/** @file power.cpp * * Implementation of GiNaC's symbolic exponentiation (basis^exponent). */ /* * GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include "power.h" #include "expairseq.h" #include "add.h" #include "mul.h" #include "ncmul.h" #include "numeric.h" #include "constant.h" #include "operators.h" #include "inifcns.h" // for log() in power::derivative() #include "matrix.h" #include "indexed.h" #include "symbol.h" #include "lst.h" #include "archive.h" #include "utils.h" #include "relational.h" #include "compiler.h" namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic, print_func(&power::do_print_dflt). print_func(&power::do_print_latex). print_func(&power::do_print_csrc). print_func(&power::do_print_python). print_func(&power::do_print_python_repr). print_func(&power::do_print_csrc_cl_N)) typedef std::vector intvector; ////////// // default constructor ////////// power::power() : inherited(&power::tinfo_static) { } ////////// // other constructors ////////// // all inlined ////////// // archiving ////////// power::power(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst) { n.find_ex("basis", basis, sym_lst); n.find_ex("exponent", exponent, sym_lst); } void power::archive(archive_node &n) const { inherited::archive(n); n.add_ex("basis", basis); n.add_ex("exponent", exponent); } DEFAULT_UNARCHIVE(power) ////////// // functions overriding virtual functions from base classes ////////// // public void power::print_power(const print_context & c, const char *powersymbol, const char *openbrace, const char *closebrace, unsigned level) const { // Ordinary output of powers using '^' or '**' if (precedence() <= level) c.s << openbrace << '('; basis.print(c, precedence()); c.s << powersymbol; c.s << openbrace; exponent.print(c, precedence()); c.s << closebrace; if (precedence() <= level) c.s << ')' << closebrace; } void power::do_print_dflt(const print_dflt & c, unsigned level) const { if (exponent.is_equal(_ex1_2)) { // Square roots are printed in a special way c.s << "sqrt("; basis.print(c); c.s << ')'; } else print_power(c, "^", "", "", level); } void power::do_print_latex(const print_latex & c, unsigned level) const { if (is_exactly_a(exponent) && ex_to(exponent).is_negative()) { // Powers with negative numeric exponents are printed as fractions c.s << "\\frac{1}{"; power(basis, -exponent).eval().print(c); c.s << '}'; } else if (exponent.is_equal(_ex1_2)) { // Square roots are printed in a special way c.s << "\\sqrt{"; basis.print(c); c.s << '}'; } else print_power(c, "^", "{", "}", level); } static void print_sym_pow(const print_context & c, const symbol &x, int exp) { // Optimal output of integer powers of symbols to aid compiler CSE. // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15 // to learn why such a parenthesation is really necessary. if (exp == 1) { x.print(c); } else if (exp == 2) { x.print(c); c.s << "*"; x.print(c); } else if (exp & 1) { x.print(c); c.s << "*"; print_sym_pow(c, x, exp-1); } else { c.s << "("; print_sym_pow(c, x, exp >> 1); c.s << ")*("; print_sym_pow(c, x, exp >> 1); c.s << ")"; } } void power::do_print_csrc_cl_N(const print_csrc_cl_N& c, unsigned level) const { if (exponent.is_equal(_ex_1)) { c.s << "recip("; basis.print(c); c.s << ')'; return; } c.s << "expt("; basis.print(c); c.s << ", "; exponent.print(c); c.s << ')'; } void power::do_print_csrc(const print_csrc & c, unsigned level) const { // Integer powers of symbols are printed in a special, optimized way if (exponent.info(info_flags::integer) && (is_a(basis) || is_a(basis))) { int exp = ex_to(exponent).to_int(); if (exp > 0) c.s << '('; else { exp = -exp; c.s << "1.0/("; } print_sym_pow(c, ex_to(basis), exp); c.s << ')'; // ^-1 is printed as "1.0/" or with the recip() function of CLN } else if (exponent.is_equal(_ex_1)) { c.s << "1.0/("; basis.print(c); c.s << ')'; // Otherwise, use the pow() function } else { c.s << "pow("; basis.print(c); c.s << ','; exponent.print(c); c.s << ')'; } } void power::do_print_python(const print_python & c, unsigned level) const { print_power(c, "**", "", "", level); } void power::do_print_python_repr(const print_python_repr & c, unsigned level) const { c.s << class_name() << '('; basis.print(c); c.s << ','; exponent.print(c); c.s << ')'; } bool power::info(unsigned inf) const { switch (inf) { case info_flags::polynomial: case info_flags::integer_polynomial: case info_flags::cinteger_polynomial: case info_flags::rational_polynomial: case info_flags::crational_polynomial: return exponent.info(info_flags::nonnegint) && basis.info(inf); case info_flags::rational_function: return exponent.info(info_flags::integer) && basis.info(inf); case info_flags::algebraic: return !exponent.info(info_flags::integer) || basis.info(inf); case info_flags::expanded: return (flags & status_flags::expanded); case info_flags::has_indices: { if (flags & status_flags::has_indices) return true; else if (flags & status_flags::has_no_indices) return false; else if (basis.info(info_flags::has_indices)) { setflag(status_flags::has_indices); clearflag(status_flags::has_no_indices); return true; } else { clearflag(status_flags::has_indices); setflag(status_flags::has_no_indices); return false; } } } return inherited::info(inf); } size_t power::nops() const { return 2; } ex power::op(size_t i) const { GINAC_ASSERT(i<2); return i==0 ? basis : exponent; } ex power::map(map_function & f) const { const ex &mapped_basis = f(basis); const ex &mapped_exponent = f(exponent); if (!are_ex_trivially_equal(basis, mapped_basis) || !are_ex_trivially_equal(exponent, mapped_exponent)) return (new power(mapped_basis, mapped_exponent))->setflag(status_flags::dynallocated); else return *this; } bool power::is_polynomial(const ex & var) const { if (exponent.has(var)) return false; if (!exponent.info(info_flags::nonnegint)) return false; return basis.is_polynomial(var); } int power::degree(const ex & s) const { if (is_equal(ex_to(s))) return 1; else if (is_exactly_a(exponent) && ex_to(exponent).is_integer()) { if (basis.is_equal(s)) return ex_to(exponent).to_int(); else return basis.degree(s) * ex_to(exponent).to_int(); } else if (basis.has(s)) throw(std::runtime_error("power::degree(): undefined degree because of non-integer exponent")); else return 0; } int power::ldegree(const ex & s) const { if (is_equal(ex_to(s))) return 1; else if (is_exactly_a(exponent) && ex_to(exponent).is_integer()) { if (basis.is_equal(s)) return ex_to(exponent).to_int(); else return basis.ldegree(s) * ex_to(exponent).to_int(); } else if (basis.has(s)) throw(std::runtime_error("power::ldegree(): undefined degree because of non-integer exponent")); else return 0; } ex power::coeff(const ex & s, int n) const { if (is_equal(ex_to(s))) return n==1 ? _ex1 : _ex0; else if (!basis.is_equal(s)) { // basis not equal to s if (n == 0) return *this; else return _ex0; } else { // basis equal to s if (is_exactly_a(exponent) && ex_to(exponent).is_integer()) { // integer exponent int int_exp = ex_to(exponent).to_int(); if (n == int_exp) return _ex1; else return _ex0; } else { // non-integer exponents are treated as zero if (n == 0) return *this; else return _ex0; } } } /** Perform automatic term rewriting rules in this class. In the following * x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2... * stand for such expressions that contain a plain number. * - ^(x,0) -> 1 (also handles ^(0,0)) * - ^(x,1) -> x * - ^(0,c) -> 0 or exception (depending on the real part of c) * - ^(1,x) -> 1 * - ^(c1,c2) -> *(c1^n,c1^(c2-n)) (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1) * - ^(^(x,c1),c2) -> ^(x,c1*c2) if x is positive and c1 is real. * - ^(^(x,c1),c2) -> ^(x,c1*c2) (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!) * - ^(*(x,y,z),c) -> *(x^c,y^c,z^c) (if c integer) * - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2 (c1>0) * - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2 (c1<0) * * @param level cut-off in recursive evaluation */ ex power::eval(int level) const { if ((level==1) && (flags & status_flags::evaluated)) return *this; else if (level == -max_recursion_level) throw(std::runtime_error("max recursion level reached")); const ex & ebasis = level==1 ? basis : basis.eval(level-1); const ex & eexponent = level==1 ? exponent : exponent.eval(level-1); bool basis_is_numerical = false; bool exponent_is_numerical = false; const numeric *num_basis; const numeric *num_exponent; if (is_exactly_a(ebasis)) { basis_is_numerical = true; num_basis = &ex_to(ebasis); } if (is_exactly_a(eexponent)) { exponent_is_numerical = true; num_exponent = &ex_to(eexponent); } // ^(x,0) -> 1 (0^0 also handled here) if (eexponent.is_zero()) { if (ebasis.is_zero()) throw (std::domain_error("power::eval(): pow(0,0) is undefined")); else return _ex1; } // ^(x,1) -> x if (eexponent.is_equal(_ex1)) return ebasis; // ^(0,c1) -> 0 or exception (depending on real value of c1) if (ebasis.is_zero() && exponent_is_numerical) { if ((num_exponent->real()).is_zero()) throw (std::domain_error("power::eval(): pow(0,I) is undefined")); else if ((num_exponent->real()).is_negative()) throw (pole_error("power::eval(): division by zero",1)); else return _ex0; } // ^(1,x) -> 1 if (ebasis.is_equal(_ex1)) return _ex1; // power of a function calculated by separate rules defined for this function if (is_exactly_a(ebasis)) return ex_to(ebasis).power(eexponent); // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real. if (is_exactly_a(ebasis) && ebasis.op(0).info(info_flags::positive) && ebasis.op(1).info(info_flags::real)) return power(ebasis.op(0), ebasis.op(1) * eexponent); if (exponent_is_numerical) { // ^(c1,c2) -> c1^c2 (c1, c2 numeric(), // except if c1,c2 are rational, but c1^c2 is not) if (basis_is_numerical) { const bool basis_is_crational = num_basis->is_crational(); const bool exponent_is_crational = num_exponent->is_crational(); if (!basis_is_crational || !exponent_is_crational) { // return a plain float return (new numeric(num_basis->power(*num_exponent)))->setflag(status_flags::dynallocated | status_flags::evaluated | status_flags::expanded); } const numeric res = num_basis->power(*num_exponent); if (res.is_crational()) { return res; } GINAC_ASSERT(!num_exponent->is_integer()); // has been handled by now // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-q)<1, q integer if (basis_is_crational && exponent_is_crational && num_exponent->is_real() && !num_exponent->is_integer()) { const numeric n = num_exponent->numer(); const numeric m = num_exponent->denom(); numeric r; numeric q = iquo(n, m, r); if (r.is_negative()) { r += m; --q; } if (q.is_zero()) { // the exponent was in the allowed range 0<(n/m)<1 if (num_basis->is_rational() && !num_basis->is_integer()) { // try it for numerator and denominator separately, in order to // partially simplify things like (5/8)^(1/3) -> 1/2*5^(1/3) const numeric bnum = num_basis->numer(); const numeric bden = num_basis->denom(); const numeric res_bnum = bnum.power(*num_exponent); const numeric res_bden = bden.power(*num_exponent); if (res_bnum.is_integer()) return (new mul(power(bden,-*num_exponent),res_bnum))->setflag(status_flags::dynallocated | status_flags::evaluated); if (res_bden.is_integer()) return (new mul(power(bnum,*num_exponent),res_bden.inverse()))->setflag(status_flags::dynallocated | status_flags::evaluated); } return this->hold(); } else { // assemble resulting product, but allowing for a re-evaluation, // because otherwise we'll end up with something like // (7/8)^(4/3) -> 7/8*(1/2*7^(1/3)) // instead of 7/16*7^(1/3). ex prod = power(*num_basis,r.div(m)); return prod*power(*num_basis,q); } } } // ^(^(x,c1),c2) -> ^(x,c1*c2) // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1, // case c1==1 should not happen, see below!) if (is_exactly_a(ebasis)) { const power & sub_power = ex_to(ebasis); const ex & sub_basis = sub_power.basis; const ex & sub_exponent = sub_power.exponent; if (is_exactly_a(sub_exponent)) { const numeric & num_sub_exponent = ex_to(sub_exponent); GINAC_ASSERT(num_sub_exponent!=numeric(1)); if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative()) { return power(sub_basis,num_sub_exponent.mul(*num_exponent)); } } } // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer) if (num_exponent->is_integer() && is_exactly_a(ebasis)) { return expand_mul(ex_to(ebasis), *num_exponent, 0); } // (2*x + 6*y)^(-4) -> 1/16*(x + 3*y)^(-4) if (num_exponent->is_integer() && is_exactly_a(ebasis)) { numeric icont = ebasis.integer_content(); const numeric lead_coeff = ex_to(ex_to(ebasis).seq.begin()->coeff).div(icont); const bool canonicalizable = lead_coeff.is_integer(); const bool unit_normal = lead_coeff.is_pos_integer(); if (canonicalizable && (! unit_normal)) icont = icont.mul(*_num_1_p); if (canonicalizable && (icont != *_num1_p)) { const add& addref = ex_to(ebasis); add* addp = new add(addref); addp->setflag(status_flags::dynallocated); addp->clearflag(status_flags::hash_calculated); addp->overall_coeff = ex_to(addp->overall_coeff).div_dyn(icont); for (epvector::iterator i = addp->seq.begin(); i != addp->seq.end(); ++i) i->coeff = ex_to(i->coeff).div_dyn(icont); const numeric c = icont.power(*num_exponent); if (likely(c != *_num1_p)) return (new mul(power(*addp, *num_exponent), c))->setflag(status_flags::dynallocated); else return power(*addp, *num_exponent); } } // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2) (c1, c2 numeric(), c1>0) // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2) (c1, c2 numeric(), c1<0) if (is_exactly_a(ebasis)) { GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above const mul & mulref = ex_to(ebasis); if (!mulref.overall_coeff.is_equal(_ex1)) { const numeric & num_coeff = ex_to(mulref.overall_coeff); if (num_coeff.is_real()) { if (num_coeff.is_positive()) { mul *mulp = new mul(mulref); mulp->overall_coeff = _ex1; mulp->clearflag(status_flags::evaluated); mulp->clearflag(status_flags::hash_calculated); return (new mul(power(*mulp,exponent), power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated); } else { GINAC_ASSERT(num_coeff.compare(*_num0_p)<0); if (!num_coeff.is_equal(*_num_1_p)) { mul *mulp = new mul(mulref); mulp->overall_coeff = _ex_1; mulp->clearflag(status_flags::evaluated); mulp->clearflag(status_flags::hash_calculated); return (new mul(power(*mulp,exponent), power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated); } } } } } // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix) if (num_exponent->is_pos_integer() && ebasis.return_type() != return_types::commutative && !is_a(ebasis)) { return ncmul(exvector(num_exponent->to_int(), ebasis), true); } } if (are_ex_trivially_equal(ebasis,basis) && are_ex_trivially_equal(eexponent,exponent)) { return this->hold(); } return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated | status_flags::evaluated); } ex power::evalf(int level) const { ex ebasis; ex eexponent; if (level==1) { ebasis = basis; eexponent = exponent; } else if (level == -max_recursion_level) { throw(std::runtime_error("max recursion level reached")); } else { ebasis = basis.evalf(level-1); if (!is_exactly_a(exponent)) eexponent = exponent.evalf(level-1); else eexponent = exponent; } return power(ebasis,eexponent); } ex power::evalm() const { const ex ebasis = basis.evalm(); const ex eexponent = exponent.evalm(); if (is_a(ebasis)) { if (is_exactly_a(eexponent)) { return (new matrix(ex_to(ebasis).pow(eexponent)))->setflag(status_flags::dynallocated); } } return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated); } bool power::has(const ex & other, unsigned options) const { if (!(options & has_options::algebraic)) return basic::has(other, options); if (!is_a(other)) return basic::has(other, options); if (!exponent.info(info_flags::integer) || !other.op(1).info(info_flags::integer)) return basic::has(other, options); if (exponent.info(info_flags::posint) && other.op(1).info(info_flags::posint) && ex_to(exponent).to_int() > ex_to(other.op(1)).to_int() && basis.match(other.op(0))) return true; if (exponent.info(info_flags::negint) && other.op(1).info(info_flags::negint) && ex_to(exponent).to_int() < ex_to(other.op(1)).to_int() && basis.match(other.op(0))) return true; return basic::has(other, options); } // from mul.cpp extern bool tryfactsubs(const ex &, const ex &, int &, exmap&); ex power::subs(const exmap & m, unsigned options) const { const ex &subsed_basis = basis.subs(m, options); const ex &subsed_exponent = exponent.subs(m, options); if (!are_ex_trivially_equal(basis, subsed_basis) || !are_ex_trivially_equal(exponent, subsed_exponent)) return power(subsed_basis, subsed_exponent).subs_one_level(m, options); if (!(options & subs_options::algebraic)) return subs_one_level(m, options); for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) { int nummatches = std::numeric_limits::max(); exmap repls; if (tryfactsubs(*this, it->first, nummatches, repls)) { ex anum = it->second.subs(repls, subs_options::no_pattern); ex aden = it->first.subs(repls, subs_options::no_pattern); ex result = (*this)*power(anum/aden, nummatches); return (ex_to(result)).subs_one_level(m, options); } } return subs_one_level(m, options); } ex power::eval_ncmul(const exvector & v) const { return inherited::eval_ncmul(v); } ex power::conjugate() const { ex newbasis = basis.conjugate(); ex newexponent = exponent.conjugate(); if (are_ex_trivially_equal(basis, newbasis) && are_ex_trivially_equal(exponent, newexponent)) { return *this; } return (new power(newbasis, newexponent))->setflag(status_flags::dynallocated); } ex power::real_part() const { if (exponent.info(info_flags::integer)) { ex basis_real = basis.real_part(); if (basis_real == basis) return *this; realsymbol a("a"),b("b"); ex result; if (exponent.info(info_flags::posint)) result = power(a+I*b,exponent); else result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent); result = result.expand(); result = result.real_part(); result = result.subs(lst( a==basis_real, b==basis.imag_part() )); return result; } ex a = basis.real_part(); ex b = basis.imag_part(); ex c = exponent.real_part(); ex d = exponent.imag_part(); return power(abs(basis),c)*exp(-d*atan2(b,a))*cos(c*atan2(b,a)+d*log(abs(basis))); } ex power::imag_part() const { if (exponent.info(info_flags::integer)) { ex basis_real = basis.real_part(); if (basis_real == basis) return 0; realsymbol a("a"),b("b"); ex result; if (exponent.info(info_flags::posint)) result = power(a+I*b,exponent); else result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent); result = result.expand(); result = result.imag_part(); result = result.subs(lst( a==basis_real, b==basis.imag_part() )); return result; } ex a=basis.real_part(); ex b=basis.imag_part(); ex c=exponent.real_part(); ex d=exponent.imag_part(); return power(abs(basis),c)*exp(-d*atan2(b,a))*sin(c*atan2(b,a)+d*log(abs(basis))); } // protected // protected /** Implementation of ex::diff() for a power. * @see ex::diff */ ex power::derivative(const symbol & s) const { if (is_a(exponent)) { // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below) epvector newseq; newseq.reserve(2); newseq.push_back(expair(basis, exponent - _ex1)); newseq.push_back(expair(basis.diff(s), _ex1)); return mul(newseq, exponent); } else { // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b) return mul(*this, add(mul(exponent.diff(s), log(basis)), mul(mul(exponent, basis.diff(s)), power(basis, _ex_1)))); } } int power::compare_same_type(const basic & other) const { GINAC_ASSERT(is_exactly_a(other)); const power &o = static_cast(other); int cmpval = basis.compare(o.basis); if (cmpval) return cmpval; else return exponent.compare(o.exponent); } unsigned power::return_type() const { return basis.return_type(); } tinfo_t power::return_type_tinfo() const { return basis.return_type_tinfo(); } ex power::expand(unsigned options) const { if (is_a(basis) && exponent.info(info_flags::integer)) { // A special case worth optimizing. setflag(status_flags::expanded); return *this; } const ex expanded_basis = basis.expand(options); const ex expanded_exponent = exponent.expand(options); // x^(a+b) -> x^a * x^b if (is_exactly_a(expanded_exponent)) { const add &a = ex_to(expanded_exponent); exvector distrseq; distrseq.reserve(a.seq.size() + 1); epvector::const_iterator last = a.seq.end(); epvector::const_iterator cit = a.seq.begin(); while (cit!=last) { distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit))); ++cit; } // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor if (ex_to(a.overall_coeff).is_integer()) { const numeric &num_exponent = ex_to(a.overall_coeff); int int_exponent = num_exponent.to_int(); if (int_exponent > 0 && is_exactly_a(expanded_basis)) distrseq.push_back(expand_add(ex_to(expanded_basis), int_exponent, options)); else distrseq.push_back(power(expanded_basis, a.overall_coeff)); } else distrseq.push_back(power(expanded_basis, a.overall_coeff)); // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a ex r = (new mul(distrseq))->setflag(status_flags::dynallocated); return r.expand(options); } if (!is_exactly_a(expanded_exponent) || !ex_to(expanded_exponent).is_integer()) { if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) { return this->hold(); } else { return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); } } // integer numeric exponent const numeric & num_exponent = ex_to(expanded_exponent); int int_exponent = num_exponent.to_int(); // (x+y)^n, n>0 if (int_exponent > 0 && is_exactly_a(expanded_basis)) return expand_add(ex_to(expanded_basis), int_exponent, options); // (x*y)^n -> x^n * y^n if (is_exactly_a(expanded_basis)) return expand_mul(ex_to(expanded_basis), num_exponent, options, true); // cannot expand further if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) return this->hold(); else return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)); } ////////// // new virtual functions which can be overridden by derived classes ////////// // none ////////// // non-virtual functions in this class ////////// /** expand a^n where a is an add and n is a positive integer. * @see power::expand */ ex power::expand_add(const add & a, int n, unsigned options) const { if (n==2) return expand_add_2(a, options); const size_t m = a.nops(); exvector result; // The number of terms will be the number of combinatorial compositions, // i.e. the number of unordered arrangements of m nonnegative integers // which sum up to n. It is frequently written as C_n(m) and directly // related with binomial coefficients: result.reserve(binomial(numeric(n+m-1), numeric(m-1)).to_int()); intvector k(m-1); intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]); intvector upper_limit(m-1); for (size_t l=0; l(b)); GINAC_ASSERT(!is_exactly_a(b) || !is_exactly_a(ex_to(b).exponent) || !ex_to(ex_to(b).exponent).is_pos_integer() || !is_exactly_a(ex_to(b).basis) || !is_exactly_a(ex_to(b).basis) || !is_exactly_a(ex_to(b).basis)); if (is_exactly_a(b)) term.push_back(expand_mul(ex_to(b), numeric(k[l]), options, true)); else term.push_back(power(b,k[l])); } const ex & b = a.op(m - 1); GINAC_ASSERT(!is_exactly_a(b)); GINAC_ASSERT(!is_exactly_a(b) || !is_exactly_a(ex_to(b).exponent) || !ex_to(ex_to(b).exponent).is_pos_integer() || !is_exactly_a(ex_to(b).basis) || !is_exactly_a(ex_to(b).basis) || !is_exactly_a(ex_to(b).basis)); if (is_exactly_a(b)) term.push_back(expand_mul(ex_to(b), numeric(n-k_cum[m-2]), options, true)); else term.push_back(power(b,n-k_cum[m-2])); numeric f = binomial(numeric(n),numeric(k[0])); for (std::size_t l = 1; l < m - 1; ++l) f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l])); term.push_back(f); result.push_back(ex((new mul(term))->setflag(status_flags::dynallocated)).expand(options)); // increment k[] bool done = false; std::size_t l = m - 2; while ((++k[l]) > upper_limit[l]) { k[l] = 0; if (l != 0) --l; else { done = true; break; } } if (done) break; // recalc k_cum[] and upper_limit[] k_cum[l] = (l==0 ? k[0] : k_cum[l-1]+k[l]); for (size_t i=l+1; isetflag(status_flags::dynallocated | status_flags::expanded); } /** Special case of power::expand_add. Expands a^2 where a is an add. * @see power::expand_add */ ex power::expand_add_2(const add & a, unsigned options) const { epvector sum; size_t a_nops = a.nops(); sum.reserve((a_nops*(a_nops+1))/2); epvector::const_iterator last = a.seq.end(); // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c // first part: ignore overall_coeff and expand other terms for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) { const ex & r = cit0->rest; const ex & c = cit0->coeff; GINAC_ASSERT(!is_exactly_a(r)); GINAC_ASSERT(!is_exactly_a(r) || !is_exactly_a(ex_to(r).exponent) || !ex_to(ex_to(r).exponent).is_pos_integer() || !is_exactly_a(ex_to(r).basis) || !is_exactly_a(ex_to(r).basis) || !is_exactly_a(ex_to(r).basis)); if (c.is_equal(_ex1)) { if (is_exactly_a(r)) { sum.push_back(expair(expand_mul(ex_to(r), *_num2_p, options, true), _ex1)); } else { sum.push_back(expair((new power(r,_ex2))->setflag(status_flags::dynallocated), _ex1)); } } else { if (is_exactly_a(r)) { sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to(r), *_num2_p, options, true), ex_to(c).power_dyn(*_num2_p))); } else { sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated), ex_to(c).power_dyn(*_num2_p))); } } for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) { const ex & r1 = cit1->rest; const ex & c1 = cit1->coeff; sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated), _num2_p->mul(ex_to(c)).mul_dyn(ex_to(c1)))); } } GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2); // second part: add terms coming from overall_factor (if != 0) if (!a.overall_coeff.is_zero()) { epvector::const_iterator i = a.seq.begin(), end = a.seq.end(); while (i != end) { sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to(a.overall_coeff).mul_dyn(*_num2_p))); ++i; } sum.push_back(expair(ex_to(a.overall_coeff).power_dyn(*_num2_p),_ex1)); } GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2); return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded); } /** Expand factors of m in m^n where m is a mul and n is an integer. * @see power::expand */ ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand) const { GINAC_ASSERT(n.is_integer()); if (n.is_zero()) { return _ex1; } // do not bother to rename indices if there are no any. if ((!(options & expand_options::expand_rename_idx)) && m.info(info_flags::has_indices)) options |= expand_options::expand_rename_idx; // Leave it to multiplication since dummy indices have to be renamed if ((options & expand_options::expand_rename_idx) && (get_all_dummy_indices(m).size() > 0) && n.is_positive()) { ex result = m; exvector va = get_all_dummy_indices(m); sort(va.begin(), va.end(), ex_is_less()); for (int i=1; i < n.to_int(); i++) result *= rename_dummy_indices_uniquely(va, m); return result; } epvector distrseq; distrseq.reserve(m.seq.size()); bool need_reexpand = false; epvector::const_iterator last = m.seq.end(); epvector::const_iterator cit = m.seq.begin(); while (cit!=last) { expair p = m.combine_pair_with_coeff_to_pair(*cit, n); if (from_expand && is_exactly_a(cit->rest) && ex_to(p.coeff).is_pos_integer()) { // this happens when e.g. (a+b)^(1/2) gets squared and // the resulting product needs to be reexpanded need_reexpand = true; } distrseq.push_back(p); ++cit; } const mul & result = static_cast((new mul(distrseq, ex_to(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated)); if (need_reexpand) return ex(result).expand(options); if (from_expand) return result.setflag(status_flags::expanded); return result; } } // namespace GiNaC