#ifndef GINAC_UPOLY_REMAINDER_TCC #define GINAC_UPOLY_REMAINDER_TCC #include "upoly.hpp" #include "ring_traits.hpp" #include "upoly_io.hpp" #include "debug.hpp" namespace GiNaC { /** * @brief Polynomial remainder for univariate polynomials over fields * * Given two univariate polynomials \f$a, b \in F[x]\f$, where F is * a finite field (presumably Z/p) computes the remainder @a r, which is * defined as \f$a = b q + r\f$. Returns true if the remainder is zero * and false otherwise. */ static bool remainder_in_field(umodpoly& r, const umodpoly& a, const umodpoly& b) { typedef cln::cl_MI field_t; if (degree(a) < degree(b)) { r = a; return false; } // The coefficient ring is a field, so any 0 degree polynomial // divides any other polynomial. if (degree(b) == 0) { r.clear(); return true; } r = a; const field_t b_lcoeff = lcoeff(b); for (std::size_t k = a.size(); k-- >= b.size(); ) { // r -= r_k/b_n x^{k - n} b(x) if (zerop(r[k])) continue; field_t qk = div(r[k], b_lcoeff); bug_on(zerop(qk), "division in a field yield zero: " << r[k] << '/' << b_lcoeff); // Why C++ is so off-by-one prone? for (std::size_t j = k, i = b.size(); i-- != 0; --j) { if (zerop(b[i])) continue; r[j] = r[j] - qk*b[i]; } bug_on(!zerop(r[k]), "polynomial division in field failed: " << "r[" << k << "] = " << r[k] << ", " << "r = " << r << ", b = " << b); } // Canonicalize the remainder: remove leading zeros. Give a hint // to canonicalize(): we know degree(remainder) < degree(b) // (because the coefficient ring is a field), so // c_{degree(b)} \ldots c_{degree(a)} are definitely zero. std::size_t from = degree(b) - 1; canonicalize(r, from); return r.empty(); } /** * @brief Polynomial remainder for univariate polynomials over a ring. * * Given two univariate polynomials \f$a, b \in R[x]\f$, where R is * a ring (presumably Z) computes the remainder @a r, which is * defined as \f$a = b q + r\f$. Returns true if the remainder is zero * and false otherwise. */ template bool remainder_in_ring(T& r, const T& a, const T& b) { typedef typename T::value_type ring_t; if (degree(a) < degree(b)) { r = a; return false; } // N.B: don't bother to optimize division by constant r = a; const ring_t b_lcoeff = lcoeff(b); for (std::size_t k = a.size(); k-- >= b.size(); ) { // r -= r_k/b_n x^{k - n} b(x) if (zerop(r[k])) continue; const ring_t qk = truncate1(r[k], b_lcoeff); // Why C++ is so off-by-one prone? for (std::size_t j = k, i = b.size(); i-- != 0; --j) { if (zerop(b[i])) continue; r[j] = r[j] - qk*b[i]; } if (!zerop(r[k])) { // division failed, don't bother to continue break; } } // Canonicalize the remainder: remove leading zeros. We can't say // anything about the degree of the remainder here. canonicalize(r); return r.empty(); } } // namespace GiNaC #endif // GINAC_UPOLY_REMAINDER_TCC