /** Implementation of ex::expand() for a power series. It expands all the * terms individually and returns the resulting series as a new pseries. * @see ex::diff */ ex pseries::expand(unsigned options) const { epvector newseq; newseq.reserve(seq.size()); for (epvector::const_iterator i=seq.begin(); i!=seq.end(); ++i) newseq.push_back(expair(i->rest.expand(), i->coeff)); return (new pseries(relational(var,point), newseq)) ->setflag(status_flags::dynallocated | status_flags::expanded); } /** Implementation of ex::diff() for a power series. It treats the series as a * polynomial. * @see ex::diff */ ex pseries::derivative(const symbol & s) const { if (s == var) { epvector new_seq; epvector::const_iterator it = seq.begin(), itend = seq.end(); // FIXME: coeff might depend on var while (it != itend) { if (is_order_function(it->rest)) { new_seq.push_back(expair(it->rest, it->coeff - 1)); } else { ex c = it->rest * it->coeff; if (!c.is_zero()) new_seq.push_back(expair(c, it->coeff - 1)); } ++it; } return pseries(relational(var,point), new_seq); } else { return *this; } } /* * Construct ordinary polynomial out of series */ /** Convert a pseries object to an ordinary polynomial. * * @param no_order flag: discard higher order terms */ ex pseries::convert_to_poly(bool no_order) const { ex e; epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { if (is_order_function(it->rest)) { if (!no_order) e += Order(power(var - point, it->coeff)); } else e += it->rest * power(var - point, it->coeff); ++it; } return e; } /** Returns true if there is no order term, i.e. the series terminates and * false otherwise. */ bool pseries::is_terminating(void) const { return !is_order_function((seq.end()-1)->rest); } /* * Implementation of series expansion */ /** Default implementation of ex::series(). This performs Taylor expansion. * @see ex::series */ ex basic::series(const relational & r, int order, unsigned options) const { epvector seq; numeric fac(1); ex deriv = *this; ex coeff = deriv.subs(r); const symbol *s = static_cast(r.lhs().bp); if (!coeff.is_zero()) seq.push_back(expair(coeff, numeric(0))); int n; for (n=1; n(r.lhs().bp); if (this->is_equal(*s)) { if (order > 0 && !point.is_zero()) seq.push_back(expair(point, _ex0())); if (order > 1) seq.push_back(expair(_ex1(), _ex1())); else seq.push_back(expair(Order(_ex1()), numeric(order))); } else seq.push_back(expair(*this, _ex0())); return pseries(r, seq); } /** Add one series object to another, producing a pseries object that * represents the sum. * * @param other pseries object to add with * @return the sum as a pseries */ ex pseries::add_series(const pseries &other) const { // Adding two series with different variables or expansion points // results in an empty (constant) series if (!is_compatible_to(other)) { epvector nul; nul.push_back(expair(Order(_ex1()), _ex0())); return pseries(relational(var,point), nul); } // Series addition epvector new_seq; epvector::const_iterator a = seq.begin(); epvector::const_iterator b = other.seq.begin(); epvector::const_iterator a_end = seq.end(); epvector::const_iterator b_end = other.seq.end(); int pow_a = INT_MAX, pow_b = INT_MAX; for (;;) { // If a is empty, fill up with elements from b and stop if (a == a_end) { while (b != b_end) { new_seq.push_back(*b); ++b; } break; } else pow_a = ex_to_numeric((*a).coeff).to_int(); // If b is empty, fill up with elements from a and stop if (b == b_end) { while (a != a_end) { new_seq.push_back(*a); ++a; } break; } else pow_b = ex_to_numeric((*b).coeff).to_int(); // a and b are non-empty, compare powers if (pow_a < pow_b) { // a has lesser power, get coefficient from a new_seq.push_back(*a); if (is_order_function((*a).rest)) break; ++a; } else if (pow_b < pow_a) { // b has lesser power, get coefficient from b new_seq.push_back(*b); if (is_order_function((*b).rest)) break; ++b; } else { // Add coefficient of a and b if (is_order_function((*a).rest) || is_order_function((*b).rest)) { new_seq.push_back(expair(Order(_ex1()), (*a).coeff)); break; // Order term ends the sequence } else { ex sum = (*a).rest + (*b).rest; if (!(sum.is_zero())) new_seq.push_back(expair(sum, numeric(pow_a))); ++a; ++b; } } } return pseries(relational(var,point), new_seq); } /** Implementation of ex::series() for sums. This performs series addition when * adding pseries objects. * @see ex::series */ ex add::series(const relational & r, int order, unsigned options) const { ex acc; // Series accumulator // Get first term from overall_coeff acc = overall_coeff.series(r, order, options); // Add remaining terms epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); for (; it!=itend; ++it) { ex op; if (is_ex_exactly_of_type(it->rest, pseries)) op = it->rest; else op = it->rest.series(r, order, options); if (!it->coeff.is_equal(_ex1())) op = ex_to_pseries(op).mul_const(ex_to_numeric(it->coeff)); // Series addition acc = ex_to_pseries(acc).add_series(ex_to_pseries(op)); } return acc; } /** Multiply a pseries object with a numeric constant, producing a pseries * object that represents the product. * * @param other constant to multiply with * @return the product as a pseries */ ex pseries::mul_const(const numeric &other) const { epvector new_seq; new_seq.reserve(seq.size()); epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { if (!is_order_function(it->rest)) new_seq.push_back(expair(it->rest * other, it->coeff)); else new_seq.push_back(*it); ++it; } return pseries(relational(var,point), new_seq); } /** Multiply one pseries object to another, producing a pseries object that * represents the product. * * @param other pseries object to multiply with * @return the product as a pseries */ ex pseries::mul_series(const pseries &other) const { // Multiplying two series with different variables or expansion points // results in an empty (constant) series if (!is_compatible_to(other)) { epvector nul; nul.push_back(expair(Order(_ex1()), _ex0())); return pseries(relational(var,point), nul); } // Series multiplication epvector new_seq; const symbol *s = static_cast(var.bp); int a_max = degree(*s); int b_max = other.degree(*s); int a_min = ldegree(*s); int b_min = other.ldegree(*s); int cdeg_min = a_min + b_min; int cdeg_max = a_max + b_max; int higher_order_a = INT_MAX; int higher_order_b = INT_MAX; if (is_order_function(coeff(*s, a_max))) higher_order_a = a_max + b_min; if (is_order_function(other.coeff(*s, b_max))) higher_order_b = b_max + a_min; int higher_order_c = std::min(higher_order_a, higher_order_b); if (cdeg_max >= higher_order_c) cdeg_max = higher_order_c - 1; for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) { ex co = _ex0(); // c(i)=a(0)b(i)+...+a(i)b(0) for (int i=a_min; cdeg-i>=b_min; ++i) { ex a_coeff = coeff(*s, i); ex b_coeff = other.coeff(*s, cdeg-i); if (!is_order_function(a_coeff) && !is_order_function(b_coeff)) co += a_coeff * b_coeff; } if (!co.is_zero()) new_seq.push_back(expair(co, numeric(cdeg))); } if (higher_order_c < INT_MAX) new_seq.push_back(expair(Order(_ex1()), numeric(higher_order_c))); return pseries(relational(var,point), new_seq); } /** Implementation of ex::series() for product. This performs series * multiplication when multiplying series. * @see ex::series */ ex mul::series(const relational & r, int order, unsigned options) const { ex acc; // Series accumulator // Get first term from overall_coeff acc = overall_coeff.series(r, order, options); // Multiply with remaining terms epvector::const_iterator it = seq.begin(); epvector::const_iterator itend = seq.end(); for (; it!=itend; ++it) { ex op = it->rest; if (op.info(info_flags::numeric)) { // series * const (special case, faster) ex f = power(op, it->coeff); acc = ex_to_pseries(acc).mul_const(ex_to_numeric(f)); continue; } else if (!is_ex_exactly_of_type(op, pseries)) op = op.series(r, order, options); if (!it->coeff.is_equal(_ex1())) op = ex_to_pseries(op).power_const(ex_to_numeric(it->coeff), order); // Series multiplication acc = ex_to_pseries(acc).mul_series(ex_to_pseries(op)); } return acc; } /** Compute the p-th power of a series. * * @param p power to compute * @param deg truncation order of series calculation */ ex pseries::power_const(const numeric &p, int deg) const { int i; const symbol *s = static_cast(var.bp); int ldeg = ldegree(*s); // Calculate coefficients of powered series exvector co; co.reserve(deg); ex co0; co.push_back(co0 = power(coeff(*s, ldeg), p)); bool all_sums_zero = true; for (i=1; icoeff = i->coeff + deg; return pseries(relational(var, point), newseq); } /** Implementation of ex::series() for powers. This performs Laurent expansion * of reciprocals of series at singularities. * @see ex::series */ ex power::series(const relational & r, int order, unsigned options) const { ex e; if (!is_ex_exactly_of_type(basis, pseries)) { // Basis is not a series, may there be a singulary? if (!exponent.info(info_flags::negint)) return basic::series(r, order, options); // Expression is of type something^(-int), check for singularity if (!basis.subs(r).is_zero()) return basic::series(r, order, options); // Singularity encountered, expand basis into series e = basis.series(r, order, options); } else { // Basis is a series e = basis; } // Power e return ex_to_pseries(e).power_const(ex_to_numeric(exponent), order); } /** Re-expansion of a pseries object. */ ex pseries::series(const relational & r, int order, unsigned options) const { const ex p = r.rhs(); GINAC_ASSERT(is_ex_exactly_of_type(r.lhs(),symbol)); const symbol *s = static_cast(r.lhs().bp); if (var.is_equal(*s) && point.is_equal(p)) { if (order > degree(*s)) return *this; else { epvector new_seq; epvector::const_iterator it = seq.begin(), itend = seq.end(); while (it != itend) { int o = ex_to_numeric(it->coeff).to_int(); if (o >= order) { new_seq.push_back(expair(Order(_ex1()), o)); break; } new_seq.push_back(*it); ++it; } return pseries(r, new_seq); } } else return convert_to_poly().series(r, order, options); } /** Compute the truncated series expansion of an expression. * This function returns an expression containing an object of class pseries * to represent the series. If the series does not terminate within the given * truncation order, the last term of the series will be an order term. * * @param r expansion relation, lhs holds variable and rhs holds point * @param order truncation order of series calculations * @param options of class series_options * @return an expression holding a pseries object */ ex ex::series(const ex & r, int order, unsigned options) const { GINAC_ASSERT(bp!=0); ex e; relational rel_; if (is_ex_exactly_of_type(r,relational)) rel_ = ex_to_relational(r); else if (is_ex_exactly_of_type(r,symbol)) rel_ = relational(r,_ex0()); else throw (std::logic_error("ex::series(): expansion point has unknown type")); try { e = bp->series(rel_, order, options); } catch (std::exception &x) { throw (std::logic_error(std::string("unable to compute series (") + x.what() + ")")); } return e; } // Global constants const pseries some_pseries; const type_info & typeid_pseries = typeid(some_pseries); #ifndef NO_NAMESPACE_GINAC } // namespace GiNaC #endif // ndef NO_NAMESPACE_GINAC