/** @file pseries.cpp * * Implementation of class for extended truncated power series and * methods for series expansion. */ /* * GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "pseries.h" #include "add.h" #include "inifcns.h" // for Order function #include "lst.h" #include "mul.h" #include "power.h" #include "relational.h" #include "operators.h" #include "symbol.h" #include "integral.h" #include "archive.h" #include "utils.h" #include #include #include namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(pseries, basic, print_func(&pseries::do_print). print_func(&pseries::do_print_latex). print_func(&pseries::do_print_tree). print_func(&pseries::do_print_python). print_func(&pseries::do_print_python_repr)) /* * Default constructor */ pseries::pseries() { } /* * Other ctors */ /** Construct pseries from a vector of coefficients and powers. * expair.rest holds the coefficient, expair.coeff holds the power. * The powers must be integers (positive or negative) and in ascending order; * the last coefficient can be Order(_ex1) to represent a truncated, * non-terminating series. * * @param rel_ expansion variable and point (must hold a relational) * @param ops_ vector of {coefficient, power} pairs (coefficient must not be zero) * @return newly constructed pseries */ pseries::pseries(const ex &rel_, const epvector &ops_) : seq(ops_) { #ifdef DO_GINAC_ASSERT auto i = seq.begin(); while (i != seq.end()) { auto ip1 = i+1; if (ip1 != seq.end()) GINAC_ASSERT(!is_order_function(i->rest)); else break; GINAC_ASSERT(is_a(i->coeff)); GINAC_ASSERT(ex_to(i->coeff) < ex_to(ip1->coeff)); ++i; } #endif // def DO_GINAC_ASSERT GINAC_ASSERT(is_a(rel_)); GINAC_ASSERT(is_a(rel_.lhs())); point = rel_.rhs(); var = rel_.lhs(); } pseries::pseries(const ex &rel_, epvector &&ops_) : seq(std::move(ops_)) { #ifdef DO_GINAC_ASSERT auto i = seq.begin(); while (i != seq.end()) { auto ip1 = i+1; if (ip1 != seq.end()) GINAC_ASSERT(!is_order_function(i->rest)); else break; GINAC_ASSERT(is_a(i->coeff)); GINAC_ASSERT(ex_to(i->coeff) < ex_to(ip1->coeff)); ++i; } #endif // def DO_GINAC_ASSERT GINAC_ASSERT(is_a(rel_)); GINAC_ASSERT(is_a(rel_.lhs())); point = rel_.rhs(); var = rel_.lhs(); } /* * Archiving */ void pseries::read_archive(const archive_node &n, lst &sym_lst) { inherited::read_archive(n, sym_lst); auto first = n.find_first("coeff"); auto last = n.find_last("power"); ++last; seq.reserve((last-first)/2); for (auto loc = first; loc < last;) { ex rest; ex coeff; n.find_ex_by_loc(loc++, rest, sym_lst); n.find_ex_by_loc(loc++, coeff, sym_lst); seq.push_back(expair(rest, coeff)); } n.find_ex("var", var, sym_lst); n.find_ex("point", point, sym_lst); } void pseries::archive(archive_node &n) const { inherited::archive(n); for (auto & it : seq) { n.add_ex("coeff", it.rest); n.add_ex("power", it.coeff); } n.add_ex("var", var); n.add_ex("point", point); } ////////// // functions overriding virtual functions from base classes ////////// void pseries::print_series(const print_context & c, const char *openbrace, const char *closebrace, const char *mul_sym, const char *pow_sym, unsigned level) const { if (precedence() <= level) c.s << '('; // objects of type pseries must not have any zero entries, so the // trivial (zero) pseries needs a special treatment here: if (seq.empty()) c.s << '0'; auto i = seq.begin(), end = seq.end(); while (i != end) { // print a sign, if needed if (i != seq.begin()) c.s << '+'; if (!is_order_function(i->rest)) { // print 'rest', i.e. the expansion coefficient if (i->rest.info(info_flags::numeric) && i->rest.info(info_flags::positive)) { i->rest.print(c); } else { c.s << openbrace << '('; i->rest.print(c); c.s << ')' << closebrace; } // print 'coeff', something like (x-1)^42 if (!i->coeff.is_zero()) { c.s << mul_sym; if (!point.is_zero()) { c.s << openbrace << '('; (var-point).print(c); c.s << ')' << closebrace; } else var.print(c); if (i->coeff.compare(_ex1)) { c.s << pow_sym; c.s << openbrace; if (i->coeff.info(info_flags::negative)) { c.s << '('; i->coeff.print(c); c.s << ')'; } else i->coeff.print(c); c.s << closebrace; } } } else Order(pow(var - point, i->coeff)).print(c); ++i; } if (precedence() <= level) c.s << ')'; } void pseries::do_print(const print_context & c, unsigned level) const { print_series(c, "", "", "*", "^", level); } void pseries::do_print_latex(const print_latex & c, unsigned level) const { print_series(c, "{", "}", " ", "^", level); } void pseries::do_print_python(const print_python & c, unsigned level) const { print_series(c, "", "", "*", "**", level); } void pseries::do_print_tree(const print_tree & c, unsigned level) const { c.s << std::string(level, ' ') << class_name() << " @" << this << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << std::endl; size_t num = seq.size(); for (size_t i=0; i(other)); const pseries &o = static_cast(other); // first compare the lengths of the series... if (seq.size()>o.seq.size()) return 1; if (seq.size()compare(*o_it); if (cmpval) return cmpval; ++it; ++o_it; } // so they are equal. return 0; } /** Return the number of operands including a possible order term. */ size_t pseries::nops() const { return seq.size(); } /** Return the ith term in the series when represented as a sum. */ ex pseries::op(size_t i) const { if (i >= seq.size()) throw (std::out_of_range("op() out of range")); if (is_order_function(seq[i].rest)) return Order(pow(var-point, seq[i].coeff)); return seq[i].rest * pow(var - point, seq[i].coeff); } /** Return degree of highest power of the series. This is usually the exponent * of the Order term. If s is not the expansion variable of the series, the * series is examined termwise. */ int pseries::degree(const ex &s) const { if (seq.empty()) return 0; if (var.is_equal(s)) // Return last/greatest exponent return ex_to((seq.end()-1)->coeff).to_int(); int max_pow = std::numeric_limits::min(); for (auto & it : seq) max_pow = std::max(max_pow, it.rest.degree(s)); return max_pow; } /** Return degree of lowest power of the series. This is usually the exponent * of the leading term. If s is not the expansion variable of the series, the * series is examined termwise. If s is the expansion variable but the * expansion point is not zero the series is not expanded to find the degree. * I.e.: (1-x) + (1-x)^2 + Order((1-x)^3) has ldegree(x) 1, not 0. */ int pseries::ldegree(const ex &s) const { if (seq.empty()) return 0; if (var.is_equal(s)) // Return first/smallest exponent return ex_to((seq.begin())->coeff).to_int(); int min_pow = std::numeric_limits::max(); for (auto & it : seq) min_pow = std::min(min_pow, it.rest.degree(s)); return min_pow; } /** Return coefficient of degree n in power series if s is the expansion * variable. If the expansion point is nonzero, by definition the n=1 * coefficient in s of a+b*(s-z)+c*(s-z)^2+Order((s-z)^3) is b (assuming * the expansion took place in the s in the first place). * If s is not the expansion variable, an attempt is made to convert the * series to a polynomial and return the corresponding coefficient from * there. */ ex pseries::coeff(const ex &s, int n) const { if (var.is_equal(s)) { if (seq.empty()) return _ex0; // Binary search in sequence for given power numeric looking_for = numeric(n); int lo = 0, hi = seq.size() - 1; while (lo <= hi) { int mid = (lo + hi) / 2; GINAC_ASSERT(is_exactly_a(seq[mid].coeff)); int cmp = ex_to(seq[mid].coeff).compare(looking_for); switch (cmp) { case -1: lo = mid + 1; break; case 0: return seq[mid].rest; case 1: hi = mid - 1; break; default: throw(std::logic_error("pseries::coeff: compare() didn't return -1, 0 or 1")); } } return _ex0; } else return convert_to_poly().coeff(s, n); } /** Does nothing. */ ex pseries::collect(const ex &s, bool distributed) const { return *this; } /** Perform coefficient-wise automatic term rewriting rules in this class. */ ex pseries::eval() const { if (flags & status_flags::evaluated) { return *this; } // Construct a new series with evaluated coefficients epvector new_seq; new_seq.reserve(seq.size()); for (auto & it : seq) new_seq.push_back(expair(it.rest, it.coeff)); return dynallocate(relational(var,point), std::move(new_seq)).setflag(status_flags::evaluated); } /** Evaluate coefficients numerically. */ ex pseries::evalf() const { // Construct a new series with evaluated coefficients epvector new_seq; new_seq.reserve(seq.size()); for (auto & it : seq) new_seq.push_back(expair(it.rest, it.coeff)); return dynallocate(relational(var,point), std::move(new_seq)).setflag(status_flags::evaluated); } ex pseries::conjugate() const { if(!var.info(info_flags::real)) return conjugate_function(*this).hold(); std::unique_ptr newseq(conjugateepvector(seq)); ex newpoint = point.conjugate(); if (!newseq && are_ex_trivially_equal(point, newpoint)) { return *this; } return dynallocate(var==newpoint, newseq ? std::move(*newseq) : seq); } ex pseries::real_part() const { if(!var.info(info_flags::real)) return real_part_function(*this).hold(); ex newpoint = point.real_part(); if(newpoint != point) return real_part_function(*this).hold(); epvector v; v.reserve(seq.size()); for (auto & it : seq) v.push_back(expair((it.rest).real_part(), it.coeff)); return dynallocate(var==point, std::move(v)); } ex pseries::imag_part() const { if(!var.info(info_flags::real)) return imag_part_function(*this).hold(); ex newpoint = point.real_part(); if(newpoint != point) return imag_part_function(*this).hold(); epvector v; v.reserve(seq.size()); for (auto & it : seq) v.push_back(expair((it.rest).imag_part(), it.coeff)); return dynallocate(var==point, std::move(v)); } ex pseries::eval_integ() const { std::unique_ptr newseq(nullptr); for (auto i=seq.begin(); i!=seq.end(); ++i) { if (newseq) { newseq->push_back(expair(i->rest.eval_integ(), i->coeff)); continue; } ex newterm = i->rest.eval_integ(); if (!are_ex_trivially_equal(newterm, i->rest)) { newseq.reset(new epvector); newseq->reserve(seq.size()); for (auto j=seq.begin(); j!=i; ++j) newseq->push_back(*j); newseq->push_back(expair(newterm, i->coeff)); } } ex newpoint = point.eval_integ(); if (newseq || !are_ex_trivially_equal(newpoint, point)) return dynallocate(var==newpoint, std::move(*newseq)); return *this; } ex pseries::evalm() const { // evalm each coefficient epvector newseq; bool something_changed = false; for (auto i=seq.begin(); i!=seq.end(); ++i) { if (something_changed) { ex newcoeff = i->rest.evalm(); if (!newcoeff.is_zero()) newseq.push_back(expair(newcoeff, i->coeff)); } else { ex newcoeff = i->rest.evalm(); if (!are_ex_trivially_equal(newcoeff, i->rest)) { something_changed = true; newseq.reserve(seq.size()); std::copy(seq.begin(), i, std::back_inserter(newseq)); if (!newcoeff.is_zero()) newseq.push_back(expair(newcoeff, i->coeff)); } } } if (something_changed) return dynallocate(var==point, std::move(newseq)); else return *this; } ex pseries::subs(const exmap & m, unsigned options) const { // If expansion variable is being substituted, convert the series to a // polynomial and do the substitution there because the result might // no longer be a power series if (m.find(var) != m.end()) return convert_to_poly(true).subs(m, options); // Otherwise construct a new series with substituted coefficients and // expansion point epvector newseq; newseq.reserve(seq.size()); for (auto & it : seq) newseq.push_back(expair(it.rest.subs(m, options), it.coeff)); return dynallocate(relational(var,point.subs(m, options)), std::move(newseq)); } /** Implementation of ex::expand() for a power series. It expands all the * terms individually and returns the resulting series as a new pseries. */ ex pseries::expand(unsigned options) const { epvector newseq; for (auto & it : seq) { ex restexp = it.rest.expand(); if (!restexp.is_zero()) newseq.push_back(expair(restexp, it.coeff)); } return dynallocate(relational(var,point), std::move(newseq)).setflag(options == 0 ? status_flags::expanded : 0); } /** Implementation of ex::diff() for a power series. * @see ex::diff */ ex pseries::derivative(const symbol & s) const { epvector new_seq; if (s == var) { // FIXME: coeff might depend on var for (auto & it : seq) { if (is_order_function(it.rest)) { new_seq.push_back(expair(it.rest, it.coeff - 1)); } else { ex c = it.rest * it.coeff; if (!c.is_zero()) new_seq.push_back(expair(c, it.coeff - 1)); } } } else { for (auto & it : seq) { if (is_order_function(it.rest)) { new_seq.push_back(it); } else { ex c = it.rest.diff(s); if (!c.is_zero()) new_seq.push_back(expair(c, it.coeff)); } } } return pseries(relational(var,point), std::move(new_seq)); } ex pseries::convert_to_poly(bool no_order) const { ex e; for (auto & it : seq) { if (is_order_function(it.rest)) { if (!no_order) e += Order(pow(var - point, it.coeff)); } else e += it.rest * pow(var - point, it.coeff); } return e; } bool pseries::is_terminating() const { return seq.empty() || !is_order_function((seq.end()-1)->rest); } ex pseries::coeffop(size_t i) const { if (i >= nops()) throw (std::out_of_range("coeffop() out of range")); return seq[i].rest; } ex pseries::exponop(size_t i) const { if (i >= nops()) throw (std::out_of_range("exponop() out of range")); return seq[i].coeff; } /* * Implementations of series expansion */ /** Default implementation of ex::series(). This performs Taylor expansion. * @see ex::series */ ex basic::series(const relational & r, int order, unsigned options) const { epvector seq; const symbol &s = ex_to(r.lhs()); // default for order-values that make no sense for Taylor expansion if ((order <= 0) && this->has(s)) { seq.push_back(expair(Order(_ex1), order)); return pseries(r, std::move(seq)); } // do Taylor expansion numeric fac = 1; ex deriv = *this; ex coeff = deriv.subs(r, subs_options::no_pattern); if (!coeff.is_zero()) { seq.push_back(expair(coeff, _ex0)); } int n; for (n=1; n(r.lhs())); if (this->is_equal_same_type(ex_to(r.lhs()))) { if (order > 0 && !point.is_zero()) seq.push_back(expair(point, _ex0)); if (order > 1) seq.push_back(expair(_ex1, _ex1)); else seq.push_back(expair(Order(_ex1), numeric(order))); } else seq.push_back(expair(*this, _ex0)); return pseries(r, std::move(seq)); } /** Add one series object to another, producing a pseries object that * represents the sum. * * @param other pseries object to add with * @return the sum as a pseries */ ex pseries::add_series(const pseries &other) const { // Adding two series with different variables or expansion points // results in an empty (constant) series if (!is_compatible_to(other)) { epvector nul { expair(Order(_ex1), _ex0) }; return pseries(relational(var,point), std::move(nul)); } // Series addition epvector new_seq; auto a = seq.begin(), a_end = seq.end(); auto b = other.seq.begin(), b_end = other.seq.end(); int pow_a = std::numeric_limits::max(), pow_b = std::numeric_limits::max(); for (;;) { // If a is empty, fill up with elements from b and stop if (a == a_end) { while (b != b_end) { new_seq.push_back(*b); ++b; } break; } else pow_a = ex_to((*a).coeff).to_int(); // If b is empty, fill up with elements from a and stop if (b == b_end) { while (a != a_end) { new_seq.push_back(*a); ++a; } break; } else pow_b = ex_to((*b).coeff).to_int(); // a and b are non-empty, compare powers if (pow_a < pow_b) { // a has lesser power, get coefficient from a new_seq.push_back(*a); if (is_order_function((*a).rest)) break; ++a; } else if (pow_b < pow_a) { // b has lesser power, get coefficient from b new_seq.push_back(*b); if (is_order_function((*b).rest)) break; ++b; } else { // Add coefficient of a and b if (is_order_function((*a).rest) || is_order_function((*b).rest)) { new_seq.push_back(expair(Order(_ex1), (*a).coeff)); break; // Order term ends the sequence } else { ex sum = (*a).rest + (*b).rest; if (!(sum.is_zero())) new_seq.push_back(expair(sum, numeric(pow_a))); ++a; ++b; } } } return pseries(relational(var,point), std::move(new_seq)); } /** Implementation of ex::series() for sums. This performs series addition when * adding pseries objects. * @see ex::series */ ex add::series(const relational & r, int order, unsigned options) const { ex acc; // Series accumulator // Get first term from overall_coeff acc = overall_coeff.series(r, order, options); // Add remaining terms for (auto & it : seq) { ex op; if (is_exactly_a(it.rest)) op = it.rest; else op = it.rest.series(r, order, options); if (!it.coeff.is_equal(_ex1)) op = ex_to(op).mul_const(ex_to(it.coeff)); // Series addition acc = ex_to(acc).add_series(ex_to(op)); } return acc; } /** Multiply a pseries object with a numeric constant, producing a pseries * object that represents the product. * * @param other constant to multiply with * @return the product as a pseries */ ex pseries::mul_const(const numeric &other) const { epvector new_seq; new_seq.reserve(seq.size()); for (auto & it : seq) { if (!is_order_function(it.rest)) new_seq.push_back(expair(it.rest * other, it.coeff)); else new_seq.push_back(it); } return pseries(relational(var,point), std::move(new_seq)); } /** Multiply one pseries object to another, producing a pseries object that * represents the product. * * @param other pseries object to multiply with * @return the product as a pseries */ ex pseries::mul_series(const pseries &other) const { // Multiplying two series with different variables or expansion points // results in an empty (constant) series if (!is_compatible_to(other)) { epvector nul { expair(Order(_ex1), _ex0) }; return pseries(relational(var,point), std::move(nul)); } if (seq.empty() || other.seq.empty()) { return dynallocate(var==point, epvector()); } // Series multiplication epvector new_seq; const int a_max = degree(var); const int b_max = other.degree(var); const int a_min = ldegree(var); const int b_min = other.ldegree(var); const int cdeg_min = a_min + b_min; int cdeg_max = a_max + b_max; int higher_order_a = std::numeric_limits::max(); int higher_order_b = std::numeric_limits::max(); if (is_order_function(coeff(var, a_max))) higher_order_a = a_max + b_min; if (is_order_function(other.coeff(var, b_max))) higher_order_b = b_max + a_min; const int higher_order_c = std::min(higher_order_a, higher_order_b); if (cdeg_max >= higher_order_c) cdeg_max = higher_order_c - 1; std::map rest_map_a, rest_map_b; for (const auto& it : seq) rest_map_a[ex_to(it.coeff).to_int()] = it.rest; if (other.var.is_equal(var)) for (const auto& it : other.seq) rest_map_b[ex_to(it.coeff).to_int()] = it.rest; for (int cdeg=cdeg_min; cdeg<=cdeg_max; ++cdeg) { ex co = _ex0; // c(i)=a(0)b(i)+...+a(i)b(0) for (int i=a_min; cdeg-i>=b_min; ++i) { const auto& ita = rest_map_a.find(i); if (ita == rest_map_a.end()) continue; const auto& itb = rest_map_b.find(cdeg-i); if (itb == rest_map_b.end()) continue; if (!is_order_function(ita->second) && !is_order_function(itb->second)) co += ita->second * itb->second; } if (!co.is_zero()) new_seq.push_back(expair(co, numeric(cdeg))); } if (higher_order_c < std::numeric_limits::max()) new_seq.push_back(expair(Order(_ex1), numeric(higher_order_c))); return pseries(relational(var, point), std::move(new_seq)); } /** Implementation of ex::series() for product. This performs series * multiplication when multiplying series. * @see ex::series */ ex mul::series(const relational & r, int order, unsigned options) const { pseries acc; // Series accumulator GINAC_ASSERT(is_a(r.lhs())); const ex& sym = r.lhs(); // holds ldegrees of the series of individual factors std::vector ldegrees; std::vector ldegree_redo; // find minimal degrees // first round: obtain a bound up to which minimal degrees have to be // considered for (auto & it : seq) { ex expon = it.coeff; int factor = 1; ex buf; if (expon.info(info_flags::integer)) { buf = it.rest; factor = ex_to(expon).to_int(); } else { buf = recombine_pair_to_ex(it); } int real_ldegree = 0; bool flag_redo = false; try { real_ldegree = buf.expand().ldegree(sym-r.rhs()); } catch (std::runtime_error) {} if (real_ldegree == 0) { if ( factor < 0 ) { // This case must terminate, otherwise we would have division by // zero. int orderloop = 0; do { orderloop++; real_ldegree = buf.series(r, orderloop, options).ldegree(sym); } while (real_ldegree == orderloop); } else { // Here it is possible that buf does not have a ldegree, therefore // check only if ldegree is negative, otherwise reconsider the case // in the second round. real_ldegree = buf.series(r, 0, options).ldegree(sym); if (real_ldegree == 0) flag_redo = true; } } ldegrees.push_back(factor * real_ldegree); ldegree_redo.push_back(flag_redo); } int degbound = order-std::accumulate(ldegrees.begin(), ldegrees.end(), 0); // Second round: determine the remaining positive ldegrees by the series // method. // here we can ignore ldegrees larger than degbound size_t j = 0; for (auto & it : seq) { if ( ldegree_redo[j] ) { ex expon = it.coeff; int factor = 1; ex buf; if (expon.info(info_flags::integer)) { buf = it.rest; factor = ex_to(expon).to_int(); } else { buf = recombine_pair_to_ex(it); } int real_ldegree = 0; int orderloop = 0; do { orderloop++; real_ldegree = buf.series(r, orderloop, options).ldegree(sym); } while ((real_ldegree == orderloop) && (factor*real_ldegree < degbound)); ldegrees[j] = factor * real_ldegree; degbound -= factor * real_ldegree; } j++; } int degsum = std::accumulate(ldegrees.begin(), ldegrees.end(), 0); if (degsum > order) { return dynallocate(r, epvector{{Order(_ex1), order}}); } // Multiply with remaining terms auto itd = ldegrees.begin(); for (auto it=seq.begin(), itend=seq.end(); it!=itend; ++it, ++itd) { // do series expansion with adjusted order ex op = recombine_pair_to_ex(*it).series(r, order-degsum+(*itd), options); // Series multiplication if (it == seq.begin()) acc = ex_to(op); else acc = ex_to(acc.mul_series(ex_to(op))); } return acc.mul_const(ex_to(overall_coeff)); } /** Compute the p-th power of a series. * * @param p power to compute * @param deg truncation order of series calculation */ ex pseries::power_const(const numeric &p, int deg) const { // method: // (due to Leonhard Euler) // let A(x) be this series and for the time being let it start with a // constant (later we'll generalize): // A(x) = a_0 + a_1*x + a_2*x^2 + ... // We want to compute // C(x) = A(x)^p // C(x) = c_0 + c_1*x + c_2*x^2 + ... // Taking the derivative on both sides and multiplying with A(x) one // immediately arrives at // C'(x)*A(x) = p*C(x)*A'(x) // Multiplying this out and comparing coefficients we get the recurrence // formula // c_i = (i*p*a_i*c_0 + ((i-1)*p-1)*a_{i-1}*c_1 + ... // ... + (p-(i-1))*a_1*c_{i-1})/(a_0*i) // which can easily be solved given the starting value c_0 = (a_0)^p. // For the more general case where the leading coefficient of A(x) is not // a constant, just consider A2(x) = A(x)*x^m, with some integer m and // repeat the above derivation. The leading power of C2(x) = A2(x)^2 is // then of course x^(p*m) but the recurrence formula still holds. if (seq.empty()) { // as a special case, handle the empty (zero) series honoring the // usual power laws such as implemented in power::eval() if (p.real().is_zero()) throw std::domain_error("pseries::power_const(): pow(0,I) is undefined"); else if (p.real().is_negative()) throw pole_error("pseries::power_const(): division by zero",1); else return *this; } const int ldeg = ldegree(var); if (!(p*ldeg).is_integer()) throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series"); // adjust number of coefficients int numcoeff = deg - (p*ldeg).to_int(); if (numcoeff <= 0) { epvector epv { expair(Order(_ex1), deg) }; return dynallocate(relational(var,point), std::move(epv)); } // O(x^n)^(-m) is undefined if (seq.size() == 1 && is_order_function(seq[0].rest) && p.real().is_negative()) throw pole_error("pseries::power_const(): division by zero",1); // Compute coefficients of the powered series exvector co; co.reserve(numcoeff); co.push_back(pow(coeff(var, ldeg), p)); for (int i=1; i(basis)) return ex_to(basis).power_const(ex_to(exponent), order); // Basis is not a series, may there be a singularity? bool must_expand_basis = false; try { basis.subs(r, subs_options::no_pattern); } catch (pole_error) { must_expand_basis = true; } bool exponent_is_regular = true; try { exponent.subs(r, subs_options::no_pattern); } catch (pole_error) { exponent_is_regular = false; } if (!exponent_is_regular) { ex l = exponent*log(basis); // this == exp(l); ex le = l.series(r, order, options); // Note: expanding exp(l) won't help, since that will attempt // Taylor expansion, and fail (because exponent is "singular") // Still l itself might be expanded in Taylor series. // Examples: // sin(x)/x*log(cos(x)) // 1/x*log(1 + x) return exp(le).series(r, order, options); // Note: if l happens to have a Laurent expansion (with // negative powers of (var - point)), expanding exp(le) // will barf (which is The Right Thing). } // Is the expression of type something^(-int)? if (!must_expand_basis && !exponent.info(info_flags::negint) && (!is_a(basis) || !is_a(exponent))) return basic::series(r, order, options); // Is the expression of type 0^something? if (!must_expand_basis && !basis.subs(r, subs_options::no_pattern).is_zero() && (!is_a(basis) || !is_a(exponent))) return basic::series(r, order, options); // Singularity encountered, is the basis equal to (var - point)? if (basis.is_equal(r.lhs() - r.rhs())) { epvector new_seq; if (ex_to(exponent).to_int() < order) new_seq.push_back(expair(_ex1, exponent)); else new_seq.push_back(expair(Order(_ex1), exponent)); return pseries(r, std::move(new_seq)); } // No, expand basis into series numeric numexp; if (is_a(exponent)) { numexp = ex_to(exponent); } else { numexp = 0; } const ex& sym = r.lhs(); // find existing minimal degree ex eb = basis.expand(); int real_ldegree = 0; if (eb.info(info_flags::rational_function)) real_ldegree = eb.ldegree(sym-r.rhs()); if (real_ldegree == 0) { int orderloop = 0; do { orderloop++; real_ldegree = basis.series(r, orderloop, options).ldegree(sym); } while (real_ldegree == orderloop); } if (!(real_ldegree*numexp).is_integer()) throw std::runtime_error("pseries::power_const(): trying to assemble a Puiseux series"); ex e = basis.series(r, (order + real_ldegree*(1-numexp)).to_int(), options); ex result; try { result = ex_to(e).power_const(numexp, order); } catch (pole_error) { epvector ser { expair(Order(_ex1), order) }; result = pseries(r, std::move(ser)); } return result; } /** Re-expansion of a pseries object. */ ex pseries::series(const relational & r, int order, unsigned options) const { const ex p = r.rhs(); GINAC_ASSERT(is_a(r.lhs())); const symbol &s = ex_to(r.lhs()); if (var.is_equal(s) && point.is_equal(p)) { if (order > degree(s)) return *this; else { epvector new_seq; for (auto & it : seq) { int o = ex_to(it.coeff).to_int(); if (o >= order) { new_seq.push_back(expair(Order(_ex1), o)); break; } new_seq.push_back(it); } return pseries(r, std::move(new_seq)); } } else return convert_to_poly().series(r, order, options); } ex integral::series(const relational & r, int order, unsigned options) const { if (x.subs(r) != x) throw std::logic_error("Cannot series expand wrt dummy variable"); // Expanding integrand with r substituted taken in boundaries. ex fseries = f.series(r, order, options); epvector fexpansion; fexpansion.reserve(fseries.nops()); for (size_t i=0; i(fseries).coeffop(i); currcoeff = (currcoeff == Order(_ex1)) ? currcoeff : integral(x, a.subs(r), b.subs(r), currcoeff); if (currcoeff != 0) fexpansion.push_back( expair(currcoeff, ex_to(fseries).exponop(i))); } // Expanding lower boundary ex result = dynallocate(r, std::move(fexpansion)); ex aseries = (a-a.subs(r)).series(r, order, options); fseries = f.series(x == (a.subs(r)), order, options); for (size_t i=0; i(fseries).coeffop(i); if (is_order_function(currcoeff)) break; ex currexpon = ex_to(fseries).exponop(i); int orderforf = order-ex_to(currexpon).to_int()-1; currcoeff = currcoeff.series(r, orderforf); ex term = ex_to(aseries).power_const(ex_to(currexpon+1),order); term = ex_to(term).mul_const(ex_to(-1/(currexpon+1))); term = ex_to(term).mul_series(ex_to(currcoeff)); result = ex_to(result).add_series(ex_to(term)); } // Expanding upper boundary ex bseries = (b-b.subs(r)).series(r, order, options); fseries = f.series(x == (b.subs(r)), order, options); for (size_t i=0; i(fseries).coeffop(i); if (is_order_function(currcoeff)) break; ex currexpon = ex_to(fseries).exponop(i); int orderforf = order-ex_to(currexpon).to_int()-1; currcoeff = currcoeff.series(r, orderforf); ex term = ex_to(bseries).power_const(ex_to(currexpon+1),order); term = ex_to(term).mul_const(ex_to(1/(currexpon+1))); term = ex_to(term).mul_series(ex_to(currcoeff)); result = ex_to(result).add_series(ex_to(term)); } return result; } /** Compute the truncated series expansion of an expression. * This function returns an expression containing an object of class pseries * to represent the series. If the series does not terminate within the given * truncation order, the last term of the series will be an order term. * * @param r expansion relation, lhs holds variable and rhs holds point * @param order truncation order of series calculations * @param options of class series_options * @return an expression holding a pseries object */ ex ex::series(const ex & r, int order, unsigned options) const { ex e; relational rel_; if (is_a(r)) rel_ = ex_to(r); else if (is_a(r)) rel_ = relational(r,_ex0); else throw (std::logic_error("ex::series(): expansion point has unknown type")); e = bp->series(rel_, order, options); return e; } GINAC_BIND_UNARCHIVER(pseries); } // namespace GiNaC