/** @file power.cpp * * Implementation of GiNaC's symbolic exponentiation (basis^exponent). */ /* * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "power.h" #include "expairseq.h" #include "add.h" #include "mul.h" #include "numeric.h" #include "inifcns.h" #include "relational.h" #include "symbol.h" #include "print.h" #include "archive.h" #include "debugmsg.h" #include "utils.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS(power, basic) typedef std::vector intvector; ////////// // default ctor, dtor, copy ctor assignment operator and helpers ////////// power::power() : basic(TINFO_power) { debugmsg("power default ctor",LOGLEVEL_CONSTRUCT); } void power::copy(const power & other) { inherited::copy(other); basis = other.basis; exponent = other.exponent; } DEFAULT_DESTROY(power) ////////// // other ctors ////////// power::power(const ex & lh, const ex & rh) : basic(TINFO_power), basis(lh), exponent(rh) { debugmsg("power ctor from ex,ex",LOGLEVEL_CONSTRUCT); GINAC_ASSERT(basis.return_type()==return_types::commutative); } power::power(const ex & lh, const numeric & rh) : basic(TINFO_power), basis(lh), exponent(rh) { debugmsg("power ctor from ex,numeric",LOGLEVEL_CONSTRUCT); GINAC_ASSERT(basis.return_type()==return_types::commutative); } ////////// // archiving ////////// power::power(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) { debugmsg("power ctor from archive_node", LOGLEVEL_CONSTRUCT); n.find_ex("basis", basis, sym_lst); n.find_ex("exponent", exponent, sym_lst); } void power::archive(archive_node &n) const { inherited::archive(n); n.add_ex("basis", basis); n.add_ex("exponent", exponent); } DEFAULT_UNARCHIVE(power) ////////// // functions overriding virtual functions from bases classes ////////// // public static void print_sym_pow(const print_context & c, const symbol &x, int exp) { // Optimal output of integer powers of symbols to aid compiler CSE. // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15 // to learn why such a hack is really necessary. if (exp == 1) { x.print(c); } else if (exp == 2) { x.print(c); c.s << "*"; x.print(c); } else if (exp & 1) { x.print(c); c.s << "*"; print_sym_pow(c, x, exp-1); } else { c.s << "("; print_sym_pow(c, x, exp >> 1); c.s << ")*("; print_sym_pow(c, x, exp >> 1); c.s << ")"; } } void power::print(const print_context & c, unsigned level) const { debugmsg("power print", LOGLEVEL_PRINT); if (is_of_type(c, print_tree)) { inherited::print(c, level); } else if (is_of_type(c, print_csrc)) { // Integer powers of symbols are printed in a special, optimized way if (exponent.info(info_flags::integer) && (is_ex_exactly_of_type(basis, symbol) || is_ex_exactly_of_type(basis, constant))) { int exp = ex_to_numeric(exponent).to_int(); if (exp > 0) c.s << "("; else { exp = -exp; if (is_of_type(c, print_csrc_cl_N)) c.s << "recip("; else c.s << "1.0/("; } print_sym_pow(c, ex_to_symbol(basis), exp); c.s << ")"; // ^-1 is printed as "1.0/" or with the recip() function of CLN } else if (exponent.compare(_num_1()) == 0) { if (is_of_type(c, print_csrc_cl_N)) c.s << "recip("; else c.s << "1.0/("; basis.print(c); c.s << ")"; // Otherwise, use the pow() or expt() (CLN) functions } else { if (is_of_type(c, print_csrc_cl_N)) c.s << "expt("; else c.s << "pow("; basis.print(c); c.s << ","; exponent.print(c); c.s << ")"; } } else { if (exponent.is_equal(_ex1_2())) { c.s << "sqrt("; basis.print(c); c.s << ")"; } else { if (precedence <= level) c.s << "("; basis.print(c, precedence); c.s << "^"; exponent.print(c, precedence); if (precedence <= level) c.s << ")"; } } } bool power::info(unsigned inf) const { switch (inf) { case info_flags::polynomial: case info_flags::integer_polynomial: case info_flags::cinteger_polynomial: case info_flags::rational_polynomial: case info_flags::crational_polynomial: return exponent.info(info_flags::nonnegint); case info_flags::rational_function: return exponent.info(info_flags::integer); case info_flags::algebraic: return (!exponent.info(info_flags::integer) || basis.info(inf)); } return inherited::info(inf); } unsigned power::nops() const { return 2; } ex & power::let_op(int i) { GINAC_ASSERT(i>=0); GINAC_ASSERT(i<2); return i==0 ? basis : exponent; } int power::degree(const ex & s) const { if (is_exactly_of_type(*exponent.bp,numeric)) { if (basis.is_equal(s)) { if (ex_to_numeric(exponent).is_integer()) return ex_to_numeric(exponent).to_int(); else return 0; } else return basis.degree(s) * ex_to_numeric(exponent).to_int(); } return 0; } int power::ldegree(const ex & s) const { if (is_exactly_of_type(*exponent.bp,numeric)) { if (basis.is_equal(s)) { if (ex_to_numeric(exponent).is_integer()) return ex_to_numeric(exponent).to_int(); else return 0; } else return basis.ldegree(s) * ex_to_numeric(exponent).to_int(); } return 0; } ex power::coeff(const ex & s, int n) const { if (!basis.is_equal(s)) { // basis not equal to s if (n == 0) return *this; else return _ex0(); } else { // basis equal to s if (is_exactly_of_type(*exponent.bp, numeric) && ex_to_numeric(exponent).is_integer()) { // integer exponent int int_exp = ex_to_numeric(exponent).to_int(); if (n == int_exp) return _ex1(); else return _ex0(); } else { // non-integer exponents are treated as zero if (n == 0) return *this; else return _ex0(); } } } ex power::eval(int level) const { // simplifications: ^(x,0) -> 1 (0^0 handled here) // ^(x,1) -> x // ^(0,c1) -> 0 or exception (depending on real value of c1) // ^(1,x) -> 1 // ^(c1,c2) -> *(c1^n,c1^(c2-n)) (c1, c2 numeric(), 0<(c2-n)<1 except if c1,c2 are rational, but c1^c2 is not) // ^(^(x,c1),c2) -> ^(x,c1*c2) (c1, c2 numeric(), c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!) // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer) // ^(*(x,c1),c2) -> ^(x,c2)*c1^c2 (c1, c2 numeric(), c1>0) // ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2 (c1, c2 numeric(), c1<0) debugmsg("power eval",LOGLEVEL_MEMBER_FUNCTION); if ((level==1) && (flags & status_flags::evaluated)) return *this; else if (level == -max_recursion_level) throw(std::runtime_error("max recursion level reached")); const ex & ebasis = level==1 ? basis : basis.eval(level-1); const ex & eexponent = level==1 ? exponent : exponent.eval(level-1); bool basis_is_numerical = 0; bool exponent_is_numerical = 0; numeric * num_basis; numeric * num_exponent; if (is_exactly_of_type(*ebasis.bp,numeric)) { basis_is_numerical = 1; num_basis = static_cast(ebasis.bp); } if (is_exactly_of_type(*eexponent.bp,numeric)) { exponent_is_numerical = 1; num_exponent = static_cast(eexponent.bp); } // ^(x,0) -> 1 (0^0 also handled here) if (eexponent.is_zero()) { if (ebasis.is_zero()) throw (std::domain_error("power::eval(): pow(0,0) is undefined")); else return _ex1(); } // ^(x,1) -> x if (eexponent.is_equal(_ex1())) return ebasis; // ^(0,c1) -> 0 or exception (depending on real value of c1) if (ebasis.is_zero() && exponent_is_numerical) { if ((num_exponent->real()).is_zero()) throw (std::domain_error("power::eval(): pow(0,I) is undefined")); else if ((num_exponent->real()).is_negative()) throw (pole_error("power::eval(): division by zero",1)); else return _ex0(); } // ^(1,x) -> 1 if (ebasis.is_equal(_ex1())) return _ex1(); if (basis_is_numerical && exponent_is_numerical) { // ^(c1,c2) -> c1^c2 (c1, c2 numeric(), // except if c1,c2 are rational, but c1^c2 is not) bool basis_is_crational = num_basis->is_crational(); bool exponent_is_crational = num_exponent->is_crational(); numeric res = num_basis->power(*num_exponent); if ((!basis_is_crational || !exponent_is_crational) || res.is_crational()) { return res; } GINAC_ASSERT(!num_exponent->is_integer()); // has been handled by now // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-h)<1, q integer if (basis_is_crational && exponent_is_crational && num_exponent->is_real() && !num_exponent->is_integer()) { numeric n = num_exponent->numer(); numeric m = num_exponent->denom(); numeric r; numeric q = iquo(n, m, r); if (r.is_negative()) { r = r.add(m); q = q.sub(_num1()); } if (q.is_zero()) // the exponent was in the allowed range 0<(n/m)<1 return this->hold(); else { epvector res; res.push_back(expair(ebasis,r.div(m))); return (new mul(res,ex(num_basis->power_dyn(q))))->setflag(status_flags::dynallocated | status_flags::evaluated); } } } // ^(^(x,c1),c2) -> ^(x,c1*c2) // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1, // case c1==1 should not happen, see below!) if (exponent_is_numerical && is_ex_exactly_of_type(ebasis,power)) { const power & sub_power = ex_to_power(ebasis); const ex & sub_basis = sub_power.basis; const ex & sub_exponent = sub_power.exponent; if (is_ex_exactly_of_type(sub_exponent,numeric)) { const numeric & num_sub_exponent = ex_to_numeric(sub_exponent); GINAC_ASSERT(num_sub_exponent!=numeric(1)); if (num_exponent->is_integer() || abs(num_sub_exponent)<1) return power(sub_basis,num_sub_exponent.mul(*num_exponent)); } } // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer) if (exponent_is_numerical && num_exponent->is_integer() && is_ex_exactly_of_type(ebasis,mul)) { return expand_mul(ex_to_mul(ebasis), *num_exponent); } // ^(*(...,x;c1),c2) -> ^(*(...,x;1),c2)*c1^c2 (c1, c2 numeric(), c1>0) // ^(*(...,x,c1),c2) -> ^(*(...,x;-1),c2)*(-c1)^c2 (c1, c2 numeric(), c1<0) if (exponent_is_numerical && is_ex_exactly_of_type(ebasis,mul)) { GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above const mul & mulref = ex_to_mul(ebasis); if (!mulref.overall_coeff.is_equal(_ex1())) { const numeric & num_coeff = ex_to_numeric(mulref.overall_coeff); if (num_coeff.is_real()) { if (num_coeff.is_positive()) { mul * mulp = new mul(mulref); mulp->overall_coeff = _ex1(); mulp->clearflag(status_flags::evaluated); mulp->clearflag(status_flags::hash_calculated); return (new mul(power(*mulp,exponent), power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated); } else { GINAC_ASSERT(num_coeff.compare(_num0())<0); if (num_coeff.compare(_num_1())!=0) { mul * mulp = new mul(mulref); mulp->overall_coeff = _ex_1(); mulp->clearflag(status_flags::evaluated); mulp->clearflag(status_flags::hash_calculated); return (new mul(power(*mulp,exponent), power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated); } } } } } if (are_ex_trivially_equal(ebasis,basis) && are_ex_trivially_equal(eexponent,exponent)) { return this->hold(); } return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated | status_flags::evaluated); } ex power::evalf(int level) const { debugmsg("power evalf",LOGLEVEL_MEMBER_FUNCTION); ex ebasis; ex eexponent; if (level==1) { ebasis = basis; eexponent = exponent; } else if (level == -max_recursion_level) { throw(std::runtime_error("max recursion level reached")); } else { ebasis = basis.evalf(level-1); if (!is_ex_exactly_of_type(eexponent,numeric)) eexponent = exponent.evalf(level-1); else eexponent = exponent; } return power(ebasis,eexponent); } ex power::subs(const lst & ls, const lst & lr) const { const ex & subsed_basis=basis.subs(ls,lr); const ex & subsed_exponent=exponent.subs(ls,lr); if (are_ex_trivially_equal(basis,subsed_basis)&& are_ex_trivially_equal(exponent,subsed_exponent)) { return inherited::subs(ls, lr); } return power(subsed_basis, subsed_exponent); } ex power::simplify_ncmul(const exvector & v) const { return inherited::simplify_ncmul(v); } // protected /** Implementation of ex::diff() for a power. * @see ex::diff */ ex power::derivative(const symbol & s) const { if (exponent.info(info_flags::real)) { // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below) epvector newseq; newseq.reserve(2); newseq.push_back(expair(basis, exponent - _ex1())); newseq.push_back(expair(basis.diff(s), _ex1())); return mul(newseq, exponent); } else { // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b) return mul(*this, add(mul(exponent.diff(s), log(basis)), mul(mul(exponent, basis.diff(s)), power(basis, _ex_1())))); } } int power::compare_same_type(const basic & other) const { GINAC_ASSERT(is_exactly_of_type(other, power)); const power & o=static_cast(const_cast(other)); int cmpval; cmpval=basis.compare(o.basis); if (cmpval==0) { return exponent.compare(o.exponent); } return cmpval; } unsigned power::return_type(void) const { return basis.return_type(); } unsigned power::return_type_tinfo(void) const { return basis.return_type_tinfo(); } ex power::expand(unsigned options) const { if (flags & status_flags::expanded) return *this; ex expanded_basis = basis.expand(options); ex expanded_exponent = exponent.expand(options); // x^(a+b) -> x^a * x^b if (is_ex_exactly_of_type(expanded_exponent, add)) { const add &a = ex_to_add(expanded_exponent); exvector distrseq; distrseq.reserve(a.seq.size() + 1); epvector::const_iterator last = a.seq.end(); epvector::const_iterator cit = a.seq.begin(); while (cit!=last) { distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit))); cit++; } // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor if (ex_to_numeric(a.overall_coeff).is_integer()) { const numeric &num_exponent = ex_to_numeric(a.overall_coeff); int int_exponent = num_exponent.to_int(); if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis, add)) distrseq.push_back(expand_add(ex_to_add(expanded_basis), int_exponent)); else distrseq.push_back(power(expanded_basis, a.overall_coeff)); } else distrseq.push_back(power(expanded_basis, a.overall_coeff)); // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a ex r = (new mul(distrseq))->setflag(status_flags::dynallocated); return r.expand(); } if (!is_ex_exactly_of_type(expanded_exponent, numeric) || !ex_to_numeric(expanded_exponent).is_integer()) { if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) { return this->hold(); } else { return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded); } } // integer numeric exponent const numeric & num_exponent = ex_to_numeric(expanded_exponent); int int_exponent = num_exponent.to_int(); // (x+y)^n, n>0 if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis,add)) return expand_add(ex_to_add(expanded_basis), int_exponent); // (x*y)^n -> x^n * y^n if (is_ex_exactly_of_type(expanded_basis,mul)) return expand_mul(ex_to_mul(expanded_basis), num_exponent); // cannot expand further if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) return this->hold(); else return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded); } ////////// // new virtual functions which can be overridden by derived classes ////////// // none ////////// // non-virtual functions in this class ////////// /** expand a^n where a is an add and n is an integer. * @see power::expand */ ex power::expand_add(const add & a, int n) const { if (n==2) return expand_add_2(a); int m = a.nops(); exvector sum; sum.reserve((n+1)*(m-1)); intvector k(m-1); intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]); intvector upper_limit(m-1); int l; for (int l=0; lsetflag(status_flags::dynallocated)); // increment k[] l = m-2; while ((l>=0)&&((++k[l])>upper_limit[l])) { k[l] = 0; l--; } if (l<0) break; // recalc k_cum[] and upper_limit[] if (l==0) k_cum[0] = k[0]; else k_cum[l] = k_cum[l-1]+k[l]; for (int i=l+1; isetflag(status_flags::dynallocated | status_flags::expanded ); } /** Special case of power::expand_add. Expands a^2 where a is an add. * @see power::expand_add */ ex power::expand_add_2(const add & a) const { epvector sum; unsigned a_nops = a.nops(); sum.reserve((a_nops*(a_nops+1))/2); epvector::const_iterator last = a.seq.end(); // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c // first part: ignore overall_coeff and expand other terms for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) { const ex & r = (*cit0).rest; const ex & c = (*cit0).coeff; GINAC_ASSERT(!is_ex_exactly_of_type(r,add)); GINAC_ASSERT(!is_ex_exactly_of_type(r,power) || !is_ex_exactly_of_type(ex_to_power(r).exponent,numeric) || !ex_to_numeric(ex_to_power(r).exponent).is_pos_integer() || !is_ex_exactly_of_type(ex_to_power(r).basis,add) || !is_ex_exactly_of_type(ex_to_power(r).basis,mul) || !is_ex_exactly_of_type(ex_to_power(r).basis,power)); if (are_ex_trivially_equal(c,_ex1())) { if (is_ex_exactly_of_type(r,mul)) { sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()), _ex1())); } else { sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated), _ex1())); } } else { if (is_ex_exactly_of_type(r,mul)) { sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()), ex_to_numeric(c).power_dyn(_num2()))); } else { sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated), ex_to_numeric(c).power_dyn(_num2()))); } } for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) { const ex & r1 = (*cit1).rest; const ex & c1 = (*cit1).coeff; sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated), _num2().mul(ex_to_numeric(c)).mul_dyn(ex_to_numeric(c1)))); } } GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2); // second part: add terms coming from overall_factor (if != 0) if (!a.overall_coeff.is_zero()) { for (epvector::const_iterator cit=a.seq.begin(); cit!=a.seq.end(); ++cit) { sum.push_back(a.combine_pair_with_coeff_to_pair(*cit,ex_to_numeric(a.overall_coeff).mul_dyn(_num2()))); } sum.push_back(expair(ex_to_numeric(a.overall_coeff).power_dyn(_num2()),_ex1())); } GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2); return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded); } /** Expand factors of m in m^n where m is a mul and n is and integer * @see power::expand */ ex power::expand_mul(const mul & m, const numeric & n) const { if (n.is_zero()) return _ex1(); epvector distrseq; distrseq.reserve(m.seq.size()); epvector::const_iterator last = m.seq.end(); epvector::const_iterator cit = m.seq.begin(); while (cit!=last) { if (is_ex_exactly_of_type((*cit).rest,numeric)) { distrseq.push_back(m.combine_pair_with_coeff_to_pair(*cit,n)); } else { // it is safe not to call mul::combine_pair_with_coeff_to_pair() // since n is an integer distrseq.push_back(expair((*cit).rest, ex_to_numeric((*cit).coeff).mul(n))); } ++cit; } return (new mul(distrseq,ex_to_numeric(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated); } /* ex power::expand_commutative_3(const ex & basis, const numeric & exponent, unsigned options) const { // obsolete exvector distrseq; epvector splitseq; const add & addref=static_cast(*basis.bp); splitseq=addref.seq; splitseq.pop_back(); ex first_operands=add(splitseq); ex last_operand=addref.recombine_pair_to_ex(*(addref.seq.end()-1)); int n=exponent.to_int(); for (int k=0; k<=n; k++) { distrseq.push_back(binomial(n,k) * power(first_operands,numeric(k)) * power(last_operand,numeric(n-k))); } return ex((new add(distrseq))->setflag(status_flags::expanded | status_flags::dynallocated)).expand(options); } */ /* ex power::expand_noncommutative(const ex & basis, const numeric & exponent, unsigned options) const { ex rest_power = ex(power(basis,exponent.add(_num_1()))). expand(options | expand_options::internal_do_not_expand_power_operands); return ex(mul(rest_power,basis),0). expand(options | expand_options::internal_do_not_expand_mul_operands); } */ ////////// // static member variables ////////// // protected unsigned power::precedence = 60; // helper function ex sqrt(const ex & a) { return power(a,_ex1_2()); } } // namespace GiNaC